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Diversity analysis is a de facto standard procedure for most existing microbiome studies.

Nevertheless, diversity metrics can be insensitive to changes in community composition

(identities). For example, if species A (e.g., a beneficial microbe) is replaced by equal

number of species B (e.g., an opportunistic pathogen), the diversity metric may not

change, but the community composition has changed. The shared species analysis

(SSA) is a computational technique that can discern changes of community composition

by detecting the increase/decrease of shared species between two sets of microbiome

samples, and it should be more sensitive than standard diversity analysis in discerning

changes in microbiome structures. Here, we investigated the effects of ethnicity and

lifestyles in China on the structure of Chinese gut microbiomes by reanalyzing the

datasets of a large Chinese cohort with 300+ individuals covering 7 biggest Chinese

ethnic groups (>95% Chinese population). We found: (i) Regarding lifestyles, SSA

revealed significant differences between 100% of pair-wise comparisons in community

compositions across all but phylum taxon levels (phylum level = 29%), but diversity

analysis only revealed 14–29% pair-wise differences in community diversity across all

four taxon levels. (ii) Regarding ethnicities, SSA revealed 100% pair-wise differences

in community compositions across all but phylum (phylum level = 48–62%) levels,

but diversity analysis only revealed 5–57% differences in community diversity across

all four taxon levels. (iii) Ethnicity seems to have more prevalent effects on community

structures than lifestyle does (iv) Community structures of the gut microbiomes are more

stable at the phylum level than at the other three levels. (v) SSA is more powerful than

diversity analysis in detecting the changes of community structures; furthermore, SSA

can produce lists of unique and shared OTUs. (vi) Finally, we performed stochasticity

analysis to mechanistically interpret the observed differences revealed by the SSA and

diversity analyses.

Keywords: Chinese gut microbiome (CGM), shared species analyses (SSA), Hill numbers (diversity), permutation

tests, rural vs. urban lifestyle, ethnicity, stochasticity analysis
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INTRODUCTION

The human gut microbiome and its host constitute an ecosystem
of symbiotic, commensal, and pathogenic microorganisms that
are 10+ times more than the number of our somatic cells. In
the co-evolutionary process of intestinal microbes and hosts,
both intrinsic host factors and external environmental factors
jointly influence the human intestinal micro-ecosystem and gut
microbiomes that directly and/or indirectly affect our health
and diseases. Among the numerous factors that influence the
human gut microbiome, lifestyles (e.g., the rural vs. urban)
and ethnic identities are arguably two of the most influential
(Zhang et al., 2015; Deschasaux et al., 2018; Lin et al., 2020).
Lifestyle is closely related to diet, ethnicity is closely related to
host genetic background, and both are obviously among the
most variables that determine the structure and dynamics of our
gut microbiomes.

Measuring the changes of gut microbiome structure is critical
to microbiome research. Diversity analysis has been one of
the most commonly performed techniques for investigating
microbiome structure and dynamics. Indeed, diversity metrics
play a foundational role in community ecology, and play an
indispensable role for biodiversity research and conservation
practice. Using an analogy, the foundational role of diversity
metrics in community ecology is not unlike the role of statistical
moments (such as mean, variance, skewness) in mathematical
statistics. For example, two of the most important diversity
metrics, Shannon entropy (Shannon, 1948) and Simpson index
(Simpson, 1949), have been routinely computed in biodiversity
studies of animals and plants since 1950’s and, more recently,
in the studies of human and other environmental microbiomes.
Nevertheless, diversity metrics are imperfect in characterizing
community structures because species identities are implicitly
ignored and diversity is often defined as some kind of entropy
function of species abundances, which hides species identity
information implicitly. For instance, if species A is replaced
by equal number of species B, the diversity metric may not
change but the community composition has changed. If both
species A and B have the same or similar functions, then the
issue is less relevant. However, if both have different functions
(e.g., A—a beneficial microbe; B—an opportunistic pathogen),
then the constancy in diversity metric can be misleading. In
this case, the shared species analysis (SSA) (Ma et al., 2019), a
pair of computational algorithms (A1 and A2) for determining
the changes of community (species) compositions, can play an
important Supplementary Role. The SSA test does not simply
compare the OTU richness or diversity of communities but,
instead, quantifies the difference in species composition (OTU
identity) between the two communities, which is similar to a
measure of beta diversity in terms of Anderson et al. (2011).
To strengthen the rigor of the SSA, Ma et al. (2019) proposed
two algorithms (A1 and A2): A1 randomizes the assignments
of the individual reads (bacterial individuals) to the rural or
urban groups (for example), and A2 randomizes the assignments
of the entire sample from a single subject (and its associated
reads) to the rural or urban groups. A fundamental difference
between both the algorithms is that A1 treats the individual

reads as independent elements, whereas the more conservative
A2 treats the entire sample of reads from a single subject as the
independent sampling element.

In the present study, we apply SSA to investigate the effects
of lifestyles and ethnicities on the human gut microbiome and
further compare the SSA results with the results from standard
diversity analysis. We choose to reanalyze a large Chinese gut
microbiome dataset collected from 300+ individuals from 7
ethnic groups residing in typical country and urban settings.
As China occupies a vast land and widely varying climates
and environments, people in different regions have developed
various dietary cultures (Zhang et al., 2015). Furthermore, the
56 ethnic Chinese groups constitute nearly 20% of the world
population. The 300+ individuals were sampled from the top
7 biggest ethnic groups in China, including Han, Mongolians,
Uyghurs, and Tibetans, Kazakh, Zhuang, and Bai, covering 95%
of Chinese in China. For each of the 7 ethnic groups, individuals
living rural and urban lifestyles were sampled separately. Each
ethnic group except Han Chinese lives in a different geographical
location, and its own dietary habits and particular lifestyles
are preserved, especially Mongolians, Uyghurs, and Tibetans
(Dehingia et al., 2015; Zhang et al., 2015). For example, rural
Mongolians maintain a traditional nomadic lifestyle and have
dietary tradition of high consumption of red meat, cheese, and
liquor (Ley et al., 2006). The study showed that Bifidobacterium
spp., Enterobacter spp., and Enterococcus spp. had high diversity
and were the dominant bacteria in the intestinal tract of the
Bai people in Dali, Yunnan Province, which may be related
to the long-term consumption of flavored milk food made by
a traditional and unique process by the local people (Huang
et al., 2015). According to relevant studies, at the phylum level
and the genus level, the key microorganisms that differ among
Mongolians, Han Chinese, and Europeans are Actinobacterium
and Bifidobacterium, respectively (Liu et al., 2016). Thus, ethnic
origin should play an important role in the composition of
human gut microbiome. Zhang et al. (2015) used principal
component analysis to analyze the composition of the gut
microbiome between individuals, which revealed significant
differences between Mongolians and Tibetans, Mongolians and
Zhuang, and Tibetans in rural and urban areas, and huge
differences in the composition of intestinal microbiome between
rural Tibetans and other ethnic groups (Zhang et al., 2015).
In spite of extensive studies on the effects of diets, lifestyles
and ethnicities, no simple metrics or statistical tests similar to
diversity metrics (analysis) have been applied to approach the
problem. In the present study, we filled the gap by applying
the shared species analysis to the investigation of the lifestyle
and ethnicity effects on the structural variations of Chinese gut
microbiome. In particular, we aimed to demonstrate the power of
shared species analysis in discerning microbiome compositional
changes beyond what standard diversity analysis could deliver.

Beyond performing comparative SSA and diversity analyses
of the Chinese gut microbiomes, a secondary objective of
this study is to shed theoretic light on the mechanistic
insights on the possible differences revealed by the SSA and
diversity analyses. To pursue this objective, we resort to the
ecological theory of metacommunity, which sought to expose the
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mechanisms underlying the assembly of ecological communities
and the maintenance of their biodiversities in the context of
metacommunity that consists of multiple local communities.
Arguably, the first theory aimed to explain the community
assembly, and diversity maintenance is the niche theory, which
stipulates that natural habitats (such as the human gut) for living
things (such as the gut microbes) are differentiated into niches
suitable for different species to survive and prosper. The niche
theory maintains that it is the deterministic selection forces that
“drive” the species to their suitable niches and, therefore, shape
the process of community assembly (formation) and patterns of
community diversity (including composition).

According to niche theory, the dynamics of microbiome
diversity and/or the succession of microbiome development
(e.g., from infants to adults) should be deterministic, and
are determined (or selected) by the interactions between
microbial species and their niche environments (Grinnell, 1917;
Vandermeer, 1972; Chase and Leibold, 2003). However, niche
theory can hardly explainmany non-deterministic phenomena in
community ecology. In the late 1990’s, an alternative theory to the
niche theory, known as the unified neutral theory of biodiversity
and biogeography (UNTB), was developed by Stephen Hubbell
(Hubbell, 2001; Rosindell et al., 2011). Hubbell’s UNTB took
a virtually opposite view with niche theory, and it stipulates
that stochastic drifts of species demography (birth, death, and
migration) shape the patterns of biodiversity and biogeography.
The UNTB maintains that biological species are neutral in the
sense that, at a given trophic level, in a food web (community),
species are equivalent in vital (birth/death/dispersal/speciation)
rates on a per capita basis. According to the UNTB, stochastic
drifts, rather than niche differentiations, are responsible for
the observed species abundance distributions in ecological
communities. In fact, the UNTB also takes into account the
speciation and dispersal (migration) (Hubbell, 2001) besides
stochastic drifts in vital rates, and, combined together, the theory
forms the basis for testing, and frequently rejecting the null
hypothesis (model), i.e., that communities are structured by
demographic stochasticity alone (Rosindell et al., 2011).

While niche theory and neutral theory are twomajor and, also,
diametrically opposing hypotheses about community assembly
and diversity maintenance, the debates between two camps
helped to advance more comprehensive theories in community
ecology, most notably metacommunity theory (Leibold et al.,
2004) and more recent four-process (mechanisms) synthesis
of community ecology and biogeography (Vellend, 2010;
Hanson et al., 2012). Vellend (2010) synthesis of community
ecology maintains that selection, drift, speciation, and dispersal
are the four key processes (mechanisms) that drive the
community structure and dynamics, and Hanson et al. (2012)
further extended the synthesis to the community dynamics
and biogeography of microbes. Note that Hubbell’s UNTB
covers three of the four aspects of Vellend–Hanson synthesis
(excluding selection).

Those further advances show that there is middle ground
between niche theory and neutral theory, which means that
both deterministic niche differentiations (selection forces) and
stochastic neutral drifts can be in effects in assembling

communities andmaintaining their biodiversities (Hammal et al.,
2015; Li and Ma, 2019; Ma, 2020a,b, 2021a,b). On the one
hand, natural communities are often structured by stabilizing
niche differences and competitive asymmetries among species,
which typically generate distinctly non-neutral communities
(Gilbert and Levine, 2017); both theoretic and experimental
studies have demonstrated that stochastic neutral effects cannot
be excluded in many natural communities. Several hybrid
models that consider both niche differentiations and stochastic
drifts have been developed to describe the middle ground
quantitatively (Jeraldo et al., 2012; Harris et al., 2017). Indeed,
there is so-termed niche-neutral continuum to conceptualize the
continuous spectrum with one end of total deterministic niche
selections and the other end of total stochastic neutral drifts. For
many years, the concept of niche-neutral continuum has been
treated as an analogy because of its lack of quantitative model.
Nonetheless, a recent advance by Ning et al. (2019) seemed to
have filled the gap; they developed a so-termed stochasticity
analysis framework. Specifically, their normalized stochasticity
ratio (NSR) with value ranging between 0 and 1, represents
the spectrum from total deterministic niche differentiations to
stochastic neutral drifts.

In summary, the objective of this study is two-fold. We
first performed comparative studies with the SSA (Ma et al.,
2019) and diversity metrics (in Hill numbers) (Chao et al.,
2012, 2014) to investigate the effects of ethnicities and lifestyles
on the gut microbiome composition and diversity. Second,
we applied stochasticity analysis (Ning et al., 2019) to seek
mechanistic insights into the effects of ethnicity and/or lifestyles,
and we postulate that those effects revealed by SSA/diversity
metrics should be deterministic (non-stochastic). Although we
use the datasets of Chinese gut microbiomes, our integrated
approach of shared species, diversity, and stochasticity should be
of general applicability to the microbiomes and macrobiomes in
other environments.

MATERIALS AND METHODS

Gut Microbiome Datasets and Study
Design
Figure 1 illustrates our design schemes for reanalyzing the
Chinese gut microbiome (CGM) datasets, originally collected by
Zhang et al. (2015) that sampled 314 healthy Chinese adults,
covering 7 largest Chinese ethnic races (groups) resided in rural
and urban settings, respectively. All of the datasets reanalyzed in
this study have already been published in Zhang et al. (2015), and,
therefore, no experimental procedures are involved in the present
article (no ethnic approval is applicable).

The top section (Schemes 1A,B) exhibits the design to test
the effects of lifestyles (rural vs. urban) on the community
structures of CGM. The difference between Schemes 1A,B lies
in the treatment of potential confounding effects of ethnicity.
In Scheme 1A, the analyses are performed for each of the 7
ethnic groups to test community structural changes between
both the lifestyles within the focal ethnic group. A total of 7
comparisons (rural vs. urban lifestyles) are possible for Scheme
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FIGURE 1 | Four design schemes (1A−2B) for comparing the Chinese gut microbiomes from 7 major Chinese ethnic groups living in rural and urban settings,

respectively.

1A as illustrated in the first block of Figure 1. In Scheme 1B,
the analyses are performed by pooling together the samples from
the 7 ethnic groups under each lifestyle category and forming

two “big” samples to test the community structural changes
between the rural and urban lifestyles. With Scheme 1B, only one
comparison is needed to compare the rural vs. urban lifestyles as
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illustrated in the second block of Figure 1. Obviously, the Scheme
1B can potentially contain confounding effects of ethnicity when
testing the effects of lifestyles, and, therefore, we only use it as a
supplement to Scheme 1A, and we should not draw independent
conclusions from Scheme 1B.

The bottom section (Schemes 2A,B) displays the design to
test the effects of ethnicity (7 ethnic groups in total) on the
community structure of CGM. The difference between 2A and
2B lies in the treatment of potential confounding effects of
lifestyles. In Scheme 2A, the analyses are performed for each of
the two lifestyles to test pair-wise community structural changes
between any two groups within the focal lifestyle. A total of
2-x-21 (42) comparisons [2∗Combination (7, 2)] are possible
for Scheme 2A as illustrated in the third block of Figure 1. In
Scheme 2B, the analyses are performed by pooling together the
samples from both the lifestyles under each ethnic group and
forming seven “big” samples to test the community structural
changes between pair-wise ethnic groups. With Scheme 2B, 21
comparisons [Combination (7, 2)] are needed as illustrated in
the fourth block of Figure 1. Obviously, the Scheme 2B can
potentially contain confounding effects of lifestyles when testing
the effects of ethnicities, and, therefore, we only use it as a
supplement to Scheme 2A, and we should not draw independent
conclusions from Scheme 2B.

For each of the four design schemes, we performed both
shared species analysis (SSA) based on two algorithms (A1
and A2) developed by Ma et al. (2019) and diversity analysis
based on the Hill numbers (Chao et al., 2014; Ma and Li,
2018), which are briefly introduced below. Detailed information
on both approaches is referred to their original methodology
publications and beyond the scope of this paper. The focus
of this article is to apply them, in comparative and integrated
manner, for examining the effects of lifestyles and ethnicities
on the community structures of Chinese gut microbiomes.
Here, we narrowed community “structures” to community
composition and diversity. The difference between the both
is that, in the former, the taxonomic identities of species or
OTUs (operational taxonomic units) are considered explicitly,
while, in the latter, species identified are ignored, and only
their abundances are considered. Obviously, ignoring species
identities (e.g., beneficial microbes vs. opportunistic pathogens)
may have far-reaching implications in microbiome research.
This study is aimed to demonstrate that SSA should possess
an indispensable role in microbiome studies beyond standard
diversity analysis that has been routinely performed in current
microbiome research.

Shared Species (OTUs) Analysis
The term “shared species” or more general “shared OTUs”
(operational taxonomic units) refer to those species (OTUs) with
non-zero abundances in both treatments of microbiome samples.
The number of shared species (or OTUs) between two cohorts
(populations), e.g., with different lifestyles in rural vs. urban
settings, may vary among studies, and depends in part on the
number of individuals (microbiome samples) per cohort and the
number of reads per individual sample. If there are distinctive
OTUs associated with specific lifestyle, then there should be

relatively few shared OTUs between two cohorts (populations)
with different lifestyles. Alternatively, if the same microbiome is
associated with rural and urban individuals, the distinctive OTUs
in each group would represent random sampling effects (which
are especially strong for rare or under-sampled taxa), and the
number of shared OTUs would be no different than expected
by chance (H0). The SSA compares the composition, similar to
beta diversity (Anderson et al., 2011), of the treatments, whereas
the following diversity analysis with Hill numbers compares the
alpha diversity, or taxon richness, between treatments (lifestyles
in this case).

Ma et al. (2019) developed two SSA algorithms (A1 and A2)
to estimate the number of shared OTUs expected under H0.
In A1 termed “reads randomization,” the expected number of
shared OTUs was generated by pooling all the reads (bacterial
individuals) within each pair-wise comparison (e.g., the rural vs.
urban lifestyles) together and then randomly assigning each read
to the rural or urban category of samples. A1 does not change
the total number of reads in each of the two original groups. In
A2 termed “samples randomization,” we randomly assigned each
microbiome sample in the study (pair-wise comparison) to the
rural or urban group, and then pooled the reads within each of
the randomized pseudo-groups. A2 does not change the numbers
of microbiome samples in each of the two original groups.

After randomization with A1 or A2, the reads within
each pseudo-group are pooled together, and the number of
shared OTUs between the two pseudo-groups is computed. The
randomization (permutation) is to repeat 1,000 times in order
to generate a distribution of the expected number of shared
OTUs under the null hypothesis of random sampling (H0).
The observed number of OTUs is compared to the simulated
distribution to estimate the tail probability of obtaining the
observed results with random sampling p(#Shared OTUs|H0).
The null-model results are further converted into a standardized
effect size:

SES = [SOTUobs −mean(SOTUsim)]/sd(SOTUsim) (1)

where SOTUobs = the observed number of shared OTUs, mean
(SOTUsim) = the average number of shared OTUs in the 1,000
simulated assemblages, and sd (SOTUsim) is the sample standard
deviation of the 1,000 simulated assemblages. The SES can be
used for performing meta-analysis when multiple datasets are
analyzed in a unified standard. Since this study only involves
one dataset, we used pseudo P-value to test the significance as
introduced below.

A pseudo P-value can be computed for A1 or A2 algorithms
(Ma et al., 2019). SupposeD, the times when the number of shared
species from 1,000 times of random re-sampling, does not exceed
the number of shared species observed, then:

P = D/1000 (2)

If pseudo P < 0.05, then one can conclude that the difference in
shared species cannot be attributed to random effects alone, and
lifestyle is very likely to exert a significant effect on the number of
shared species. An illustrative diagram is presented in Figure 2 to
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FIGURE 2 | Diagrams illustrating the shared species analysis (SSA) with A1 and A2 algorithms (Ma et al., 2019): (i) A1 (the left) uses reads randomization, in which

16S-rRNA reads (i.e., bacterial individuals) are represented with lines of various colors (different colors for different kinds of species or OTUs); the intermediate box

contains mixed reads, without orders, but each read keeping track of its identity (OTU number or species name); 3 species or OTUs were assumed, and 12 and 16

reads were assumed in the rural and urban treatments, respectively. (ii) A2 (the right) uses samples randomization, in which the top left and right boxes contain 6 rural

and 4 urban microbiome samples, respectively. The middle box contains mixed samples of 10 samples, pooled from the rural (6 samples) and urban (4 samples)

groups. In the bottom, the pooled samples were reassigned randomly to the rural and urban groups again, but the samples were randomly mixed here. Rural vs.

urban lifestyles were used as examples of treatments, and the algorithms are applicable to any pairs of cohorts.

explain A1 and A2 algorithms, and detailed description of them
is referred to Ma et al. (2019).

In addition, we computed the percentage of reduction in
shared OTUs as follows:

R(%) = [SOTUobs −mean(SOTUsim)]/(SOTUobs), (3)

which measures the change (almost always reduction) of shared
OTUs between two treatments.

In addition, from shared species (OTU) analysis, one can
obtain two lists of unique species in either of the two treatments
in a pair-wise comparison, as well as the list of shared species.

Diversity Analysis in Hill Numbers
Alpha diversity refers to the diversity within a community,
specified region, or ecosystem and is usually measured with
some kind of entropy function of species-relative abundance
and evenness. Scientists have proposed many diversity metrics
(indexes), and diversity measures may have different ways of
expression and reflect different perceptions of true diversity.
For example, species richness, Shannon entropy (Shannon,
1948), and Simpson index (Simpson, 1949) are among the most
commonly used and are based on abundance information and
weighted for rare, moderately abundant and highly abundant
species, respectively (Koh, 2018). Nevertheless, most of the
diversity metrics, including these three, do not have a commonly
comparable “unit.” In other words, they are hardly comparable.
There is an exception – the Hill numbers, which were introduced

by Hill (1973) as biodiversity metrics based on Renyi’s general
entropy and rediscovered by Chao et al. (2012, 2014) in
consideration of the advantages of Hill numbers and insufficient
early attention to Hill numbers. The Hill number is considered
the most appropriate metric currently available for measuring
alpha diversity (Ellison, 2010; Chao et al., 2012, 2014; Ma and Li,
2018), which is defined as:

qH =

(

S
∑

i=1

p
q
i

)1/(1-q)

(4)

where S is the number of species, pi is the relative abundance of
species i, and q is the order number of diversity. Hill number
with q = 0 corresponds to species richness, in which species
abundances do not weigh in. Hill numbers at q = 1 and q = 2
correspond, respectively to algebraic transformations of Shannon
entropy and Simpson’s index. In general, qH, diversity of order
q, represents for the diversity of a community with x = qH
equivalent species, which is characterized by the weighing scheme
specified by q. With the increase of q, the Hill number index
is increasingly weighted by the relative abundances of more
abundant species and less weighted by rare species (Chao et al.,
2014). When q = 0, rare species (lower abundances), common
species, and even dominant species (higher abundances) weigh
theHill number equally.When q= 1, theHill number is weighted
most by common species and is a function of Shannon entropy.
When q = 2, the Hill number is weighted most by dominant
species, and it is a function of Simpson index. When q = 3, the
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Hill number is weighted more by even more dominant species.
In all diversity orders (q), Hill numbers are the number of
equivalent species characterized by a q-specific weighing scheme.
Therefore, although Hill numbers at q = 0, 1, and 2 are special
functions of species richness, Shannon entropy and Simpson
index, respectively, the functional relationships transform as the
number of species equivalents, and, therefore, the Hill number
at each diversity order (q) has a q-specific unit. This species
equivalence makes the comparisons of Hill numbers with rank-
sum-basedWilcoxon test, particularly suitable for comparing two
paired treatments. In the present study, we used Wilcoxon test
to perform pair-wise comparisons of the microbiome samples
collected from Chinese individuals of different ethnic identities
and lifestyles (rural vs. urban).

The Stochastic Neutrality Analysis
Framework
Ning et al. (2019) mathematical framework for stochasticity
analysis is based on the notion that deterministic processes
should drive ecological communities more similar or
dissimilar than null expectation. They established sophisticated
computational procedures to implement a null model for
quantifying stochasticity. A key metric in their framework is
the application of RuŽička (1958) similarity metrics, which is a
generalization of Jaccard binary similarity coefficient.

Let Cij be the observed similarity between a pair of
communities (i and j):

Cij =

∑

Smin(pi
k
, p

j

k
)

∑

Smax(pi
k
, p

j

k
)

(5)

where S is the number of species and pi
k
and p

j

k
are the relative

abundance of k-th species in the i-th and j-th community.
Further assume that there exist m local communities in a

metacommunity, and let Cij be the observed similarity between
the i-th local community and the j-th local community in the
metacommunity. Let Eij be the null-expected similarity between
the i-th community and the j-th community in one simulated
metacommunity, and let Eijbe the average of the null-expected
similarity between the i-th and the j-th communities in 1,000
simulated metacommunities. In the above-described setting,
there exist two possibilities when assessing the community
stochasticity. One possibility (type A) is that deterministic
processes can drive communities more similar, in which Cij >

Eij, and the stochasticity ratio (SR, for Type A) is

SRAij =
Eij

Cij
. (6)

Another possibility (Type B) is that deterministic processes
drive communities more dissimilar, in which Cij < Eij, and the
stochasticity ratio (SR, for Type B) is

SRBij =
1− Eij

1− Cij
. (7)

The stochasticity ratio in the whole metacommunity is weighted
average in the form of:

SR =

∑nA

ij SRAij +
∑nB

ij SRBij

nA + nB
, (8)

where nA and nB are the numbers of the pair-wise similarities
of type A and type B, respectively, SR is the strength of
stochasticity in the community assembly, and ranges from 0 to
1 (100%). If the community assembly is totally deterministic
without any stochasticity, then SR should be 0%; otherwise, SR
should be 100% without any determinism. There is a technical
issue with the above quantification of SR: When expected
stochasticity is very low, SR could overestimate stochasticity.
To overcome this issue, Ning et al. (2019) developed so-
termed normalized stochasticity ratio (NSR), which enjoys higher
precision than the SR. The NSR has the same principle as
SR, but of more sophisticated computational formula that is
omitted here.

In the present article, we used the NSR to determine the
stochasticity or non-stochasticity [1–NSR] level within pairs
of communities. Specifically, we computed an NSR value for
each pair of communities that constitute a metacommunity
based on the comparison of the metacommunity with 1,000
simulated neutral metacommunities as explained previously. For
each treatment (e.g., N microbiome samples from N individual
subjects of same ethnicity, one sample from each individual
subject), there are Combination (N, 2) pairs of community
samples, and one NSR value can be computed for each of
the pairs. We then computed the arithmetic mean or average
of these NSR-values to represent the stochasticity level of
the treatment under analysis, or, simply, the NSR of the
treatment. But we reiterate that the NSR is computed for
one metacommunity or a pair of two local communities, and
that the NSR for a treatment (= cohort or population) is the
mean NSR of all possible pair-wised metacommunities within
the treatment.

Since the population (= treatment or cohort) level NSR is
averaged from Combination (N, 2) pairs (metacommunities)
of the local communities within population, one can compare
two populations (e.g., urban vs. rural populations) with
non-parametric Wilcoxon test, which should reveal the
effects of lifestyle on the stochasticity. The complement
of stochasticity or non-stochasticity = (1–NSR) can be
used to gauge the deterministic niche selection level within
a metacommunity.

Ultimately, the purpose for estimating the stochasticity (non-
stochasticity) in this study is to shed light on the mechanism of
diversity or composition changes, that is, whether or not their
changes are driven by stochastic neutral drifts or deterministic
niche differentiations (such as the selection effects of ethnicity
and/or lifestyles). In addition, we also evaluated the selection
(stochasticity) level at different taxon levels from phylum to
species of the gut microbiome.
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TABLE 1 | The results (P-values) of the shared species analyses (SSA) and Wilcoxon tests for the differences in Chinese gut microbiome diversity (Hill numbers) and the

means of the Non-Stochasticity with Scheme-1A (i.e., comparing rural vs. urban lifestyles under same ethnicity).

Taxon Ethnicity P-value of shared species

analyses (SSA)

P-value from diversity analysis Non-Stochasticity

=(1–NSR)

Reads

randomization

Samples

randomization

q = 0 q = 1 q = 2 q = 3 Rural Urban

Phylum Bai 0.057 0.409 0.360 0.465 0.530 0.564 0.378 0.416

Han 0.283 0.567 0.094 0.201 0.172 0.172 0.430 0.409

Kazakh 0.180 0.698 0.394 0.110 0.110 0.110 0.384 0.657

Mongol 0.016 0.289 0.000 0.001 0.007 0.010 0.332 0.522

Tibetan 0.000 0.088 0.826 0.112 0.090 0.118 0.615 0.659

Uyghur 0.203 0.614 0.430 0.219 0.219 0.193 0.656 0.424

Zhuang 0.165 0.698 0.312 0.270 0.151 0.133 0.497 0.464

(%) With significant difference | or mean (Std Error) 28.57% (2/7) 0.0% 14.29% 14.29% 14.29% 14.29% 0.470 (0.047) 0.507 (0.042)

Family Bai 0.000 0.066 0.756 0.990 1.000 0.929 0.628 0.607

Han 0.003 0.923 0.429 0.378 0.352 0.378 0.680 0.681

Kazakh 0.000 0.591 0.867 0.393 0.262 0.235 0.669 0.821

Mongol 0.000 0.000 0.000 0.000 0.001 0.005 0.499 0.737

Tibetan 0.000 0.826 0.164 0.472 0.384 0.294 0.785 0.788

Uyghur 0.000 0.097 0.088 0.862 0.808 0.702 0.757 0.643

Zhuang 0.000 0.339 0.190 0.520 0.534 0.593 0.704 0.739

(%) With significant difference | or mean (Std Error) 100% (7/7) 14.29% (1/7) 14.29% 14.29% 14.29% 14.29% 0.675 (0.035) 0.717 (0.029)

Genus Bai 0.000 0.046 0.517 0.599 0.673 0.691 0.688 0.659

Han 0.000 0.499 0.700 0.719 0.946 0.761 0.736 0.733

Kazakh 0.000 0.326 0.973 0.556 0.471 0.431 0.719 0.847

Mongol 0.000 0.000 0.000 0.000 0.001 0.001 0.545 0.773

Tibetan 0.000 0.859 0.273 0.271 0.201 0.167 0.808 0.795

Uyghur 0.000 0.094 0.118 0.862 0.917 0.972 0.781 0.685

Zhuang 0.000 0.140 0.296 0.719 0.974 0.870 0.753 0.773

(%) With significant difference | or mean (Std Error) 100% (7/7) 28.57% (2/7) 14.29% 14.29% 14.29% 14.29% 0.719 (0.033) 0.752 (0.025)

Species Bai 0.000 0.054 0.844 0.885 0.519 0.703 0.705 0.714

Han 0.000 0.564 0.896 0.655 0.984 0.803 0.785 0.768

Kazakh 0.000 0.334 0.845 1.000 1.000 0.845 0.757 0.869

Mongol 0.000 0.000 0.000 0.000 0.000 0.000 0.632 0.805

Tibetan 0.000 0.203 0.005 0.005 0.006 0.005 0.849 0.832

Uyghur 0.000 0.055 0.058 0.602 0.508 0.508 0.825 0.74

Zhuang 0.000 0.034 0.113 0.520 0.102 0.060 0.798 0.807

(%) With significant difference | or mean (Std Error) 100% (7/7) 28.57% (2/7) 28.57% 28.57% 28.57% 28.57% 0.764 (0.028) 0.791 (0.020)

RESULTS AND DISCUSSION

Detecting the Effects of Lifestyles on the
Gut Microbiomes With SSA and Diversity
Analysis
We investigated the effects of lifestyles (rural vs. urban) on
community structures of the Chinese gut microbiomes by
applying the SSA and diversity analysis under the design
Scheme 1A,B as illustrated in Figure 1. Tables 1, 2 display
the tests results from schemes 1A,B, respectively. The left
side of Tables 1, 2 exhibited the P-values from SSA, and
the right side exhibited the P-values from diversity analysis
(Hill numbers at q = 0–3). To save page space, Tables 1, 2
here contain brief and necessary information only, and

more detailed results from schemes 1A,B are provided in
the online Supplementary Tables (Supplementary Tables 1–3).
Besides P-value, reduction of shared species (Equation 3)
between treatments is also computed and displayed in the
online Supplementary Tables. Supplementary Table 9 exhibits
one example of the lists of shared and unique OTUs at the
phylum level.

From Table 1, for the test results of Scheme 1A, we
summarized the following findings:

(i) The SSA is far more sensitive than diversity analysis
in detecting the effects of lifestyles across all ethnic groups
and/or taxon levels. Particularly, the A1 algorithm (with reads
randomization) detected 100% differences between the rural and
urban lifestyles across all 7 ethnic groups and 4 taxon levels,
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TABLE 2 | The results (P-values) of shared species analyses (SSA) and diversity analysis and the means of non-stochasticity of the Chinese gut microbiome under design

Scheme-1B (i.e., comparing rural vs. urban lifestyles, with all 7 ethnic groups combined for each lifestyle).

Taxon P-value of shared species analyses P-value from diversity analysis #Non-stochasticity

= (1–NSR)

A1 (reads randomization) A2 (samples randomization) q = 0 q = 1 q = 2 Rural Rural Urban

Phylum 0.879 1.000 0.014 0.025 0.017 0.018 0.492 0.494

Family 0.000 0.007 0.010 0.175 0.480 0.725 0.701 0.724

Genus 0.000 0.002 0.012 0.258 0.470 0.625 0.746 0.765

Species 0.000 0.003 0.030 0.979 0.515 0.414 0.796 0.802

Mean (Std. Error) 0.684 (0.067) 0.696 (0.069)

#Refer to Supplementary Table 10 for the detailed results of NSR (the normalized stochasticity ratio). Color values are significant differences for the comparisons.

except for the phylum level at which ∼28% of differences were
detected. The SSA indicates that Chinese people living rural and
urban lifestyles experience significant differences in their gut
community species compositions, as shown by the lower-than-
expected numbers of shared OTUs between both the lifestyles.

(ii) The diversity analysis based on Wilcoxon tests of the
Hill numbers indicates that the differences between urban and
rural lifestyles were only significant across 7 ethnic groups in
only ∼14–28% of pair-wise ethnic comparisons. This level of
difference is far less significant than the previously summarized
finding from SSA that is 100% (except for the phylum level of
28%) as in (i).

(iii) At the phylum taxon level, the structural differences
between rural and urban lifestyles, in terms of either SSA (28%)
or diversity analysis (14%), are less significant than at other
taxon levels. At the phylum level, only ethnic groups of Tibetans
(P < 0.001) and Mongolians (P = 0.016) showed significant
differences between rural and urban lifestyles. The Bai ethnic
group with P = 0.057 is on the boundary of significance and
needs further investigation regarding the effects of lifestyles.

In summary, in terms of SSA, lifestyles significantly affect
the community compositions of Chinese gut microbiomes across
species, genus, and family levels in all 7 ethnic groups (100%),
except for the phylum level where the lifestyle effects are limited
or partially significant (28%) in Tibetan and Mongolians but not
significant in other 4 ethnic groups, and possibly significant in
the Bai ethnic group. Nevertheless, in terms of diversity analysis,
lifestyles have limited or partial effects on the gut microbiome
diversity, only significant in∼14–28% of lifestyle comparisons.

From Table 2, for the test results of Scheme 1B, we
summarized the following findings:

(i) With Scheme-1B, the samples from all 7 ethnic groups under
the same lifestyle type were pooled together, and the total
samples were only distinguished as two “big” samples of
rural and urban lifestyles. Here, except for the phylum level
(P = 0.879), the differences from the SSA between rural and
urban lifestyles are significant at species, genus, and family
levels (P < 0.001). The exhibited effects of lifestyles may
include the confounding effects of ethnicity or they are the
mixed effects of both lifestyles and ethnicities. Therefore, the
finding here only confirms the previous finding from SSA
based on Scheme 1A.

(ii) With Scheme-1B, the diversity analysis reveals interesting
findings. At diversity q = 0, the differences between both
lifestyles are significant across all four taxon levels (P
= 0.010∼0.030). This finding suggests that both species
composition (indicated by SSA) and numbers (indicated by
species richness or Hill number at q = 0) are significantly
influenced by lifestyles.

(iii) The results from SSA and diversity analysis at the phylum
taxon level appear puzzling. The SSA did not reveal
significant difference (P = 0.879) between both the lifestyles
at the phylum level under Scheme 1B; however, the diversity
analysis did reveal significant differences (P= 0.010∼0.030).
In this particular case of the phylum level, the diversity
analysis seems more sensitive than the SSA in detecting the
structural changes of the Chinese gut microbiomes, which
is contrary to the previous patterns. How should we explain
this abnormality? One explanation can be that, at the phylum
level, while the community composition of phyla is relatively
constant, the abundances of different phyla are actually more
deeply influenced, and, therefore, the diversity metrics are
actually altered.

While Tables 1, 2 show the statistical test results (P-values) from
Schemes 1A,B, Figure 3 illustrates the quantities of shared OTUs
and diversity metrics (in Hill numbers). Figure 3A illustrates
the observed and expected numbers of shared species between
rural and urban lifestyles for each of the seven major Chinese
ethnic groups, respectively, at the species taxon level based on
the SSA with Scheme 1A. Figure 3B illustrates the average gut
microbiome (the species level) diversity (in Hill numbers at q
= 0–3) for each of the 14 ethnicity-lifestyle combinations (7
ethnic groups X 2 lifestyles). Figure 3C simply illustrates the test
results presented in Table 1 in Scheme 1A, i.e., the percentage
(%) with significant differences between the rural and urban
lifestyles across 7 major ethnic groups based on SSA (A1 and A2
algorithms) and diversity analysis (for q = 0 to 3) for the four
taxon levels (phylum, family, genus, and species).

In summary, these findings confirmed significant effects of
lifestyles on the community structures. In particular, the effects
are 100% in terms of community compositions (SSA) across all
but the phylum (the phylum level = 29%) levels, and 14–29%
in terms of community diversity (Hill numbers) across all four
taxon levels.
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FIGURE 3 | (A) The observed and expected numbers of shared species between rural and urban lifestyles for each of the seven major Chinese ethnic groups at the

species taxon level, respectively (Scheme-1A). (B). The average gut microbiome (the species level) diversity (in Hill numbers) for each of the 14 ethnicity-lifestyle

combinations (Scheme-1A). (C) The percentage (%) with significant differences between the rural and urban lifestyles across 7 major ethnic groups based on SSA

(shared species analysis, A1 and A2 algorithms) and diversity analysis (for q = 0–3) for the four taxon levels (phylum, family, genus, and species) (Scheme-1A). The “*”

means there are significant differences for the comparison.
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TABLE 3 | The results (percentages % with significant differences) of shared species analysis (SSA), diversity analysis, and non-stochasticity with design Scheme-2A (The

pair-wise comparison of ethnic groups for rural and urban life styles, respectively, at four taxon levels).

Taxon Lifestyle % With significant differences from

shared species analysis

% With significant differences from diversity analysis #The mean (std error) of

non-stochasticity

A1: reads

randomization

A2: samples

randomization

q = 0 q = 1 q = 2 q = 3 Ethnicity-1 Ethnicity-2

Phylum Rural 47.62% (10/21) 4.76% (1/21) 42.86% 33.34% 38.10% 47.63% 0.421

(0.020)

0.520

(0.026)

Urban 61.9% (13/21) 0.00% 33.34% 42.87% 33.34% 38.10% 0.499

(0.024)

0.516

(0.021)

Family Rural 100% (21/21) 28.57% (6/21) 33.34% 47.62% 42.86% 42.86% 0.651

(0.017)

0.698

(0.020)

Urban 100% (21/21) 14.29% (3/21) 38.10% 38.10% 38.10% 33.33% 0.703

(0.018)

0.730

(0.013)

Genus Rural 100% (21/21) 42.86% (9/21) 28.57% 52.39% 33.34% 38.10% 0.301

(0.016)

0.737

(0.018)

Urban 100% (21/21) 23.81% (5/21) 47.62% 23.81% 23.81% 14.29% 0.755

(0.015)

0.756

(0.010)

Species Rural 100% (21/21) 61.9% (13/21) 42.86% 23.81% 14.29% 4.76% 0.743

(0.014)

0.786

(0.015)

Urban 100% (21/21) 61.9% (13/21) 57.14% 28.57% 9.52% 4.76% 0.782

(0.013)

0.800

(0.009)

#Refer to Supplementary Table 11 for the detailed results of NSR (the normalized stochasticity ratio).

TABLE 4 | The results (percentages % with significant differences) of shared species analyses (SSA), diversity analysis, and non-stochasticity of the Chinese gut

microbiomes under design Scheme-2B (i.e., the pair-wise ethnicity comparisons with urban and rural lifestyles combined for each comparison).

Taxon % With significant differences from

shared species analysis

% With significant differences from diversity analysis #The mean (std error) of

non-stochasticity

A1: reads

randomization

A2: samples

randomization

q = 0 q = 1 q = 2 q = 3 Ethnicity-1 Ethnicity-2

Phylum 76.19% (16/21) 14.29% (3/21) 47.62% 38.1% 38.1% 38.1% 0.460

(0.019)

0.514

(0.015)

Family 100% (21/21) 28.57% (6/21) 33.33% 47.62% 38.1% 42.86% 0.681

(0.014)

0.712

(0.011)

Genus 100% (21/21) 23.81% (5/21) 33.33% 57.14% 47.62% 47.62% 0.727

(0.011)

0.748

(0.010)

Species 100% (21/21) 52.38% (11/21) 23.81% 42.86% 28.57% 19.05% 0.763

(0.011)

0.790

(0.009)

#Refer to Supplementary Table 12 for the detailed results of NSR (the normalized stochasticity ratio).

Detecting the Effects of Ethnicities on the
Gut Microbiomes With SSA and Diversity
Analysis
We investigated the effects of ethnicities on community
structures of the Chinese gut microbiomes by applying the
SSA and diversity analysis under the design schemes 2A,B
as illustrated in Figure 1. Tables 3, 4 display the test results
from schemes 2A,B, respectively. The left side of Tables 3, 4
exhibited the P-values from SSA, and the right side exhibited
the P-values from diversity analysis (Hill numbers at q = 0–
3). To save page space, Tables 3, 4 here contain brief and
necessary information only, and more detailed results from
schemes 1A,B are provided in the online Supplementary Tables

(Supplementary Tables 4–6).

From Table 3, for the test results of Scheme 2A, we
summarized the following findings:

(i) The SSA is far more sensitive than diversity analysis in
detecting the effects of ethnicities on both rural and urban
lifestyles, respectively. Particularly, the A1 algorithm (with
reads randomization) detected 100% differences between
pair-wise ethnic groups across both lifestyles and four taxon
levels, except for the phylum level at which significant
differences were detected in 48–62% of the pair-wise
ethnic comparisons.

(ii) The diversity analysis based on Wilcoxon tests of the
Hill numbers suggests that the differences between
pair-wise ethnic groups were detected in 5–57%
of the pair-wise ethnic comparisons. The patterns

Frontiers in Microbiology | www.frontiersin.org 11 July 2022 | Volume 13 | Article 914429

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Ma Shared Species and Stochasticity Analyses

of ethnicity effects are similar in both rural and
urban lifestyles.

In summary, the SSA is more powerful than the diversity analysis
in detecting the effects of ethnicities on the community structures
of Chinese gut microbiomes, given that SSA reveals community
compositional changes and diversity reveals entropy changes
of diversity.

From Table 4, for the test results of Scheme 2B, we
summarized the following findings:

(i) When the lifestyles are ignored by pooling together the
samples from both the rural and urban lifestyles for each of
the 7 ethnic groups, the SSA still reveals 100% significant
differences across all 4 taxon levels, except for the phylum
level, at which the effects are partial (76%).

(ii) When the lifestyles are ignored, diversity analysis reveals
partially significant difference across four taxon levels, and
the percentages with significant differences are between 19%
and 57%.

In summary, these findings confirmed significant effects of
ethnicities on the community structures. In particular, the effects
are 100% in terms of community compositions (SSA) across all
but the phylum (the phylum level = 48–62%) levels, and 5–57%
in terms of community diversity (Hill numbers) across all four
taxon levels.

While Tables 3, 4 show the statistical test results (P-values)
from Schemes 2A,B, Figure 4 illustrates the quantities of shared
OTUs and diversity metrics (in Hill numbers). Figures 4A,B
illustrate the observed and expected numbers of shared species
between pair-wise ethnic groups for the rural and urban lifestyles,
respectively, at the species-taxon level based on the SSA with
Scheme 2A. Figure 4C simply illustrates the test results presented
in Table 3 in Scheme 2A, i.e., the percentage (%) with significant
differences between pair-wise ethnic groups for each of the two
lifestyles based on SSA (A1 and A2 algorithms) and diversity
analysis (for q = 0–3) for the four taxon levels (phylum, family,
genus, and species).

Stochasticity (Non-Stochasticity) Analysis:
Insights Into Selection Effects of Ethnicity
(Lifestyle)
For each of the four design schemes in Figure 1, we performed
stochasticity analysis by applying Ning et al. (2019) and
computed the NSR (the normalized stochasticity ratio) for
each treatment (group) classified in Figure 1. In the last
(rightmost) section of Tables 1–4, we tabulated the non-
stochasticity (= 1–NSR) for each treatment (group) (also refer
to Figure 5). In fact, what are listed in Tables 1–4 are the
averages of the NSRs, as explained in the previous “material
and methods” section. In the online Supplementary Tables

(Supplementary Tables 9–12), more detailed results of the
stochasticity analysis and P-values from Wilcoxon tests for
testing the effects of ethnicity and/or lifestyle were displayed.
Note that we reported non-stochasticity (= 1–NSR) in Tables 1–4
and Figure 5 in consideration that it directly indicates the level

(strength) of deterministic selection forces, while NSR directly
measures the level of stochasticity.

In Table 1 (Scheme 1A for comparing the rural vs. urban
lifestyle under each of the 7 ethnic groups), the non-stochasticity
increases from higher (phylum) to the lower taxonomic level
(species) from∼0.5–0.8. This indicates that the non-stochasticity
or selection forces are stronger at the lower taxon level, or the
stochasticity is higher at the higher taxon level such as phylum.
In summary, both deterministic selection forces (measured by
non-stochasticity, such as ethnicities and lifestyles) and stochastic
neutral drifts (measured by stochasticity) are in effects in all four
taxon levels, but the selection becomes stronger and stochasticity
becomes weaker from the phylum to the species level. Also, from
the higher phylum to the lower species level, the balance between
selection and stochasticity changes from nearly equal (∼50 vs.
50%) to strongly imbalanced in favor of selection (∼80 vs. 20%).

Supplementary Table 9 further lists more detailed NSR
values, as well as the results from Wilcoxon tests. At the
phylum level, ∼40% of the pair-wise comparisons between rural
and urban lifestyles across 7 ethnic groups showed significant
differences (P < 0.05). The percentage declined to ∼28% at
other taxon levels (family, genus, and species). Furthermore,
the stochasticity was usually significantly higher in rural lifestyle
when the differences between urban and rural lifestyle are
statistically significant. In other words, the selection was higher in
urban lifestyle, which should have to do with the access to more
industrialized food and, possibly, living environments. Therefore,
from the lifestyle comparison based on the NSR, we may
conclude that previously revealed differences between lifestyles
by SSA and diversity analyses should, indeed, be attributed to
stronger selection in urban lifestyle mechanistically.

It should be noted that, since each ethnic group may select
group-specific taxa, similar to diversity analysis, there is no
definite direction (increase or decrease) for the change caused
by the selection effects of ethnicity. In other words, unlike
lifestyle, in which urban lifestyle usually exerts stronger selection
than rural lifestyle, the direction of selection in pair-wise
comparison is uncertain, and the effects may cancel each other
when cross-ethnicity comparisons are made. For this reason,
the comparisons of NSR for the other three schemes are not
informative, and we omitted their discussion here, although
the results are provided in the online Supplementary Tables

(Supplementary Tables 10–12). Overall, the results reported
in Supplementary Tables 10–12 support the previous findings.
That is, the selection force increases as the taxon level decreases
from phylum to species, which simply means that species-level
selection is more specifically targeted and is intuitively true
in nature.

As to the difference between different treatments
(urban vs. rural or pair-wise comparisons of ethnicities),
Supplementary Tables 9–12 suggest that the differences
range ∼(¼–¾). The low end (¼) includes only one factor
(lifestyle), and the high end (¾) includes the effects of
both ethnicity and lifestyle. Given that adding ethnicity
(Supplementary Tables 10–12) increases the magnitude of
difference approximately ½, we postulate that the ethnicity
effects appear stronger than lifestyle. This finding is also
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FIGURE 4 | (A) The observed and expected numbers of shared species between pair-wise ethnic groups of the rural lifestyle at the species taxon level (with

Scheme-2A). (B) The observed and expected numbers of shared species between pair-wise ethnic groups of the urban lifestyle at the species taxon level (with

Scheme-2A). (C) The percentage (%) with significant differences between pair-wise ethnic groups based on SSA (shared species analysis for A1 and A2 algorithms)

and diversity analysis (Hill numbers for q = 0 to 3) for each lifestyle at various taxon levels (phylum, family, genus, and species levels) (Scheme 2A). The “*” means

there are significant differences for the comparison.
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FIGURE 5 | The non-stochasticity (1–NSR) (Y-axis) for each ethnic group (X-axis) with urban (blue) or rural (green) lifestyle, respectively; the non-stochasticity is

displayed from species (bottom) to phylum (top).
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consistent with the differences previously revealed from SSA and
diversity analysis.

CONCLUSIONS AND DISCUSSION

From previous sections, we summarized the following findings:
(i) Regarding the effects of lifestyles, SSA revealed 100%
differences in terms of community compositions (SSA) across all
but the phylum (the phylum level = 29%) levels, and 14–29%
in terms of community diversity (Hill numbers) across all four
taxon levels. (ii) Regarding the effects of ethnicities, SSA revealed
100% differences in terms of community compositions (SSA)
across all but the phylum (the phylum level= 48–62%) levels, and
5–57% in terms of community diversity (Hill numbers) across all
four taxon levels. (iii) The SSA can produce lists of unique and
shared species (OTUs) as exemplified in Supplementary Table 8.
(iv) The effects of ethnicity seem to be stronger than lifestyles in
altering the community structures. (v) The stochasticity analysis
reveals that the selection forces decline gradually from the
phylum, the family, the genus through to the species level. At the
phylum level, the balance between selection and stochasticity is
almost balanced (∼50 vs. 50%), and the balance is shifted to in
favor of selection at the species level (<80 vs. 20%). Furthermore,
the pair-wise difference between two treatments ranged from
¼ to ¾, approximately, with ¼ attributed to lifestyle and ½
attributed to ethnicity. (vi) The community structures of the gut
microbiomes are less variable (more stable) at the phylum level
than at the other three levels of species, genus, and family. This is
also supported by the stochasticity analysis, given that selection is
weaker at the phylum level and, therefore, less variable.

The SSA is more powerful than standard diversity analysis
in detecting the changes of community structures, given that
the former considers the species identities and measures
community compositions. The stochasticity suggests that the
differences detected by SSA and diversity analysis can, indeed, be
attributed to deterministic selection effects of ethnicities and/or
lifestyles mechanistically.

In Zhang et al.’s (2015) original report (the dataset of
which is reanalyzed in this study), their analysis based on
canonical analysis of unweighted UniFrac principal coordinates
clustered the subjects (microbiome samples) mainly by their

ethnicities/geography and, less so, by lifestyles. They found that
the structural differentiation of gut microbiota between the rural
and urban cohorts varied greatly across geographical regions
and ethnic groups. The Mongol ethnic group represented the
most significant structural differentiation between the rural and
urban cohorts in their study and also had the largest lifestyle-
associated difference in Shannon diversity indices, as suggested
by Student’s T-test. The effects of lifestyle were most conspicuous
within the Mongol and Zhuang ethnic groups, while this impact
wasmarginally significant in the Tibetan cohorts, and the Uyghur
and Kazakh showed the smallest lifestyle-associated distances
(Zhang et al., 2015). Our study generally supports the original
findings reported by Zhang et al. (2015); the contribution of our
re-analysis lies in the demonstration of a systematic approach—
shared species analysis (SSA)—that offers a more powerful
approach to discerning the community structural (particularly
community composition) changes beyond standard diversity
analysis can deliver.
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