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Salinity is one of the most damaging abiotic stresses due to climate change impacts
that affect the growth and yield of crops, especially in lowland rice fields and coastal
areas. This research aimed to isolate potential halotolerant plant growth-promoting
rhizobacteria from different rhizo-microbiome and use them as effective bioinoculants
to improve rice growth under salinity stress conditions. Bioassay using rice seedlings
was performed in a randomized block design consisting of 16 treatments (control
and 15 bacterial isolates) with three replications. Results revealed that isolates S3,
S5, and S6 gave higher shoot height, root length, and plant dry weight compared
with control (without isolates). Based on molecular characteristics, isolates S3 and
S5 were identified as Pseudomonas stutzeri and Klebsiella pneumonia. These isolates
were able to promote rice growth under salinity stress conditions as halotolerant plant
growth-promoting rhizobacteria. These three potent isolates were found to produce
indole-3-acetic acid and nitrogenase.

Keywords: halotolerant, PGPR, salinity, nitrogen fixation, salt stress, climate change

INTRODUCTION

Soil salinity is a major abiotic stress for plants due to climate change impacts, especially in the
agriculture fields around the coastal areas. Global warming causes the sea level to rise due to the
melting of glaciers and ice sheets, which encourages saltwater intrusion into the coastal agricultural
land (Ullah et al., 2019). Changes in weather patterns like prolonged drought and the increase
in average temperature also led to higher evapotranspiration, which positively correlated with
increased soil salinity (Bannari and Al-Ali, 2020).

Saline soil has higher amounts of soluble salt (Xiaoqin et al., 2021). Na+ is one of the
most dominant dissolved salt components because it can form NaCl, Na2CO3, and Na2SO4 in
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the soil (Choudhary and Kharche, 2018). The abundance of
Na ions (mostly from NaCl) in saline soil impacts soil’s
physical, chemical, and biological properties that prevent plants’
nutrient uptake (Hamid et al., 2021). Soil electrical conductivity
value greater than 4 dS/m and the percentage of exchangeable
sodium < 15% can be detrimental to plant health, nutrient
content, and microbial activity (Diacono and Montemurro, 2015;
Numan et al., 2018). On the contrary, essential macronutrients
such as nitrogen (N) become hard to be available in soil due to
the high concentration of salts (Gondek et al., 2020).

In many cases, plants grown in saline soil often experience
diminished root proliferation, failure of seeds germination,
reduced photosynthetic activity, and decreased vegetative growth
(Gong et al., 2018). Plants experience high osmotic pressure,
salt poisoning, and disruption of plant nutrient balance
(Shrivastava and Kumar, 2015; Shi et al., 2021). Soil salinity in
arid and semiarid areas causes more evapotranspiration than
precipitation, creating water stress conditions, and soil minerals
undergo a lot of leaching in the plant root zone (Zörb et al., 2019).
Limitation of gas exchange, stagnation of stomatal opening
and closing, and reduction rate of carbon assimilation due
to reduction in plant cellular water potential worsen the
plant growth and productivity (Lisar et al., 2012). These
disruptions negatively impact global agricultural sustainability
(Sunita et al., 2020). This situation warrants sustainable
management, cost-effective, and eco-friendly strategies to restore
soil fertility in saline ecosystems (Shalaby, 2018; Ansari et al.,
2019; Egamberdieva et al., 2019; Niamat et al., 2019; Bhatt
et al., 2020; Khumairah et al., 2020; Naveed et al., 2020;
Dewi et al., 2021).

These situations demand mitigation strategies and sustenance
to alleviate the salinity stress and assist in supplying the nutrients
needed for plant growth. Plants cannot be standalone and harbor
holobionts inside and outside plant tissues to preserve their
growth and development (Vandenkoornhuyse et al., 2015). Plants
grown in salinity stress conditions need more support toward
these abiotic distresses. Therefore, halotolerant plant growth-
promoting rhizobacteria (H-PGPR) isolates as microbiota in
plant holobionts support plant growth in saline soil (Setiawati
et al., 2020; Sagar et al., 2022a,b). H-PGPR isolates can live,
survive, and engage around the root of plants creating a
rhizosphere microbiome (Larsen, 1986; Fitriatin et al., 2018).
H-PGPR are relatively resistant and tolerant to certain salt levels
(Hindersah et al., 2019), i.e., 1–5% NaCl (low halotolerance),
6–18% NaCl (medium halotolerance), and 19–30% NaCl (high
halotolerance). H-PGPR balance their cellular osmotic pressure
to avoid denaturation caused by salt present in their environment.
Thus, they can survive well and benefit the plants more than non-
halotolerant (Etesami and Glick, 2020). Inoculating H-PGPR
with rice seedlings could significantly increase plant dry weight
under salinity stress conditions (Sen and Chandrasekhar, 2014;
Abbas et al., 2019; Suriani et al., 2020).

Plant-associated microbial communities are crucial in nutrient
availability and plant defense mechanisms to abiotic stress.
This research focused on studying the relationship between
halotolerant PGPR isolates obtained from saline soil as plant
holobionts in the rhizosphere microbiome and evaluating their

plant growth-promoting potential to improve rice growth under
salinity stress conditions due to climate change impacts.

MATERIALS AND METHODS

Soil Sample Collection
Fifteen rhizosphere soil samples were collected from rice plants,
mangroves, and wild grass closest to the shoreline. The soil
samples were collected from Sukajaya Village of West Java,
Indonesia. This area is Indonesia’s most extensive rice production
affected area due to heavy intrusion of seawater. The location
map of soil sampling and descriptions of soil sampling location
are mentioned in Supplementary Figure 1 and Table 1. Soil
samples were separated from plant root residues and dirt.
Approximately 300 g of soil sample was put in the sample bag
and transported to the laboratory on the same day for isolation
and characterization work.

Salinization of Okon Media
Salinized Okon media consisted of maleic acid, K2HPO4,
KH2PO4, MgSO4.7H2O, NaCl, agar-agar, and distilled water; the
pH was adjusted to 7.0± 0.2. Desired EC of salinized Okon media
was set using the following equation (Supplementary Figure 2):

y = 5.6241+ 0.0628x

where y = desired EC, and x is the amount of NaCl added.
In this experiment, 6.0 g of NaCl was added into the Okon

media to achieve salinity at 6 dS/m (moderately saline). Salinized
Okon media was added into the sterilized Erlenmeyer flask and
autoclaved at 1.5 PSI and 121◦C for 15 min.

Salinization of Fahreus Media
For this purpose, Fahreus media containing (g/L) CaCl2,
MgSO4, KH2PO4, Na2HPO4.2H2O, ferric citrate, yeast extract,

TABLE 1 | Altitude, coordinate, and elevation of soil sampling locations.

Sample
Source

Code Coordinate Elevation
(m asl)

Rice plant
rhizosphere

S1 S 6◦0′34.157′′ E 107◦32’02.416′′ 21

S2 S 6◦10′33.349′′ E 107◦32’01.843′′ 18

S3 S 6◦10′36.759′′ E 107◦32’01.083′′ 16

S4 S 6◦10′35.694′′ E 107◦32’01.827′′ 15

S5 S 6◦10′45.948′′ E 107◦31’56.942′′ 13

Mangrove
rhizosphere

S6 S 6◦10′28.056′′ E 107◦31’57.984′′ 0.15

S7 S 6◦10′30.981′′ E 107◦32′02.333′′ 16

S8 S 6◦10′32.575′′ E 107◦32′06.392′′ 16

S9 S 6◦10′33.728′′ E 107◦32′02.684′′ 19

S10 S 6◦10′34.148′′ E 107◦32′02.305′′ 20

Wild grass
rhizosphere

S11 S 6◦10′29.348′′ E 107◦31′55.537′′ 12

S12 S 6◦10′28.231′′ E 107◦31′57.469′′ 0.15

S13 S 6◦10′30.842′′ E 107◦32′02.351′′ 16

S14 S 6◦10′34.485′′ E 107◦32′08.061′′ 14

S15 S 6◦10′34.157′′ E 107◦32’02.176′′ 18
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microelement, and distilled water was used. For salinization of
this media, 6.2 g NaCl was added using a regression equation of
y = 1.2769 + 0.7666x (Supplementary Figure 3.) to maintain
a salinity level of 6 dS/m (moderately saline), followed by
sterilization at 15 PSI and 121◦C for 15 min.

Isolation of Halotolerant PGPR
Halotolerant PGPR from saline soil were isolated using the
plate-dilution frequency technique (Harris and Sommers, 1968).
Serial dilutions were made by pipetting 1 ml of soil sample
solutions into 9 ml aqua dest (10−1) until the dilution series
of 10−5 was obtained; 10 g of soil samples were added in
90 ml aqua dest followed by stirring and vortexing. At the last
dilution, a 0.5 ml suspension was placed into the Petri dish,
followed by pouring the salinized Okon media into the Petri
dish, then incubated 48–72 h at 27–28◦C until the formation
of white, convex, and slimy colony appeared. After 72 h of
incubation at 27◦C, the separated colony was picked up and
then subcultured on salinized Okon Media. This activity was
repeated three times sequentially to obtain pure isolates, and
then, a separated colony from the last streak was preserved
(Axler-DiPerte, 2017).

Screening and Estimation of Plant
Growth-Promoting Traits
Estimation of Indole Acetic Acid
For the IAA production test, 3 ml of 24 h active culture
suspension from each isolate was separately added into each
27 ml liquid Okon media amended with L-tryptophan incubated
at 28◦C and 100 rpm for 6 days. Salkowski reagent was added
in a ratio of 4:1 (supernatant: Salkowski). The mixture was
then incubated for 20 min, and absorbance was measured in a
spectrophotometer at 535 nm. Following the incubation, 5 ml of
liquid culture from each flask was centrifuged at 10,000 rpm for
15 min, and the supernatant was subjected to the estimation of
IAA (Chaiharn and Lumyong, 2011).

Qualitative and Quantitative Estimation of Phosphate
Solubilization
For qualitative estimation of phosphate (P) solubilization, the
active culture of each isolate was separately grown on Pikovskaya’s
(PKV) agar at 30◦C for 48 h and observed for the development
of P solubilization zone around the colonies (Pikovskaya, 1948).
For quantitative estimation of isolates’ P solubilization, each
isolate’s active culture was separately grown in each PKV
broth at 30◦C, 120 rpm for 48 h, followed by centrifugation
at 10,000 rpm for 10 min. The inorganic P in the cell-free
supernatant was estimated according to the method of Fiske and
Subbarow (1925). Uninoculated PKV agar and PKV broth were
used as control.

Screening for Production of Ammonia
For screening of ammonia production, each isolate’s active
culture was grown in peptone water (PW) medium at 30◦C
for 24 h. After the incubation, plates were recorded for
the occurrence of yellow color (Dutta and Thakur, 2017).
Uninoculated PW medium was used as a control.

Screening for Production of Siderophore
For screening of siderophore-producing ability, the active culture
of each isolate was separately grown on Chrome Azurol S (CAS)
agar plates at 30◦C for 48 h followed by the development of
yellow-orange halos around the colonies (Patel et al., 2018).
Uninoculated CAS agar served as a control.

Siderophore production was carried out at shake flask
level, and for this, active culture (5 × 105 cells/ml) of each
isolate was individually grown in succinate medium (Meyer
and Abdallah, 1978) at 30◦C for 48 h. This was followed by
centrifugation at 10,000 rpm for 10 min, and siderophore content
(% siderophore units) from cell-free supernatant was estimated
following the CAS shuttle assay (Payne, 1994). An uninoculated
SM served as control.

Estimation of Nitrogenase Activity
Nitrogenase activity was measured using the acetylene reduction
assay (ARA) method (Hellebust and Craigie, 1978). This
method involved the incubation process of the material being
tested in a gas container containing a partial pressure of
acetylene. The pure cultures of halotolerant PGPR isolates
were used for quantitative testing by gas chromatography.
Before injecting the sample, the gas chromatography device
was conditioned for 3 h. Gas chromatography was operated
with the initial temperature at 100◦C, injector temperature at
150◦C, detector temperature at 200◦C, and final temperature
at 100◦C. The type of gas used was nitrogen (40 psi),
hydrogen (1.5 kg f/cm2), and air (0.5 kg f/cm2). The
ethylene concentration from each sample was measured by
measuring from the area of the ethylene standard. Ethylene
standard curves were made in concentrations of 0 µg/ml to
225 µg/ml. The chromatogram results were plotted into an
ethylene standard curve; 1 ml of ethylene gas (C2H2) was
injected into each culture tube of halotolerant PGPR and then
incubated for 1 h. After incubation, 1 ml of gas from the
headspace of each culture tube was taken and subjected to the
measurement of the concentration of ethylene (C2H4) formed
using gas chromatography.

Screening for Salinity Ameliorating Traits
Production of Aminocyclopropane-1-Carboxylate
Deaminase
For this purpose, active cultures of each isolate were grown in
minimal medium (MM) containing (g/L) KH2PO4, K2HPO4,
MgSO4, glucose, and (NH4)2SO4 at 30◦C for 48 h followed
by observing the growth of the isolate (Safronova et al., 2006).
Aminocyclopropane-1-carboxylate deaminase (ACCD) activity
from inoculated MM was estimated as per the Penrose and Glick
(2003)method. The ACCD activity was defined as the amount of
α-keto-butyrate produced per mg of protein per h.

Screening for Production of Antioxidant Enzymes
For screening of antioxidant enzymes such as superoxide
dismutase (SOD), catalase (CAT), and reduced glutathione
oxidase (GSH), each isolate was individually grown in MM at
30◦C for 24 h at 120 rpm. This was followed by centrifugation
at 1,000 rpm for 10 min to obtain cell homogenate.
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In the SOD activity assay, 100 µl of cell homogenate was
mixed with 100 µl of pyrogallol solution in EDTA buffer
(pH 7.0) followed by measuring the absorbance at 420 nm
(Marklund and Marklund, 1974). One unit of SOD was taken
as the amount (IU/mg) of SOD required to prevent 50% of the
autoxidation of pyrogallol.

In CAT activity, 100 µl of cell homogenate was mixed
with 100 µl of hydrogen peroxide (H2O2) in phosphate buffer
(pH 7.0), followed by measuring the absorbance at 240 nm
(Beers and Sizer, 1952). One unit of CAT was taken as mM of
H2O2 decomposed/min.

For the GSH assay, 100 µl of cell homogenate was mixed with
100 µl of GSH followed by measuring the absorbance at 240 nm
(Nürnberg and Danon, 2016). GSH activity was measured as the
reduction in µM of GSH per min.

Plant Growth Promotion Study in Rice
Seedlings—Greenhouse Study
Bioassay test was conducted at the Greenhouse, Faculty of
Agriculture, Padjadjaran University, Jatinangor, Indonesia, in
March 2020. This experiment aimed at selecting isolates that have
the best effect on the growth of rice seedlings. Bioassay tests
were conducted using a hydroponic system using salinized liquid
Fahreus media. The experiments were conducted in triplicates
as a complete randomized block design (RBD), consisting of
16 treatments (control and 15 halotolerant PGPR isolates) with
three replications. The rice seed variety used was INPARI-33
sensitive to salinity. Rice seeds were sterilized in HgCl2 0.2%
for ± 2 min and in 70% alcohol for ± 2 min, then rinsed
with sterile distilled water three times, and then germinated on
clean straw paper. Two pieces of straw paper were moistened
using salinized distilled water obtained by adding 6 g NaCl to
1 L of distilled water. Seeds were planted, covered with straw
paper, and rolled up using plastic. Seed germination was done
in an incubator at 28◦C for 5 days. After 5 days, rice seedlings’
roots were soaked in salinized liquid Fahreus media and then
were transplanted into a 20 mm × 300 mm sterilized test tube,
and bacterial suspensions (108 CFU/ml) of liquid salinized Okon
media were added. Seedlings’ bodies were supported by sterilized
plastic pipes to prevent drowning. Rice seedlings were then stored
in test tube racks in the greenhouse. Plant height (cm), root length
(cm), and plant dry weight (mg) were recorded at 21 days after
planting (DAP). The selection of the best isolates was made using
the simple scoring and ranking method.

Effect of Inoculants on Rice Growth—Pot
Experiment
The selected isolates were used as active ingredients for the
H-PGPR inoculant in the form of powder using an organic-based
carrier (40% peat, 30% compost, 20% biochar, 10% additive).
Organic-based carrier was chosen for its characteristics. The
nature of organic carriers can have an impact on the effectiveness
of rhizobacteria in biofertilizers in supporting plant productivity
(Arora et al., 2014). About 35% of bacterial suspension containing
109 CFU/ml was incorporated with the carrier to obtain a
bacterial density of about 108 CFU/g.

Simple pot experiment was performed to investigate the effect
of H-PGPR inoculant on the abundance of N-fixing bacteria
(Azotobacter sp. and Azosprillum sp.), N uptake, and agronomical
traits, and rice yield was done in Cilamaya Wetan, Karawang
District (6◦15’44”, 107◦34’24”, located about 0.5 m above sea
level). The soil properties belonged to silty clay texture as an acid
soil (pH = 5.04), 2.44% of Org-C, 0.25% of total N, high content of
exchangeable Na (2.01 cmol/kg), high salinity (ECe = 6.64 dS/m),
and very low base saturation (14.24%).

The experiment was arranged as an RBD consisting of eight
treatments, namely, P0 = control; P1 = 500 g SA; P2 = 1000 g
SA; P3 = 1500 g SA; P4 = 20 g ST/ kg seed; P5 = 20 g ST + 500
g SA; P6 = 20 g ST + 1000 g SA; and P7 = 20 g ST + 1500 g
SA. Saline paddy soil from Rawagempol Village, Cilamaya Wetan
District, Karawang Regency, from a depth of 0 cm to 25 cm was
obtained and then cleaned of plant debris. Then, the soil was
placed into a bucket with a capacity of 10 kg. In seed treatment,
20 g of biofertilizers was mixed with rice seeds, followed by soil
application according to their respective treatment doses, namely,
0, 500, 1,000, and 1,500 g. In the soil application, biofertilizers
were distributed in the soil according to their respective doses
without the seed treatment.

The observed responses were the population of N-fixing
bacteria, N uptake, and rice’s growth and grain yield. N-fixing
bacteria observed were Azotobacter sp. and Azospirillum sp.
Azotobacter isolation used the selective Ashby’s nitrogen-free
media, and Azospirillum isolation used the selective Okon
nitrogen-free media. Isolation was carried out by the dilution
method. A total of 10 g of soil sample was put into 90 ml of
distilled water in a small test tube, then vortexed, made a series
of dilutions by pipetting 1 ml of solution into 9 ml of aqua dest
and so on until a dilution series of 10−1–10−7 was obtained;
then, 0.1 ml of the dilution was placed into the Petri dish that
already contains the Ashby’s and Okon media mentioned earlier
and incubated for 48–72 h at room temperature (27–28◦C).

Nitrogen uptake in rice plants was analyzed using the Kjeldahl
method. An amount of 0.250 g of plant sample was cut into
pieces of <0.5 mm in size and placed in a digestion tube;
1 g of selen mixture and 2.5 ml of H2SO4 p.a. were added
into it. The mixture was leveled and left overnight to be
stirred. A blank was prepared by adding only 1 g of the selen
mixture and 2.5 ml of H2SO4 p.a. without plant sample into
the digestion tube. The next day, it was heated in a digestion
block to 350◦C. Destruction was complete when white steam
comes out and a clear extract was obtained (about 4 h). The
tube was removed and cooled, and then, the extract was diluted
with ionized water to exactly 50 ml and then vortexed until
homogeneous; the tube was left overnight to allow the particles
to settle. The clear extract was used for N measurement by
distillation or colorimetry.

Characterization of Potent Isolates
Phenotypic Characterization
Selected halotolerant PGPR isolates were characterized
based on their morphological traits and biochemical
activity. Morphological characterization consisted of colony
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characteristics and Gram staining (Hucker and Conn, 1923).
At the same time, biochemical characterization involved
the measurement of IAA production and nitrogenase
enzyme activity.

Molecular Characterization
Molecular identification of potent H-PGPR isolates was
carried out based on phylogenetic analysis of 16s rRNA gene
sequencing. The isolates were grown in Luria Bertani Broth
overnight at 30◦C at 120 rpm followed by centrifugation at
10,000 rpm for 2 min to obtain the cell pellets. The 16S rRNA
gene of the isolates was amplified with universal primers
16S-27F (5′AGAGTTTGATCCTGGCTCAG3′) and 16S-1492R
(5′GGTTACCTTGTTACGACTT3′) followed by polymerase
chain reaction (PCR) and gel electrophoresis on a 0.8% agarose
gel. The 16S rRNA gene sequence was analyzed using the 16S
rRNA gene amplicon sequencing on ABI 3730Xl automated
sequencer using a ready reaction kit (Perkin Elmer Applied
Biosystems Division, CA, United States). Phylogenetic trees were
constructed with the help of the neighbor-joining method using
MEGA5 software. H-PGPR isolates were identified based on
their phylogenetic relationship with the standard database of
NCBI (Cole et al., 2009).

Statistical Analysis
All the experiments were performed in triplicates, and a
mean of triplicate was further analyzed statistically using
the Statistical Analysis System (SAS Institute, North
Carolina State University). F-test was performed to show
significant effects on tested variables. Finally, Duncan
multiple range test (DMRT) was performed (p < 0.05)
(Gomez and Gomez, 1984).

RESULTS

Isolated Potent Halotolerant PGPR
Fifteen H-PGPR isolates were obtained from rice, mangroves,
and wild grass rhizosphere from the composite soil samples.
These isolates were then screened for IAA production and
nitrogenase activity.

Plant Growth-Promoting Traits of Potent
H-PGPR
Indole Acetic Acid
All H-PGPR isolates can produce varying amounts of IAA. Isolate
S5 had the highest amount of IAA compared with S3 and S6. It
produced 0.648 µg/ml IAA vis-à-vis 0.592 µg/ml produced by
isolates S3 and S6 (Table 2).

Phosphate Solubilization
Isolate S3 showed a maximum P solubilization zone on the
PKV agar plate compared with the isolates S5 and S6. The
isolate S3 exhibited a maximum P solubilization index (10.1 mm)
compared with 7.1 mm and 6.2 mm P solubilization index by S5
and S6, respectively (Table 2).

TABLE 2 | Screening and the production of various plant growth promoting and
salinity ameliorating of Halotolerant PGPR isolates.

Traits Isolates

S3 S5 S6

P solubilization index 10.1 ± 0.41 7.1 ± 2.21 6.2 ± 3.35

P solubilization (µg/mL) 4102 ± 7.41 3021 ± 2.01 2865 ± 3.51

Ammonia production +++ ++ ++

Siderophore production 81.2 ± 0.02 73.5 ± 0.03 69.8 ± 0.02

ACCD activity (µM/mg/h) 0.952 ± 0.02 0.818 ± 0.01 0.798 ± 0.03

SOD activity (IU/mg protein) 14.79 ± 0.03 13.01 ± 0.01 10.96 ± 0.02

CAT activity (IU/mg protein) 0.095 ± 0.02 0.087 ± 0.01 0.079 ± 0.03

GSH activity (µg/mg protein) 27.21 ± 0.01 23.82 ± 0.02 21.36 ± 0.03

+ = present − = absent, ++ = positive, +++ = strong positive, % SU = %
siderophore units. Values are the average of triplicates and were analyzed by
Duncan Multiple Range Test at 5% real level.

Production of Ammonia and Siderophore
All three isolates produced varying amounts of ammonia and
siderophore. However, the isolate S3 yielded maximum ammonia
(+++) and siderophore units (81.2% SU) compared with S5 and
S6 (Table 2).

Nitrogenase Activity
In each isolate, nitrogenase activity was directly proportional to
nitrogenase concentration. Isolate S3 had the highest nitrogenase
activity (3.207 µM/ml/h), while isolates S5 and S6 showed 2.217
µM/ml/h nitrogenase activity, respectively. Thus, the S3 isolate
had the highest nitrogenase enzyme productivity as it had the
highest nitrogenase concentration. This isolate also showed more
plant growth-promoting effects in rice seedlings compared with
other isolates and control (Table 2).

Salinity Ameliorating Traits
Aminocyclopropane-1-Carboxylate Deaminase
All three potent isolates produced varying amounts of ACCD.
However, isolate S3 exhibited more ACCD activity than isolates
S5 and S6 (Table 2).

Antioxidant Enzymes
All three potent isolates produced varying amounts of
antioxidant enzymes such as SOD, CAT, and GSH. However,
isolate S3 exhibited maximum activities of these enzymes
compared with isolates S5 and S6 (Table 2).

Plant Growth Promotion in Rice
Seedlings Under Salinity Stress
The effects of inoculation of H-PGPR isolates on plant growth
were evident on plant height, root length, and plant dry weight
of rice seedlings at 21 DAP. All H-PGPR isolates could promote
plant height even though not significantly different from control
(without isolates) (Table 3). The inoculation of H-PGPR isolates
in rice seedlings showed a significant (p < 0.05) improvement
in the growth of rice plants under salinized Fahreus media
(6 dS/m, moderately saline). Isolate S3, S5, and S6 resulted in
318% (9.13 cm) improvement in plant height, 56.69% (12.17 cm)
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TABLE 3 | Effect of halotolerant PGPR isolates on growth parameters in rice seedlings at 21 Days After Planting.

Treatments Code IAA (µg/mL) Nitrogenase activity
(µM/mL/h)

Plant height
(cm)

Root length
(cm)

Plant dry
weight (mg)

Control (without isolates) S0 0.000 0.000 2.87 ± 0.67ab 6.90 ± 0.46a 20.00 ± 2.00abc

H-PGPR isolate from rice plant 1 S1 0.387ab 2.018ab 2.73 ± 1.01ab 9.77 ± 2.86abc 15.67 ± 2.08a

H-PGPR isolate from rice plant 2 S2 0.317ab 2.200ab 4.50 ± 4.52ab 10.30 ± 2.26abc 16.67 ± 3.51ab

H-PGPR isolate from rice plant 3 S3 0.592ab 3.207abc 9.13 ± 7.07b 12.07 ± 1.27d 33.34 ± 8.14d

H-PGPR isolate from rice plant 4 S4 0.328ab 2.001ab 4.27 ± 2.25ab 10.47 ± 1.19abc 21.33 ± 3.06abc

H-PGPR isolate from rice plant 5 S5 0.648abc 2.217ab 6.13 ± 2.61ab 12.17 ± 0.70d 27.33 ± 3.06cd

H-PGPR isolate from mangrove 1 S6 0.592abc 2.217ab 6.50 ± 5.20ab 11.17 ± 1.07bc 24.67 ± 8.14bc

H-PGPR isolate from mangrove 2 S7 0.293ab 1.117a 5.63 ± 2.56ab 8.57 ± 1.05abc 20.34 ± 2.31abc

H-PGPR isolate from mangrove 3 S8 0.292ab 1.182ab 5.10 ± 1.47ab 8.73 ± 1.95abc 18.67 ± 2.08ab

H-PGPR isolate from mangrove 4 S9 0.308abc 1.322abc 4.77 ± 2.83ab 10.93 ± 1.85bc 21.66 ± 1.53abc

H-PGPR isolate from mangrove 5 S10 0.273ab 1.121ab 2.33 ± 0.21a 10.00 ± 0.70abc 19.67 ± 3.21abc

H-PGPR isolate from wild grass 1 S11 0.281ab 1.101a 4.13 ± 3.48ab 10.63 ± 1.91bc 22.00 ± 2.00abc

H-PGPR isolate from wild grass 2 S12 0.301ab 1.481ab 5.30 ± 2.85ab 9.17 ± 1.10abc 19.33 ± 1.53abc

H-PGPR isolate from wild grass 3 S13 0.199b 1.332abc 4.60 ± 1.39ab 10.80 ± 2.69bc 22.66 ± 0.58abc

H-PGPR isolate from wild grass 4 S14 0.232a 1.411ab 5.50 ± 3.39ab 9.00 ± 2.46abc 23.34 ± 3.06abc

H-PGPR isolate from wild grass 5 S15 0.187b 1.033ab 5.60 ± 2.86ab 8.13 ± 3.23ab 22.67 ± 2.52abc

Figures are the mane of triplicates. Figures followed by the same notation are not significantly different based on Duncan Multiple Range Test at 5% real level.
Figures followed by the same letter are not significantly different.

increase in root length, and 73.18% (27.33 mg) improvement
in plant dry weight. The inoculation of H-PGPR in rice-to-
rice plants could promote plant growth under saline conditions.
Isolates were also proven to have halotolerant abilities (tolerant to
salinity), where they were able to survive and even increase plant
growth in saline conditions.

The best H-PGPR isolates were selected using simple scoring
and ranking methods based on plant height, root length, and
dry weight (Herdiyantoro et al., 2018). The rules in the simple
scoring and ranking method were as follows: (i) the lowest plant
height was given a score of 1, the higher was given a score of
2 and so forth; (ii) the lowest root length was given a score
of 1, the higher was given a score of 2 and so forth; (iii) the
lowest plant dry weight was given a score of 1, the higher was
given a score of 2 and so forth; (iv) all scores were summed
up, and ranking was done based on the highest of the total
score; (v) the highest of the total score was rank 1, the lower
of the total score ranked 2 and so forth. Isolates S3, S5, and S6
had the highest score, sequentially ranking 1, 2, and 3. These
three isolates were used for morphological traits and biochemical
activity characterization (Figure 1).

Effect of H-PGPR Inoculant on the
Abundance of N Fixer in Rice
Rhizomicrobiome
The abundance of Azotobacter sp. and Azospirillum sp. was
increased significantly by the seed treatment (20 g inoculant/kg)
and increased dosage of inoculant (Table 4). The highest
population of Azotobacter sp. (2.80 × 107 CFU/g soils) and
Azospirillum sp. (2.13 × 107 CFU/g soils) were obtained by the
seed treatment with 20 g inoculant/kg combined with 1,500 g
inoculant/ha of soil application. The increment was 110.5% and
238.1%, respectively, higher than the control. The Azotobacter

sp. or Azospirillum sp. of inoculated pots with 20 g/kg seed and
1,500 g/ha (P5) was still significantly higher than treated pots
with 1,500 g/ha of inoculant (P3). Even though Azospirillum sp.
population was not significantly different with treated pots with
1,500 g/ha of inoculant (P3), the increment compared with the
control was lower (only 174.6%) than P5 (238.1%). These results
indicated that the introduced inoculant could adapt and multiply
in rhizomicrobiome.

Effect of H-PGPR Inoculant on N Uptake,
Growth Characters, and Rice Yield
The N uptake and agronomical traits (plant height and a
number of tillers at 50 DAP (Table 5), and yield component
and harvested rice grain (Table 6), were significantly influenced
by the seed treatment (ST) with 20 g/kg of seed combined

FIGURE 1 | Scoring of H-PGPR isolates based on plant height, root length,
and plant dry weight.
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TABLE 4 | Effect HNF PGPR inoculant as seed treatment (ST = 20 g/kg seed)
combined soil application (SA = g/ha) on the abundance of N fixers and PGPR
(Azotobacter sp and Azospirillum sp) in rice rhizomicrobiome.

Inoculant
Application

Azotobacter
sp

(x 107 CFU)

Increment
(%)

Azospirillum
sp

(x 108 CFU)

Increments
(%)

Po = control 1.33 ab – 0.63 a –

P1 = 500 g SA 1.37 ab 3.0 0.80 ab 27.0

P2 = 1000 g SA 1.55 b 16.5 1.23 bc 95.2

P3 = 1500 g SA 1.73 c 30.5 1.73 dc 174.6

P4 = 20 g ST/kg
seed. mg/plant

1.30 a −2.3 0.70 a 11.1

P5 = 20 g ST +
500 g SA

1.53 b 15.0 1.30 bc 106.3

P6 = 20 ST +
1000 g SA

1.77 c 33.1 1.63 cd 158.7

P7 = 20 ST +
1500 g SA

2.80 d 110.5 2.13 d 238.1

Average value followed by the same letter within same column were not different
significantly DMRT 0.05%.

TABLE 5 | Effect of HNR PGPR inoculant as seed treatment (ST) and soil
application (SA) on growth component (the N-uptake, plant height and number
tiller of rice at 50 DAP) on saline soils.

Inoculant
Application (ST =
20 g/kg seed. SA
= g/ha)

N-Uptake Plant height
(50 DAP)

Tiller
(tiller/clump)

(%) mg plant−1

Po = control 2.24 a 2.77 a 79.40 a 20.00 a

P1 = 500 g SA 2.78 a 3.31 abc 81.91 bc 24.42 bc

P2 = 1000 g SA 2.84 a 4.33 cd 83.74 cd 26.83 cd

P3 = 1500 g SA 2.91 a 5.05 d 86.22 e 34.50 e

P4 = P4 = 20 g
ST/kg seed.
mg/plant

2.50 a 2.98 ab 79.79 ab 23.08 b

P5 = 20 g ST +
500 g SA

2.73 a 3.74 abcd 82.85 cd 27.08 cd

P6 = 20 ST +
1000 g SA

2.78 a 4.23 bcd 84.98 de 29.67 d

P7 = 20 ST +
1500 g SA

2.83 a 4.65 d 86.97e 32.58 e

Average value followed by the same letter within same column were not different
significantly DMRT 0.05%.

with 500–1,500 g/ha of H-PGPR inoculant. The N content and
status of plant tissue were improved significantly by applying
inoculant. Despite N, the status belongs to the optimal condition,
but the measured value tends to be increased as shown by
the visual crop performance (the leaf of the treated plot is
greener than control). The enlarged dosage of H-PGPR inoculant
increased the N uptake, plant height, and the number of
tillers significantly. In contrast, applying H-PGPR inoculant
as seed treatment increased the number of tillers, while the
N uptake and plant height were affected considerably. Briefly,
the combined effects of seed treatment and soil application
on the measured responses were higher than the control, but
not different from the obtained result with soil application of

inoculant. These results indicated that the soil application of
1,000–1,500 g/ha of H-PGPR inoculant significantly increased
the N uptake, plant height, number of tillers, and rice grain
yield. The highest rice grain yield was obtained by applying
1,500 g/ha of H-PGPR inoculant (35.1 g/plant or 6.4 ton/ha)
or in combination with 20 g/kg seed treatment (38.9 g plant
or 7.0 ton/ha). Compared with the control, rice grain yield
was increased by 41.1–161.1% by the soil application of 500–
1,500 g/ha of inoculant. Moreover, applying 20 g/kg seed of
inoculant combined with 500–1,500 g/ha increased the rice grain
yield by 57.4–189.4% but not significantly different with soil
application only.

A comparative result for soil application and seed treatment
was done to determine the best technique application between
treatments (Table 7). The population of N fixers (Azotobacter sp.
and Azospirillum sp.) was slightly higher at the seed treatment
application, but N uptake, plant height, number of tiller,
panicles/clump, number of grain/panicle, weight of 1,000 grain,
and grain yield showed a better performance on soil application.
Results showed that H-PGPR biofertilizer was better to be applied
in soil than as seed treatment.

Characteristics of Selected Potent
H-PGPR Isolates
The morphological traits and biochemical characteristics showed
that all three potent H-PGPR isolates (S3, S5, and S6) are
Gram-negative rods (Table 7) that can survive under moderate
salinity conditions.

Among these three isolates (S3, S5, and S6), two isolates (S3 and
S5) were subjected to molecular identification as these isolates
appeared as potent multifarious PGPR. Isolate S3 showed 98.06%
similarity with Pseudomonas stutzeri (Figure 2A), while isolate
S5 resembled 100% with Klebsiella pneumonia (Figure 2B); 16s
rRNA gene sequences of these isolates were submitted to the
NCBI gene bank under the accession numbers SUB11206984 and
SUB11207011, respectively.

DISCUSSION

Saline soils are known to harbor halophilic rhizobacteria. This
study reports that P. stutzeri and K. pneumoniae isolated from
rice plant rhizosphere were H-PGPR that can improve the
growth of rice seedlings under salinity stress conditions due to
climate change impacts.

Halotolerant rhizobacteria exert many beneficial effects on
plant growth and help in ameliorating soil salinity (Saxena et al.,
2013; Sagar et al., 2020a,b; Kapadia et al., 2021; Kusale et al.,
2021a).

Pseudomonas stutzeri and K. pneumoniae used in this study
were able to produce IAA, nitrogenase enzyme, P solubilization,
ammonia, and siderophore as a force to help plant growth
and mitigate salinity stress in plants. These findings were in
line with the fact that PGPR provide a range of benefits to
the plants (Baba et al., 2021), such as plant growth promotion
through the production of phytohormones (Kalam et al.,
2020), nitrogen fixation (Kusale et al., 2021a), P solubilization

Frontiers in Microbiology | www.frontiersin.org 7 June 2022 | Volume 13 | Article 905210

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-905210 December 5, 2022 Time: 12:21 # 8

Khumairah et al. Halotolerant PGPR Alleviate Salt Stress

TABLE 6 | Effect of HNR PGPR inoculant on rice component and grain yield on saline soils.

InoculantApplication panicles/clump nr.grain/panicle Weight of 1000 grain (g) Grain yield

g/clump Growth (%) t/ha

Po = control 13.2 a 79.0 a 24.0 a 13.5 a 2.4

P1 = 500 g SA 14.6 ab 92.6 b 24.7 ab 19.1 b 41.8 3.4

P2 = 1000 g SA 16.2 bc 99.4 bc 25.6 ab 25.5 c 90.0 4.6

P3 = 1500 g SA 18.6 d 109.8 cd 25.9 bc 35.1 d 161.0 6.3

P4 = 20 g ST/kg seed 14.4 ab 77.9 a 24.4 ab 15.4 a 14.3 2.8

P5 = 20 g ST + 500 g SA 15.4 bc 91.9 b 25.5 ab 21.2 b 57.4 3.8

P6 = 20 ST + 1000 g SA 17.0 cd 102.3 bcd 26.0 bc 29.2 c 116.9 5.3

P7 = 20 ST + 1500 g SA 18.6 d 113.7 d 27.6 c 38.9 d 189.4 7.0

Average value followed by the same letter within same column were not different significantly DMRT 0.05%.

TABLE 7 | Biochemical activities of H-PGPR isolates.

Isolate Code Characteristics

Shape Elevation Color Cell Gram staining character Growth in Okon media (6 dS/m)

S3 rounded convex white coccus Gram Negative 0.592 ± 0.027

S5 rounded convex white coccus Gram Negative 0.648 ± 0.107

S6 Rounded convex white coccus Gram Negative 0.592 ± 0.027

Figures are the mane of triplicates. Analyzed for standard deviation (SD).

(Sharma et al., 2013, 2016), ammonia production (Kusale et al.,
2021a), and siderophore production (Patel et al., 2016; Shaikh
et al., 2016; Khan et al., 2019; Sayyed et al., 2019; Jabborova et al.,
2020; Basu et al., 2021). They also produce various metabolites
that protect the plant from oxidative damages exerted by salinity
stress (Sagar et al., 2019, 2020a,b, 2022a,b; Jabborova et al., 2020).

Salt tolerance in P. stutzeri and K. pneumonia is considered
a strategy for organisms’ survival and growth under saline
conditions. In this study, P. stutzeri and K. pneumoniae produced
ACCD and antioxidant enzymes. This was a novel finding that
two potent isolates were identified as agents in mitigating salinity
stress for their salinity ameliorating traits abilities.

Salt-tolerant bacteria limit high amounts of salt into the
cell through cell membranes or walls. The cell membranes or
cell walls of halophilic bacteria have a specific composition
that is accurately resistant to high salt concentrations. Osmotic
adaptation in these bacteria helps them regulate the intracellular
ionic concentration by pumping out the Na+/K+ ions using
antiporter or K+/Na+ ion transporters. After that, bacteria
accumulate the compatible solutes by endogenous biosynthesis
and upregulation of the synthesis of essential amino acids,
proteins, and enzymes (Noori et al., 2018). These bacteria are
well known as N fixer and PGPR, which contribute to nutrients
availability, plant health, plant growth, and salinity stress (Yao
et al., 2010; Simarmata et al., 2018; Shultana et al., 2020).

Several scientists had examined and supported the findings
of this study that the rhizobia are more tolerant to salinity
stress compared with their host plant, but the growth and
survival vary under saline conditions depending on the strains
and their salt tolerance threshold. Kusale et al. (2021a)
isolated multifarious halotolerant Klebsiella variicola SURYA

from the wheat rhizosphere. The isolate could grow in the
presence of a high salt concentration (160 mM). Production
of IAA was later found to be one of the principal salinity
ameliorating components in this isolate. Noori et al. (2018)
isolated Klebsiella sp., Kosakonia cowanii, and Sinorhizobium
meliloti and identified these isolates as salt-tolerant bacteria.
These isolates could tolerate up to 1,200 mM NaCl, fix nitrogen,
solubilize phosphorous, produce IAA, siderophore, HCN, and
ACC deaminase enzyme. Sapre et al. (2018) reported that
Klebsiella sp. enhanced 20% plant biomass under saline stress
conditions with respect to negative control seedlings. Kusale
et al. (2021a) also affirmed that inoculation of halotolerant
K. variicola improved plant growth parameters, i.e., roots, shoots,
and chlorophyll content. P. stutzeri was also proven to increase
tomatoes’ plant fresh and dry weight under salinity stress
(Samosir et al., 2019).

The H-PGPR is classified as diazotrophic bacteria such as
Rhizobium, Azotobacter, and Azospirillum that can produce
IAA with or without tryptophan precursors (Fazeli-Nasab and
Sayyed, 2019). H-PGPR inoculation can provide nutrients for
plants and increase plant growth in the vegetative phase.
This statement indirectly indicates that plant growth was
influenced by the ability of each isolate to fix nitrogen and
make it available for the plant to uptake as plant holobionts.
Several halotolerant rhizobacteria, including Pseudomonas sp.
and Klebsiella sp., produce various plant beneficial metabolites
such as phytohormones (Kapadia et al., 2021) and antioxidant
enzymes (Arora et al., 2020). Halotolerant sp. also increases the
value of ARA and the production of the IAA, which was analyzed
under a salt concentration of 0.3 M NaCl ( ± 30 d S/m)
(Paul et al., 2014).
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FIGURE 2 | Phylogenetic analysis of H-PGPR isolates, (A) Pseudomonas stutzeri and (B) Klebsiella pneumonia, based on 16s rRNA gene sequence homology
drawn using the neighbor-joining method (MEGA 5.0 software) with evolutionary distances computed using Kimura’s two-parameter model.

The H-PGPR can balance osmotic pressure to avoid
denaturation caused by salt in the environment by accumulating
salt and osmolytes (organic molecules) in their system
(Albaladejo et al., 2017). Inoculating PGPR isolates to
crops helps convert the insoluble nutrients into soluble
nutrients, making them available to the plants (Etesami
and Glick, 2020). N-fixing halotolerant rhizobacteria can
maintain their growth-promoting attributes even under saline
conditions (Ding et al., 2005). P. stutzeri and K. pneumonia
have long been known for their N-fixing ability. Rice

seedlings’ growth with the inoculation of P. stutzeri A15
resulted in better performance compared with chemical
nitrogen fertilization (Reetha et al., 2014). K. variicola,
which is identified as a N-fixing species, also acts as
N-fixing rhizobacteria (Chen et al., 2016; Pham et al., 2017;
Kumar et al., 2020).

Rhizobacteria can act as stimulants and produce hormones
such as auxins and gibberellins to help promote plant growth
(Jain et al., 2021). Salinity stress can inhibit enzyme activity and
cause metabolic changes in plant cells due to the accumulation of
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too high salts in the cytoplasm. The concentration of cytokinin
and auxin hormones decreases, while the concentration of
ethylene and abscisic acid increases (Wani et al., 2016). However,
the three isolates in this experiment (S3, S5, and S6) were able to
produce IAA hormone and nitrogenase enzyme, which increased
the vegetative plant growth.

Biochemical attributes of rhizobacteria to produce certain
hormones, organic acid, and/or enzymes are beneficial for plant
growth under salinity stress (Duarte et al., 2020). Production of
IAA is directly proportional to the levels of tryptophan given.
Tryptophan functions as a precursor to IAA, yet bacteria also
can produce IAA (Cavalcante da Silva et al., 2020). Under
salinity stress conditions, plants will increase the ABA content
and decrease the IAA content (Thairu et al., 2014). In addition,
salinity stress can also disrupt bacterial metabolism and is toxic
to plants (Saxena et al., 2013). The nitrogenase activity test
performed using the ARA method has high accuracy because it
can detect up to a concentration of 0.001 µM (Isayenkov and
Maathuis, 2019). Rhizobacteria fix nitrogen to meet their needs
in the formation of nucleic acids, and when nitrogen needs are
met, excess nitrogen is released into the rhizosphere for use by
plant roots (Bhutani et al., 2018).

Salinity impairs nutrient balance and causes nutrient
deficiency due to the competition between Na+ and Cl− with
soil nutrients such as K+, Ca2+, and NO3

− (Hmaeid et al.,
2019; Kapadia et al., 2021). Salt ions such as Na+ and Cl−
also cause chloroplasts of plants to experience lysis due to
high salt concentrations and degradation of leaf tissue cells
(Saxena et al., 2013). Abundance and microbial biodiversity of
rhizomicrobiome due to the application of H-PGPR inoculant
(P. stutzeri or K. pneumonia) and increasing population of
other beneficial PGPR play an important role in increasing
the availability of growth factors and nutrients for supporting
the rice growth and development (Yao et al., 2010; Benaissa
et al., 2019; Lami et al., 2020). The presence and domination of
beneficial microbes in rhizomicrobiome improve the soil and
plant health, enhance rice growth, and enhance rice productivity
on saline soils (Cavite et al., 2021; Daulay and Simarmata,
2021; Simarmata et al., 2021). Plant growth can be affected
by the availability of nutrients, environmental conditions, and
physiological processes that occur in plants (Kusale et al.,
2021a). In addition, the application of PGPR combined with
the application of ameliorant (compost, dolomite) or organic
fertilizers could improve the effectiveness of microbial fertilizers
or biofertilizers (Simarmata et al., 2016; Simarmata et al., 2019;
Shilev, 2020).

The PGPR are known to ameliorate salt stress through the
production of ACCD (Sagar et al., 2020a,b). Halophiles adapted
to salt stress excrete a wide range of PGP metabolites (Hamid
et al., 2021; Khan et al., 2021) and various stress-tolerant
enzymes (Kusale et al., 2021b). Sagar et al. (2020a) reported the
production of various PGP traits and ACCD in E.cloacae PR4.
Jabborova et al. (2020) found that halophilic endophytes produce
various PGPR traits.

Production of ACCD by PGPR is the major mechanism of
salinity stress tolerance (Shrivastava and Kumar, 2013; Sagar
et al., 2020a). The enzyme ACCD lowers the level of ACC in root

exudates; the suboptimal level of ACC reduces the concentration
of ethylene in the plant roots and thus helps in root length, which
improves the absorption of nutrients (Kusale et al., 2021a; Sagar
et al., 2022b). A wide range of ACCD-producing PGPR, including
Klebsiella sp. and Pseudomonas sp., ameliorate various stresses,
including salinity stress in plants (Acuña et al., 2019). Klebsiella
sp. has been reported to produce ACCD (Kusale et al., 2021a).
These isolates grew well at high salt levels, showed optimum
ACCD activity at high salt levels, and helped ameliorate salt
stress in crops.

Salinity conditions create oxidative stress that damages the
cell membranes and cell structures in microbes and plant cells.
PGPR produce various antioxidant enzymes such as SOD, CAT,
and GSH (Acuña et al., 2019). These enzymes protect plants
from oxidation due to osmotic shocks caused by salt stress
(Fazeli-Nasab and Sayyed, 2019). Under salt stress conditions,
the presence of antioxidant enzyme-producing rhizobacteria
activates an antioxidative defensive system in the crops and helps
remove the free radicals produced due to salt (Acuña et al., 2019).
Sapre et al. (2018) reported halophilic Klebsiella sp. that tolerated
high salt concentration and produced antioxidant enzymes under
salt stress conditions.

Plant height and root length depend on nitrogen availability
and are also influenced by the ability of each isolate to
produce plant growth-promoting metabolites to improve plant
growth (Khumairah et al., 2018). The ability of rhizobacteria
to increase plant growth depends on the type of rhizobacteria
and their respective abilities. Rhizobacteria that produce multiple
metabolites and in higher concentrations provide more nutrients
to the plants and thus help grow plants. According to Gupta
et al. (2019), each isolate has different abilities in increasing
plant growth. The ability of rhizobacteria to increase plant
growth and yield depends on the type of rhizobacteria itself
(Egamberdieva et al., 2019; Khairnar et al., 2022). Zhihengliuella
halotolerant strain A1B62 and Brachybacterium sp. strain B0sh64
showed longer fresh root and heavier shoot fresh weight of
Suaeda maritima compared with other strains and control
(Alishahi et al., 2020).

Most of the saline soils along coastal areas have a low
organic matter content and low fertility. Consequently, an
integrated crop and soils management by planting adapted
and saline-tolerant rice variety combined with ameliorant
application and managing the biodiversity of microbe (microbial
fertilizers) as environmentally friend fertilizers are required for
rhizomicrobiome engineering to improve soil health, nutrient
status and availability, fertilizers efficiency, crop growth and
productivity, and alleviate salinity stress.

CONCLUSION

The salinity of agriculture is the major damaging stress that
negatively impacts the growth and yield of crops, including
rice. The physicochemical approaches to combat soil salinity
have fewer successes and more harmful effects. The use of
rhizobacteria that can tolerate high salt concentration while
producing beneficial plant metabolites can serve as effective
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bioinoculants to improve rice growth under salinity stress
conditions and help in salinity amelioration. This study reveals
that halotolerant P. stutzeri and K. pneumonia produce a wide
range of PGP metabolites and antioxidant enzymes that help crop
plants to grow under salinity stress. These isolates can be used as
potent bioinoculants for improving rice growth in saline soil. Due
to climate change impacts, it can be further developed as a new
biogenic agent to alleviate salinity stress in rice cultivation.
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