AUTHOR=Yoon So-Ra , Ha Sanghyun , Park Boyeon , Yang Ji-Su , Dang Yun-Mi , Ha Ji-Hyoung TITLE=Effect of Ultraviolet-C Light-Emitting Diode Treatment on Disinfection of Norovirus in Processing Water for Reuse of Brine Water JOURNAL=Frontiers in Microbiology VOLUME=13 YEAR=2022 URL=https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2022.885413 DOI=10.3389/fmicb.2022.885413 ISSN=1664-302X ABSTRACT=
Processes in the food industry that use large amounts of water have been an important cause of waterborne disease outbreaks, as they expose individuals to risks for waterborne disease transmission. Developing technologies to ensure the hygiene and safety of food-processing steps is an urgent concern from an economic perspective. Furthermore, economic benefits can be derived if the processed water can be reused under microbiologically safe conditions. Among the major manufacturing processes in the kimchi industry, the brining process for salted kimchi cabbages requires a considerable amount of brine (approximately 2,000–2,500 l/1,000 kg of raw cabbage). The aim of this study was to establish virucidal conditions with ultraviolet-C light-emitting diodes (UVC LEDs) that can ensure the microbiological safety of brine water samples with various turbidities for reuse after disinfection. For quantitative analysis, first of all, magnetic bead separation (MBS) technique was used to capture and recover the human norovirus (HuNoV) virus particles; propidium monoazide (PMA) combined with RT-qPCR (PMA-RT-qPCR) was subsequently used to selectively detect infectious norovirus. Overall, as the turbidity of the brine water samples increased, the reduction in the HuNoV genogroup II genotype 4 (HuNoV GII.4) levels by UVC LED disinfection decreased. The derived inactivation rate constant (