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Monitoring the growth of bacterial cultures is one of the most common techniques in 
microbiology. This is usually achieved by using expensive and bulky spectrophotometric 
plate readers which periodically measure the optical density of bacterial cultures during 
the incubation period. In this study, we present a completely novel way of obtaining 
bacterial growth curves based on the classification of scanned images of cultures rather 
than using spectrophotometric measurements. We trained a deep learning model with 
images of bacterial broths contained in microplates, and we integrated it into a custom-
made software application that triggers a flatbed scanner to timely capture images, 
automatically processes the images, and represents all growth curves. The developed 
tool, ScanGrow, is presented as a low-cost and high-throughput alternative to plate 
readers, and it only requires a computer connected to a flatbed scanner and equipped 
with our open-source ScanGrow application. In addition, this application also assists in 
the pre-processing of data to create and evaluate new models, having the potential to 
facilitate many routine microbiological techniques.

Keywords: bacterial growth, growth curves, scanner, machine learning, image classification

INTRODUCTION

Turbidimetric measurements of bacterial cell suspensions have been, for many decades, the 
standard methodology to determine the concentration of bacterial cell suspensions. UV–visible 
spectrophotometers are commonly used for this purpose. In these instruments, samples are 
subjected to a light source of around 600 nm which, after passing through the suspension, is 
detected by a sensor and recorded as optical density (OD600). Bacterial cells in suspension 
scatter the light so the higher the cell density, and therefore more turbid the sample, the less 
amount of light will reach the detector, giving higher OD600 values (Koch, 1970). Spectrophotometers 
use the absorbance detection mode to convert this attenuated transmittance of light in OD600 
units; however, only pigmented bacteria cause significant light absorption in addition to scattering, 
so “OD600” is a more accurate term than “absorbance” in microbiology.

In adequate culture broth and environmental conditions, bacterial cells in a sample replicate 
and the OD600 values evolve over time in characteristic patterns known as growth curves. 
A typical growth curve shows four distinct growth stages (lag phase, exponential phase, 
stationary phase, and death phase), each corresponding to different physiological states in 
the population (Zwietering et  al., 1990). Live tracking of bacterial growth curves by OD600 
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measurements is one of the most common techniques in 
microbiology laboratories (Ram et al., 2019; Yallapragada et al., 
2019). Among other applications, it is used to characterize 
bacterial physiology and metabolism, perform microbial fitness 
determinations, prepare bacterial samples at optimal growth 
states, monitor biomass accumulation, and study antibiotic 
susceptibility (Ram et  al., 2019; Yallapragada et  al., 2019). 
Currently, antibiotic susceptibility testing (AST) is especially 
relevant given the dramatic emergence of multi-drug-resistant 
bacteria. The gold standard for AST is the broth microdilution 
assay. In this test, initially, clear bacterial suspensions are 
incubated in the presence of different antibiotic concentrations, 
which are considered inhibitory if the turbidity of the sample 
does not increase after the incubation period (Andrews, 2001). 
Furthermore, monitoring of the growth curves during AST 
provides additional data that can be  useful, for example, to 
study bacterial resistance mechanisms (Li et  al., 2016) or to 
detect weak antimicrobial activity during screening processes.

Live tracking of bacterial growth is commonly performed 
in multi-well microplates to maximize sample throughput. These 
microplates are read by table-top absorbance plate readers or 
special spectrophotometers, which are expensive bulky machines 
limited to run a single plate (containing a limited number of 
samples). In recent years, cheap DIY alternatives to plate readers 
have arisen, based on the assembly of electronic components 
(LEDs, photodiodes, and Arduino microcontroller; Jensen et al., 
2015; Kutschera and Lamb, 2018; Sasidharan et  al., 2018), or 
a fitness tracker (Yallapragada et al., 2019). Laser speckle imaging 
has also proven effective to monitor bacterial growth (Loutfi 
et  al., 2020). Only one of these useful devices (Jensen et  al., 
2015) could be  applied in high-throughput settings, and all 
of them require advanced skills and/or components in order 
to function. Another ingenious method, ScanLag (Levin-Reisman 
et  al., 2010), was designed to automatically trigger commercial 
flatbed scanners to acquire images of agar plates containing 
microbial colonies and consequently monitor the increasing 
size of the colonies. Inspired by this method, we  aimed to 
design a software tool that employs flatbed scanners to acquire 
images of bacterial cultures in microplate wells. Like the light 
source in a spectrophotometer, the LED-type light source from 
flatbed scanners gets more scattered the more turbid the sample 
is, creating different patterns of detected images according to 
the bacterial density. In this aspect, classification of images 
based on their morphometric features is currently greatly 
facilitated by the branch of artificial intelligence known as 
deep learning (DL), which is a subcategory of machine learning 
(Sommer and Gerlich, 2013). More specifically, image 
classification performed by deep neural networks (the foundation 
of deep learning) can infer the rules to discriminate between 
predefined classes of exemplary images, and automatically use 
those rules to train a classification model. Successful application 
of machine learning- and DL-based image classification has 
been achieved for many purposes in cell biology (Sommer 
and Gerlich, 2013) and to specific microbiological applications 
(Goodswen et al., 2021). However, to the extent of our knowledge, 
no previous work has utilized DL to classify scanned images 
of bacterial cultures.

The objectives of this work were (i) to explore a new low-cost 
and high-throughput way of monitoring bacterial growth through 
the DL-enabled classification of microplate images acquired 
with conventional flatbed scanners and (ii) demonstrate the 
feasibility of this principle by developing a proof-of-concept 
software tool.

MATERIALS AND METHODS

Data Acquisition
Two types of data were obtained in the data acquisition 
process for the training and evaluation of the DL model: 
scanned images of 96-well microplates containing bacterial 
cultures, and MS Excel files containing optical density (OD) 
values of the cultures in the microplates. Cultures of Escherichia 
coli MG1655 were prepared by inoculation of single colonies 
from agar plates into sterile universal tubes with LB (Lysogeny 
Broth) broth, and subsequent incubation overnight at 37°C 
and 120 rpm. Grown cultures were diluted into fresh LB 
broth to achieve different initial concentrations (ranging 
from 104 to 109 CFU/ml). 100 μl of these initial cultures was 
inoculated onto wells of clear non-treated flat-bottom 
microplates, either non-sterile (Nunc 96 MicroWell 96-Well, 
Thermo Scientific, Waltham, MA, United  States) or sterile 
(Corning 96 Well, NY, United States) depending on whether 
subsequent incubation was performed. This type of microplate 
contains a maximum of 96 different cultures in 96 wells. 
For each training or evaluation image, a microplate was 
scanned in the dark (to avoid any effect of stray light) 
using a CanoScan LiDE 220 (Canon, Tokyo, Japan), and 
the optical density (OD) values of the cultures were measured 
at 620 nm on a microplate reader (EZ Read 400, Biochrom, 
Cambridge, United  Kingdom, and Multiskan FC, Thermo 
Fisher Scientific, Waltham, MA, United States). OD620 values 
were taken without blank subtraction and stored in spreadsheet 
format. A total of 30 scanned images of microplates (containing 
2,880 well images) were used for the training of the DL 
model and nine additional images were added for 
its evaluation.

For the Sample run testing the practicality of use of 
ScanGrow, a microplate was prepared by inoculating wells 
with E. coli MG1655 culture at an initial concentration of 
104 CFU/ml and with added antibiotics in selected wells. 
Negative controls with only broth were also included. The 
microplate was placed on the scanner, and the scanner was 
placed in the dark inside an incubation chamber at 37°C 
(S.I. 600, Stuart Scientific, Stone, United Kingdom). The scanner 
was triggered by the ScanGrow application to acquire images 
every 30 min for 46 h.

Another run to test ScanGrow in different atmospheric 
conditions was performed by connecting the scanner to a 
Raspberry Pi 3 model B+ (Sony UK TEC, Pencoed, 
United Kingdom), and introducing both of them in an anaerobic 
chamber (DG250, Don Whitley Scientific, Bingley, 
United Kingdom). The instructions for this special configuration 
are included in the quick start guide.
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High-quality images were also taken for comparison 
purposes using another flatbed scanner (Epson Perfection 
V800 Photo, Suwa, Japan) and OD600 values were measured 
using a microplate reader (Synergy H1, BioTek, Vermont, 
United  States).

Software Application Development
ScanGrow was developed in the C# language using Microsoft.
NET core 3.1 framework. The application was structured in 
two projects: the first a project providing the image classification 
features and the second the graphic user interface (GUI) and 
the image processing functions.

Provision of Image Classification Features via 
Deep Learning
This task was achieved by integrating a DL image classification 
model into the ScanGrow workflow. For this, the previously 
obtained training dataset (consisting of raw scanned images and 
spreadsheets with spectrophotometric data) had to be  processed 
into sample well images divided into classification levels. A 
workflow to assist with this pre-processing step was included in 
the ScanGrow application, and is explained in section “Additional 
Functions”. For the purposes of this paper, we used six classification 
levels, representing increasing bacterial population densities. These 
were decided after visual inspection of the training images and 
were established as follows: level 1: <0.06, level 2: [0.06–0.15), 
level 3: [0.15–0.25), level 4: [0.25–0.35), level 5: [0.35–0.60), and 
level 6: ≥ 0.60. This information is stored in a CSV file 
(“Classification Levels”) and imported into the application using 
CsvHelper (Close, 2009). An exemplary image for each classification 
or density level can be  seen in Figure  1 (upper set of images). 
The CSV file gets installed in the Program Files folder and can 
be  easily modified for the customization of the density levels.

For the proof-of-concept version of ScanGrow, the 30 
images of the training dataset generated 1,196, 193, 144, 
167, 674, and 506 well images corresponding to levels 1, 

2, 3, 4, 5, and 6, respectively. The DL model was created 
by feeding these classified well images into Microsoft’s 
ML.NET Model Builder component in Visual Studio 2019 
(v16.9.0, Microsoft, Redmond, WA, United  States). ML.NET 
is an open-source GUI model training utility that results 
in a TensorFlow-compatible model. ML.NET automatically 
selected a CNN (Convolutional Neural Network) with 
ResNet-50 architecture as the highest performing model. 
CNNs are the most prominent class of deep neural networks 
and are most commonly applied to analyze visual imagery 
(Goodswen et  al., 2021). They are comprised of nodes 
organized into layers following different architectures (Pak 
and Kim, 2017; Goodswen et  al., 2021), one of which is 
the ResNet (Residual Networks) with 50 layers. The resulting 
classification model was then exported as a ZIP file and 
integrated into the ScanGrow application as a.dll assembly. 
Our software was written to easily consume any other 
TensorFlow-compatible classification model located in the 
Program Files folder.

GUI and Basic Image Processing Functions
ScanGrow was implemented as a standalone application with 
a straightforward GUI. The main window of the GUI is shown 
in Figure  2A. The button “Start” was configured to perform 
an online run after the selection of a scanner device, leading 
to the automatic completion of a series of tasks: (i) to trigger 
the scanner to capture the configured number of images 
separated by the specified interval, (ii) to pre-process the 
scanned images, (iii) to assign a density level to each bacterial 
culture, and (iv) to sequentially store datapoints. These functions 
are briefly described below.

For scanner functionality, the DNTScanner. Core package 
(Nasiri, 2019) was implemented. ScanGrow recognizes wired 
or wireless scanners using the protocol WIA (Windows Image 
Acquisition) and triggers the scanner to acquire the specified 
number of images at each specified time. A4-sized images are 

FIGURE 1 | Classification of the scanned images in six classes or levels. Levels were assigned according to the corresponding intervals of spectrophotometric 
(OD620) values. Each level is represented by an exemplary image of a microplate well containing a culture of Escherichia coli at that specific density stage. All the 
images used within the ScanGrow application were acquired with a single scanner and presented the same resolution as the upper set of pictures. An additional 
second set of high-quality images (acquired with a high-end scanner) illustrates how these microplates look under the naked eye.
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captured at a maximum of 300 dpi (dots per inch) or the 
highest available resolution below this limit.

Prior to image classification, the workflow includes a 
pre-processing stage which flips and crops each image into 

96 slices (one per microplate well). The co-ordinates and labels 
for each slice of the scanned image are stored in an image 
mask (CSV file), which are imported using CsvHelper. Each 
slice is automatically named according to the scanning order 

A

B

FIGURE 2 | Graphic User Interface of the ScanGrow application: (A) Main application menu, which grants access to all the functionalities from a single window; 
(B) Graph View, which allows for the visualization of 96 different growth curves.
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and stored in its corresponding folder according to the position 
of the well. Like with the density levels, the image mask can 
also be  easily customized to adjust for the position of the 
microplate or the size of the wells.

ScanGrow loads the image classification model to predict 
the density level of each well at each specified time. The results 
of each session are saved in a JSON (JavaScript Object Notation) 
file and are displayed either in graphic format (Figure  2B, 
Graph View) or as a table grid (Supplementary Figure  1, 
Table View). LiveCharts (Rodriguez, 2017) was used for graph 
construction. We  included two options to export results. First, 
data displayed on the Table View can be  copied and pasted 
onto MS Excel or other spreadsheet managers; second, JSON 
files can be  transferred between machines and loaded into 
ScanGrow to view results from previous sessions.

Additional Functions
Although initially only the online run was in our roadmap, other 
functions were needed along with the design and development 
stage and were therefore incorporated into the ScanGrow application. 
The option to obtain growth curves from previously acquired 
images became indispensable, so a job to perform offline runs 
(triggered by the button “Run Offline,” Figure  2A) was created. 
Scangrow was also supplied with functions to assist with the 
training and evaluation of new image classification models. The 
workflow to process raw training data into adequately grouped 
well images contains the following steps: (i) import of 
spectrophotometric data (in MS Excel or CSV format), (ii) import, 
flipping and slicing of a scanned image, (iii) automatic renaming 
of the images according to its spectrophotometric value, and (iv) 
sorting of the slices into the folder that represents their classification 
level. These tasks can be  launched using the menu sections “1. 
Tag spectra values to images” and “2. Group images by spectra 
values” (Figure  2A). Finally, the function shown as “3. Test the 
model” compares the OD values provided externally (i.e., by using 
a spectrophotometer) with those assigned by ScanGrow. We used 
this function to obtain a CSV file from which the accuracy and 
error metrics of the classification model can be  calculated.

Data Analysis, Figures, and Images
Figures  3, 4; Supplementary Figures  2, 3 were prepared by 
collecting raw data from the Table View in the ScanGrow 
application (presented as a table grid), pre-processing it in 
MS Excel (v2016, Microsoft), processing it in R (RStudio 
v1.2.1335), and using the R package ggplot2 (Wickham, 2011) 
for the graphic representations.

Two determinations were done for the preparation of Figure 4. 
First, the area under the curve (AUC) was calculated for each 
growth curve as a measure to quantify the general level of 
growth after a specific incubation time (Tonner et  al., 2017). 
For this, the 2-point closed Newton-Cotes formula (trapezoidal 
rule) was applied:
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assigned by the DL model (range 1–6). Lastly, a 
pharmacodynamics Hill function (Regoes et  al., 2004) was 
adapted to express, for each antibiotic, the change in AUC as 
a function of the antibiotic concentration:
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where x = antibiotic concentration in log2 scale, 
AUCmax = maximum AUC in the absence of antibiotics, 
Em = AUCmax – minimum AUC at high antibiotic concentrations, 
EC50 = antibiotic concentration at which the AUC is at half of 
its maximum, and k = Hill coefficient, which describes the 
sigmoidicity of the function. Only the AUC after 46 h of 
incubation time was needed to obtain these dose–
response curves.

The image editing software Corel PhotoImpact X3 (Corel 
Corporation, Ottawa, Canada) was used for the preparation 
of Supplementary Figure  2 and for readjusting the position 
of the microplate in some scanned images. Bulk processing 

FIGURE 3 | Relationship between the Model-assigned values (density levels 
automatically assigned to the scanned images according to the trained 
model) and the Spectrophotometry-measured values (density levels assigned 
after spectrophotometric measurements). Blue circles correspond to the 
validation dataset (using horizontally flipped images of the training dataset). 
Gray triangles correspond to the test dataset (new images and 
spectrophotometric measurements). The trend line represents the linear 
regression fit (R2 = 0.95) between the assigned and the measured values.
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FIGURE 4 | Dose–response curves obtained from the “Sample run.” The response values (points in the graph) represent the AUC values of the growth curves after 
46 h of incubation, calculated directly from the 1–6 classification levels. The curves were obtained by fitting those AUC values to the dose (antibiotic concentration) 
values using a Hill function.

of images was done using Python scripts with the OS module 
and the Pillow library (Clark, 2010).

RESULTS

ScanGrow Functionalities
As shown in Figure  2A, the resulting ScanGrow application 
offers the possibility of performing online and offline runs, 
as well as helping in the creation and evaluation of other 
models for the monitoring of growth curves and other possible 
types of image classifications. Online runs allow the user to 
monitor bacterial growth in real time through the automatic 
scanning and processing of images and display of updated 
results. Offline runs produce the same outputs as online runs 
but, instead of triggering a scanner, previously acquired images 
are used as inputs. A flowchart summarizing the steps involved 
in the creation of online runs, offline runs, and new models 
is included (Supplementary Figure  4). Detailed instructions 
on how to operate both types of runs, how to train and evaluate 
new image classification models, and other configuration options 
can be  found in the user manual.

Evaluation of the DL Image Classification 
Model
The image classification model included by default in the installation 
package achieved an accuracy level of 86.25% according to the 

self-evaluation of the ML.NET Model Builder. To further validate 
the adequacy of ScanGrow for monitoring bacterial growth in 
broth, the predictive power of the image classification model 
was evaluated using the “Test the model” functionality. Figure 3 
shows this correlation for a total of 3,744 individual well images 
with a global R2 value of 0.95. These well images were obtained 
from 30 validation images obtained after horizontal flipping of 
the training images, plus nine other test images not previously 
used. The accuracy of the model, understood as the percentage 
of correct predictions, was calculated to be  81.89%. However, 
this number varied according to each measured density level: 
96.70% for level 1 (1,274 images), 85.06% for level 2 (348 images), 
64.44% for level 3 (360 images), 19.83% for level 4 (242 images), 
84.63% for level 5 (885 images), and 80.16% for level 6 (635 
images). More detailed results on the accuracy and error metrics 
of the model are presented in Supplementary Table  1.

Practical Example of Usability
To explore a practical usage of ScanGrow, a microplate containing 
the same initial E. coli inoculum with different concentrations 
of several antibiotics was subjected to an online run (named 
here the “Sample run”). The growth of the cultures was monitored 
for 46 h, and the first 24 h are shown in Supplementary Figure 2. 
Supplementary Figure  3 shows a subset of the data centered 
on the antibiotic chloramphenicol: the density values assigned 
by the DL model are shown for each timepoint for wells containing 
250, 1,000, 4,000, or 16,000 μg/L of chloramphenicol. This figure 
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also shows the fitted growth curves using the Gompertz model. 
As can be  seen, increasing chloramphenicol concentrations led 
to changes in the dynamics of growth curves, achieving longer 
lag times and lower maximum population density. Both changes 
greatly influence the area under the growth curve (AUC), which 
therefore can be  used as a single quantitative measure of the 
overall growth achieved at each well. Consequently, for each 
antibiotic, the relationship between the AUC and the concentration 
of added antibiotic was calculated (shown in Figure  4). These 
figures demonstrate that, despite the lower resolution of ScanGrow 
in comparison with that of a spectrophotometer or a plate reader, 
the produced growth curves are accurate enough to obtain 
distinct dose–response curves for all the tested antibiotics.

DISCUSSION

Principle and Novelty
Numerous published DIY spectrophotometers (mostly intended 
as instructional devices for Chemistry students) make use of 
the Beer–Lambert law to quantify analyte concentration from 
measurements of light attenuation or absorption (Hosker, 2018). 
Some of these devices contain a source light as well as an 
electronic photosensor that receives the transmitted light and 
transform it to voltage levels (Taha et  al., 2017). Other devices 
project diffracted spectral images that are then captured and 
converted into absorbance values by analyzing pixel intensities 
at different wavelengths (Feng et  al., 2021). In the field of 
microbiology, other instruments have been recently developed 
to assess the bacterial density of cultures (Jensen et  al., 2015; 
Kutschera and Lamb, 2018; Sasidharan et al., 2018; Yallapragada 
et  al., 2019; Loutfi et  al., 2020). These DIY devices, as well 
as commercial spectrophotometers and plate readers, use 
electronic photosensors (typically photodiodes) to measure light 
transmittance and therefore measure the turbidity of bacterial 
cultures throughout time.

We developed a completely novel way to obtain bacterial 
growth curves. In contrast with the aforementioned approaches 
of light detection via photodiodes or via analysis of the diffracted 
spectral images, we  based the measurement of turbidimetry 
on the direct analysis of scanned images of bacterial cultures. 
The use of a flatbed scanner was inspired by the tool ScanLag 
(Levin-Reisman et  al., 2010), used to track the size of solid 
colonies in agar plates. In our case, the adequacy of flatbed 
scanners to capture OD data is based on the geometry of 
their optical system: it is such that the light that is specularly 
reflected from the sample does not reach the photosensors, 
so the scanner can be  used as a physical instrument for 
recording the scattered light (Zheleznyak and Sidorov, 2015). 
In the flatbed scanner used during this investigation, a linear 
array of LED lights illuminates the sample while photosensors 
(of type LIDE, an improved version of contact image sensors) 
capture the image. In our setup, a black cover is placed on 
top of the microplate to facilitate the classification of well 
images according to their turbidity: the light emitted by the 
LED lights is transmitted through the sample and the black 
cover is reflected back. As shown in Figure 1, the combination 

of reflected lights and shadows creates an image pattern that 
is highly recognizable in clear samples of low bacterial density 
but fades in accordance with the increasing turbidity of 
the samples.

Another relevant novel and advantageous element in this 
investigation is the use of deep learning (DL) for the classification 
of the images into density levels (equivalent to OD620 
measurements). We  employed one of the most common DL 
methods, supervised classification, which is based on the 
definition of distinct classes by predefined representative examples 
(Sommer and Gerlich, 2013). For this class definition, we decided 
to set the number of levels to six (classes shown in Figure  1) 
to be  able to create growth curves with enough resolution 
without detriment of the accuracy of the DL model. Finally, 
we  decided the ranges of each level based on visual inspection 
of the images. In addition to the use of DL and its integration 
into the user-friendly application, we  incorporated built-in 
features to assist in the creation of user-defined DL models 
with customizable class definitions. To the best of our knowledge, 
this study not only demonstrates a novel way of obtaining 
bacterial growth curves but also offers a user-friendly application 
for that purpose, either using a predefined or customized 
DL model.

Functionality and Limitations
The idea of using microplate images to monitor bacterial growth 
curves originated from the need to read more than 20 microplates 
during overnight incubation in different atmospheric conditions. 
In these high-throughput screenings, we needed to spot alterations 
in the growth curves of a target pathogen in the possible 
presence of antimicrobial compounds. A single traditional plate 
reader was obviously insufficient for this task, and a software 
tool had to be  developed to facilitate image capture and 
processing for quick identification of anomalous growth curves. 
ScanGrow proved absolutely fit for this purpose: as shown in 
Supplementary Figure  3, ScanGrow can detect signs of 
bacteriostatic activity in growth curves, like a prolonged lag 
phase and a diminished maximum population density (Li 
et  al., 2016).

We therefore developed ScanGrow as a fit-for-purpose proof-
of-concept application designed to enable laboratorial analysis, 
and consequently, there are some compromises in the software 
design. The main practical limitation of the current proof-of-
concept version of ScanGrow is the low resolution of the 
attained growth curves, as only six differentiated density levels 
have been established. This abridgment deems the presented 
version of ScanGrow unsuitable for those uses that require 
high data accuracy. Despite this low resolution, the dose–response 
curves corresponding to the fluoroquinolones levofloxacin and 
ciprofloxacin showed considerable higher steepness than the 
curves obtained for the rest of the antibiotics (Figure  4). This 
observation agrees with the known notion of the efficacy of 
fluoroquinolones being very concentration-dependent (Drusano 
et  al., 1998), and suggests that ScanGrow can also be  used 
for general antibiotic resistance studies – for example, for the 
characterization of the evolution of antibiotic resistance of 
bacterial strains.
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Another limitation of the current version of ScanGrow is its 
lower accuracy predicting intermediate density levels (levels 3 
and especially level 4) in comparison with the rest (Figure  3; 
Supplementary Table  1). Both the resolution and the accuracy 
of the current version of ScanGrow can be  easily strengthened 
by increasing the number and quality of the scanned images. It 
should be  noted that the current version of ScanGrow has been 
configured to use scanned A4 size-images at a resolution of 300 dpi, 
since all images were acquired with an economical scanner coupled 
with contact image sensors. As can be  inferred from Figure  1, 
increasing the quality of the well images could be  attained by 
using a different flatbed scanner of higher resolution or one that 
uses an optical system of a charge-coupled device (Zheleznyak 
and Sidorov, 2015). Besides, all the acquired images presented 
an inherent lack of optical focus due to the skirts of the microplates 
elevating the bottom wells away from the scanner surface. If 
non-skirted flat-bottom microplates were readily available, their 
use would be  recommended to obtain in-focus images.

The default classification model has been trained using images 
acquired in the same laboratory settings and using the same 
experimental conditions (a standard E. coli strain grown in 
autoclaved LB broth under static aerobic incubation in standard 
flat-bottom 96-well microplates). Even the use of different autoclaves 
can cause different intensities of Maillard browning in the broth, 
possibly leading to different image patterns. Consequently, we would 
recommend to train and validate a new classification model so 
that it is adequate for each experimental setting. Similarly, the 
DL feature extraction process could also benefit from consistent 
and optimized experimental conditions during the training process. 
For example, different covers and sources of light could be  tested 
before selecting the ones that create the best image contrast, and 
those settings should be  maintained during all subsequent work. 
Furthermore, optimization of the training data quality and of the 
feature extraction process could even lead to the training of a 
regression model to predict numeric values instead of classes.

Comparison With Other Devices
ScanGrow offers a series of unique advantages in comparison 
with commercially available plate readers and with small DIY 
devices recently developed for bacterial growth monitoring. The 
first asset is its low price and high accessibility: in contrast to 
the high price of plate readers (Kutschera and Lamb, 2018; 
Yallapragada et  al., 2019), the whole ScanGrow setup only needs 
an incubator, a computer and flatbed scanner(s). In contrast, 
although the small DIY devices (Jensen et  al., 2015; Kutschera 
and Lamb, 2018; Sasidharan et al., 2018; Yallapragada et al., 2019) 
are relatively cheap and portable, all require some kind of 3d 
printing and/or assembly of electronic components.

Second, ScanGrow has been developed to be  extremely high-
throughput. With one exception (Jensen et  al., 2015), the 
aforementioned DIY devices are not high-throughput (only allowing 
1–4 samples per run), while most commercial plate readers can 
only read one microplate with a maximum of 96 or 384 samples 
per run. Although at its current development stage ScanGrow 
only interprets one microplate per scanner, several scanners can 
be  simultaneously connected to the same computer and run 
independent application sessions. Besides, improved versions of 

ScanGrow could include the possibility of reading five microplates 
per scanner, making it possible to read up to 480 samples per 
scanner, 960 samples if using two scanners, etc. Processing a 
high number of samples is of special relevance in screening tests 
like sterility sampling, or to help characterize bacterial growth 
and/or antibiotic susceptibility in extensive strain collections via 
growth curve monitoring, as previously done (Li et  al., 2016).

Finally, a relevant advantage unique to ScanGrow is its versatility. 
ScanGrow can function in special atmospheric conditions, like 
temperatures below room temperature, or introduced in anaerobic 
chambers and controlled by a Raspberry Pi (configuration instructions 
are detailed in the user manual). All the small portable DIY devices 
share this same advantage when compared to commercial plate 
readers, which need expensive added features to work under special 
incubation conditions. Additionally, and as a unique characteristic 
to ScanGrow, deep-well plates or additional attachments to the 
microplates could be  used and configured, while they would not 
fit on traditional instruments or 3d-printed devices. More importantly, 
the option of training and integrating custom DL classification 
models into ScanGrow opens the possibility of obtaining growth 
curves at different experimental conditions, like using diverse types 
of containers. Furthermore, other DL models could be  developed 
for completely different applications, such as agar dilution tests 
(by categorizing the size of bacterial colonies) or colorimetric assays 
(by categorizing color intensity or tone).

Future Development
This study presents the proof-of-concept version of ScanGrow, 
but several areas of improvement have been identified and 
added to the ScanGrow roadmap. Some of the most crucial 
upgrades have already been explained: the enhancement of 
the resolution and accuracy of the default DL model and the 
increase of the throughput by integrating the analysis of several 
microplates acquired with the same scanner. In addition, some 
software modifications have also been planned, namely the 
integration of the DL construction into the application,  
the improvement of the data importation and exportation, the 
integration of the data with a database (rather than a flat file), 
the automatic detection of the position of the microplates, the 
incorporation of the automatic modeling of growth curves, 
and the possibility of automatic calculation of dose–response 
curves after additional data input from the user.

CONCLUSION

In this work, we  describe a new way of monitoring bacterial 
growth via the machine learning classification of scanned images 
of liquid cultures in microplates. We  tested the accuracy of 
this tool, ScanGrow, and demonstrated one of its applicability 
options by analyzing the effect of several concentrations of 
different antibiotics on bacterial growth curves.

We offer the ScanGrow application as a low-cost, user-
friendly, and versatile alternative to plate readers for tests that 
do not require a high level of sensitivity. We consider ScanGrow 
low-cost as the user only has to install our open-source 
application in a computer with access to a flatbed scanner. 
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Its user-friendly interface facilitates the whole process of automatic 
image acquisition, data processing, results visualization and 
exportation, and creation and evaluation of new image 
classification models. Since ScanGrow is highly customizable 
and does not require bulky instrumentation, it can be  adapted 
to atypical cultivation conditions and to perform other laboratory 
assays that can benefit from automated image-based classification.

Finally, we especially advocate the use of ScanGrow or other 
innovative alternatives to plate readers in research laboratories 
in low-resource settings.
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