AUTHOR=Duteil Thibault , Bourillot Raphaël , Braissant Olivier , Grégoire Brian , Leloup Maud , Portier Eric , Brigaud Benjamin , Féniès Hugues , Svahn Isabelle , Henry Adrien , Yokoyama Yusuke , Visscher Pieter T. TITLE=Preservation of exopolymeric substances in estuarine sediments JOURNAL=Frontiers in Microbiology VOLUME=13 YEAR=2022 URL=https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2022.921154 DOI=10.3389/fmicb.2022.921154 ISSN=1664-302X ABSTRACT=
The surface of intertidal estuarine sediments is covered with diatom biofilms excreting exopolymeric substances (EPSs) through photosynthesis. These EPSs are highly reactive and increase sediment cohesiveness notably through organo-mineral interactions. In most sedimentary environments, EPSs are partly to fully degraded by heterotrophic bacteria in the uppermost millimeters of the sediment and so they are thought to be virtually absent deeper in the sedimentary column. Here, we present the first evidence of the preservation of EPSs and EPS-mineral aggregates in a 6-m-long sedimentary core obtained from an estuarine point bar in the Gironde Estuary. EPSs were extracted from 18 depth intervals along the core, and their physicochemical properties were characterized by (i) wet chemical assays to measure the concentrations of polysaccharides and proteins, and EPS deprotonation of functional groups, (ii) acid–base titrations, and (iii) Fourier transform infrared spectroscopy. EPS-sediment complexes were also imaged using cryo-scanning electron microscopy. EPS results were analyzed in the context of sediment properties including facies, grain size, and total organic carbon, and of metabolic and enzymatic activities. Our results showed a predictable decrease in EPS concentrations (proteins and polysaccharides) and reactivity from the surface biofilm to a depth of 0.5 m, possibly linked to heterotrophic degradation. Concentrations remained relatively low down to