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Rapid and accurate identification of foodborne pathogenic bacteria is of

great importance because they are often responsible for the majority of

serious foodborne illnesses. The confocal Raman microspectroscopy (CRM)

is a fast and easy-to-use method known for its effectiveness in detecting

and identifying microorganisms. This study demonstrates that CRM combined

with chemometrics can serve as a rapid, reliable, and efficient method for

the detection and identification of foodborne pathogenic bacteria without

any laborious pre-treatments. Six important foodborne pathogenic bacteria

including S. flexneri, L. monocytogenes, V. cholerae, S. aureus, S. typhimurium,

and C. botulinum were investigated with CRM. These pathogenic bacteria

can be differentiated based on several characteristic peaks and peak intensity

ratio. Principal component analysis (PCA) was used for investigating the

difference of various samples and reducing the dimensionality of the dataset.

Performances of some classical classifiers were compared for bacterial

detection and identification including decision tree (DT), artificial neural

network (ANN), and Fisher’s discriminant analysis (FDA). Correct recognition

ratio (CRR), area under the receiver operating characteristic curve (ROC),

cumulative gains, and lift charts were used to evaluate the performance

of models. The impact of different pretreatment methods on the models

was explored, and pretreatment methods include Savitzky–Golay algorithm

smoothing (SG), standard normal variate (SNV), multivariate scatter correction

(MSC), and Savitzky–Golay algorithm 1st Derivative (SG 1st Der). In the DT,

ANN, and FDA model, FDA is more robust for overfitting problem and offers
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the highest accuracy. Most pretreatment methods raised the performance

of the models except SNV. The results revealed that CRM coupled with

chemometrics offers a powerful tool for the discrimination of foodborne

pathogenic bacteria.

KEYWORDS

foodborne pathogenic bacteria, confocal Raman microspectroscopy (CRM),
pretreatment, chemometrics, classification

Introduction

The World Health Organization (WHO) survey results
indicated that foodborne diseases are increasingly reported
as serious public health problems around the world (Wu
et al., 2013). Billions of people in the world are at risks of
unsafe food (Fung et al., 2018). Millions of people are infected
with foodborne diseases every year. It leads to high rates of
morbidity and mortality. Meantime, since most of foodborne
pathogenic bacteria can survive and even multiply in the harsh
environmental conditions, it also presents huge challenges to
the production, processing, and storage of food products for
the food industry (Giaouris et al., 2015). Foodborne diseases
not only are a serious threat to the health of the people, but
also cause inestimable loss of property to consumers and food-
related industries. It also poses dramatic negative impact to
economic growth, political, and social stability of the country
(Chen and Alali, 2018; Zhou et al., 2019; Mi et al., 2021).
Thus, it also poses greater importance to solve this problem in
view of the seriousness and harmfulness of foodborne diseases
(Mi et al., 2021).

The most commonly well-known bacterial pathogens
in connection with foodborne diseases worldwide include
Shigella, Listeria monocytogenes, Vibrio cholerae, Staphylococcus
aureus, Salmonella, and Clostridium botulinum (C. botulinum)
(Chen and Alali, 2018). The constant threats from these
bacterial pathogens make rapid and cost-effective detection and
discrimination of foodborne pathogenic bacteria a crucial issue
for environmental monitoring, food safety, and early diagnosis
of diseases (Kant et al., 2018; Yin et al., 2020). Traditional
culture-based methods are the common and mature techniques
for the detection of bacterial pathogens, and simple operation
and low cost are the main reason to make these methods
popular, whereas it is a slow process and not to achieve the
aim for rapid detection in today’s food industry (Wu et al.,
2013). Methods based on immunology include enzyme-linked
immunosorbent assay (ELISA) (Vaz-Velho et al., 2000; Ferreira
et al., 2001; Hochel et al., 2004), immunomagnetic separation
technique (Wang and Slavik, 1999; Taban et al., 2009), and
immunofluorescence labeling technique (Yan et al., 2008).
ELISA is more common among them, and the advantages of
ELISA are fast separation speed, high sensitivity, and specificity

for bacterial types and strains, whereas rapid detection using
ELISA in the field is impractical due to the requirement of
multiple steps, various chemical reagents, and time-consuming
incubation (Wu et al., 2013). Molecular biology methods
have been extensively adopted for microbial detection and
identification in the past few decades (Mi et al., 2021), such
as pulsed-field gel electrophoresis (PFGE) (Umeda et al., 2009;
Skarin et al., 2010; Anza et al., 2014), amplified fragment
length polymorphism (AFLP) (Keto-Timonen et al., 2005),
DNA microarray (Artin et al., 2010; Raphael et al., 2010;
Vanhomwegen et al., 2013; Ng and Lin, 2014), multilocus
sequence typing (MLST) (Macdonald et al., 2011; Olsen et al.,
2014), and polymerase chain reaction (PCR) (Szabo et al., 1994;
Braconnier et al., 2001; Lindström et al., 2001; Dahlsten et al.,
2008; De Medici et al., 2009). These methods can be carried out
without time-consuming incubation compared to culture-based
methods, but there are some inevitable restrictions limiting
their applications. For example, PCR is based on nucleic acid
amplification and consequently cannot discriminate nucleic acid
amplified from viable and non-viable bacteria (Wu et al., 2013).
In summary, many existing detection techniques have great
limitations (Mi et al., 2021), and it is necessary to find a rapid
and efficient method for rapid multispecies tests (Maquelin et al.,
2002; Ho et al., 2019).

Raman spectroscopy has already been recognized as
a powerful analytical technique for rapid characterization
and detection of bacteria without external labels or tedious
preparation. The Raman spectrum deriving from molecular
vibrations can be considered as a typical whole-organism
fingerprint of the biochemical composition of microorganisms.
This vibrational spectrum could show the differences of the
molecular compositions in various bacterial pathogens at the
molecular level (Maquelin et al., 2002; Lin et al., 2019). Thus,
Raman spectra can be used to infer strain-specific physiological,
metabolic, and phenotypic states of bacterial cells (Chisanga
et al., 2020).

Confocal Raman microscopy (CRM) is a powerful optical
spectroscopy technique. It combines Raman spectroscopy
with a confocal microscope. It is with advantages such as
its fingerprint-identification capability and great sensitivity
in aqueous medium (Andrei et al., 2020). It gives the
opportunity to identify single bacterial cell in high spectral
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resolution, combining the power of 3D sample analysis with
focused biological component. A laser beam of approximately
1 mm with known wavelength is used to analyze a sample.
The scattered radiation and energy shift are measured, and
differentiation of species and even strain level is achieved by
the acquired chemical characteristic information of the sample
(Serrano et al., 2015; Kriem et al., 2020). In biomedicine,
CRM has been applied in the discrimination, classification,
and diagnosis of pathological conditions, such as various
malignancies and tumors. However, few reports have addressed
the use of this technique in the detection and discrimination of
foodborne pathogenic bacteria.

Since the main biological components are similar in
different foodborne pathogenic bacteria, such as nucleic acids,
proteins, lipids, and carbohydrates, it always leads to high
similarity of Raman spectrum. Thus, it is important to apply
chemometrics to spectral data for distinguishing different
bacteria species. Statistical approaches include unsupervised
techniques and supervised techniques. In the unsupervised
techniques, unlabeled datasets are analyzed and clustered
without the need for human intervention. Principle component
analysis (PCA) is one of the common unsupervised technique
for spectral analysis (Kriem et al., 2020). In the supervised
techniques, the aim is to classify data or predict outcomes
accurately in labeled datasets. Some classical supervised
classifiers include decision tree (DT), artificial neural network
(ANN), and Fisher’s discriminant analysis (FDA).

In this study, we aim to evaluate and examine the potential
of the CRM and chemometrics methods for the detection and
classification of six foodborne pathogenic bacteria. We also
explored the impact of different pretreatment methods on the
models including Savitzky–Golay algorithm smoothing (SG),
standard normal variate (SNV), multivariate scatter correction
(MSC), and Savitzky–Golay algorithm 1st Derivative (SG 1st
Der). PCA was used for investigating the difference of various
samples and reducing the dimensionality of the dataset and
extracting feature. Performances of classical classifiers were
compared for bacterial detection and identification including
DT, ANN, and FDA model. Correct recognition ratio (CRR),
area under the receiver operating characteristic curve (ROC),
cumulative gains, and lift charts were employed to evaluate
the performance of models. According to our results, CRM
combined with chemometrics offered a powerful tool for the
discrimination of foodborne pathogenic bacteria. As far as we
know, this is the first study for the identification of six foodborne
pathogenic bacteria using CRM coupled with DT, ANN, and
FDA classifiers along with four single pretreatment methods.

Materials and methods

Preparation of bacterial samples

The following bacteria were used in the study; they
are Salmonella typhimurium (S. typhimurium) (LT2, Sa

11030), Shigella flexneri (S. flexneri), Listeria monocytogenes
(L. monocytogenes) (Lin), Vibrio cholerae (V. cholerae) (Non-
toxigenic strain, 93097), Staphylococcus aureus (S. aureus)
(ATCC 25923), and C. botulinum. The strains were provided by
the State Key Laboratory for Infectious Disease Prevention and
Control, National Institute for Communicable Diseases Control
and Prevention, and Chinese Center for Disease Control and
Prevention (ICDC; Beijing, China).

C. botulinum strains were stored in TPGY broth mixed with
glycerol at –70◦C; other strains were housed in Luria-Bertani
broth mixed with glycerol at –70◦C. To multiply bacterial cells,
C. botulinum strains were grown in TPGY broth for 24 h at 37◦C
anaerobically; other strains were grown in Luria-Bertani broth
for 24 h at 37◦C. The culture media were purchased from Beijing
Land Bridge Technology Co., Ltd. (Beijing, China). All spectra
were collected during the stationary phase to avoid the influence
of different growth periods of bacteria. In this study, their initial
and final OD600 values are approximately equal based on the
results of ultraviolet spectrophotometer (Varian, USA).

Bacteria sample pretreatment

Each culture was vortexed quickly and centrifuged for 8 min
at 4,000 rpm at 4◦C using Centrifuge 5418 R (Eppendorf,
Germany). The supernatant was discarded after centrifugation.
Subsequently, 5 mL of 0.9% NaCl solution was added and
stirred. This procedure was repeated one time. The sediment
was suspended in 1 mL of 0.9% NaCl solution and transferred
to a new microcentrifuge tube (1.5 mL). The suspension was
centrifuged for 3 min at 13,500 rpm at room temperature using
microcentrifuge (Pic017; Heraeus, Germany). This procedure
was repeated two times. Finally, the sediment was resuspended
in 200 µL of 0.9% NaCl solution. To record the spectra, about 5
µL of solution was dropped onto the aluminum foil and dried
at room temperature for 5 min for Raman spectra measuring
(Zhang et al., 2021).

Spectra collection

All Raman experiments were performed using confocal
and high performance Raman microscope (XploRA PLUS,
HORIBA, Japan). Bacteria samples were detected with a 532-
nm laser under a 600 g/mm grating, the laser power is 1 mW,
a spectral resolution of 0.6 cm−1, and 50X objective lens. The
integration time was 10 s. Each bacteria sample was collected
six times. Each bacterial spectrum was collected and consisted
of 603 points in the range of 600–1,800 cm−1. All the spectra
were processed via Origin software (OriginLab, USA). The
background was removed using baseline correction (method:
second derivative, baseline mode: user defined, number of
baseline points: 16). LabSpec 6.3 (HORIBA, Japan) was utilized
to optimize acquisition parameters and collect sufficient Raman
spectra for statistical analysis. A single bacteria cell was mapped
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since the advantage of confocal Raman. Eighty samples of each
type of bacteria were cultured, Raman spectra were collected,
respectively, and a total of 480 Raman spectra were collected.

By increasing the integration time and the number of
scans, the spectra jumper by external interference can be
eliminated, and the signal strength of the Raman spectrum
can be promoted. However, this method takes longer to
collect spectra. Therefore, it is necessary to choose an
appropriate integration time and number of scans. Clostridium
botulinum was chosen as the test object. Based on the
same experimental conditions, the integration time was set
to 5, 10, and 15 s, respectively, and the Raman spectra of
Clostridium botulinum under different integration times were
compared. Based on the same experimental conditions, the
number of scans was set to 3, 6, and 9, respectively, and the
Raman spectra of Clostridium botulinum under different scan
times were compared.

In each bacterium, a sample was randomly
selected and tested 10 times in parallel to examine the
repeatability of the method.

Data pretreatment and multivariate
analysis

The dataset was preprocessed by four single pretreatment
methods, respectively, to explore the impact of various
methods on the model. The pretreatment methods included
Savitzky–Golay algorithm smoothing (SG), SNV, MSC, and
SG 1st Der. Among them, SG can remove the noise of
the spectral. SNV and MSC can reduce the influence of
scattering on the original spectrum. SG 1st Der can eliminate
the interference of the baseline and background. All the
preprocessing procedures were carried out in the Unscrambler
X 10.4 (CAMO, Norway).

Principal component analysis (PCA) is an unsupervised
and multivariate technique that projects a set of correlated
features onto a set of uncorrelated features using an orthogonal
transformation. It preserves the most of information. In this
study, PCA was used for two purposes. The first one is to
plot the distribution of data based on the PCA scores to
investigate the difference of various samples. The second one is
to reduce the dimensionality of the dataset and extract feature.
Computational costs of classifiers were reduced, and overfitting
was prevented.

Decision tree (DT) gives the various outcomes from a series
of decisions based on a flowchart-like diagram. It is a strong tool
for planning strategy, research analysis, and making decision.
One of primary advantage is easy to follow and understand.
There are four popular algorithms in DT model; they are
CHAID, exhaustive CHAID, CART, and QUEST algorithm. All
of them were applied to build DT models.

ANN is inspired based on modern neuroscience research.
The large amount of processing unit is utilized to build a
complex model. Human brain neural network structure and
function are imitated in the ANN model. ANN is widely applied
for spectral analysis and identification (Park and Lek, 2016).
There are two popular algorithms in ANN model; they are
multilayer perceptron (MLP) and radial basis function (RBF).
All of them were applied to build models.

FDA is a supervised technique using a discriminant function
to assign data to different groups. FDA is often used to build a
model combined with PCA. The PCs from PCA are used in FDA
to define and predict classes.

The hold-out method is used as a method of cross-validation
in DT, ANN model. In the hold-out method, the dataset is
divided into two parts, 70% of the samples are allocated to the
training set, and there are 320 samples in the training set. About
30% of the samples are assigned to the testing set, and there
are 160 samples in the testing set. They were used to test the
predictions of the models (Liu et al., 2018). Leave-one-out cross-
validation (LOOCV) technique is used for the cross-validation
of FDA model, and it can examine the quality of the classifier and
avoid overfitting. In the LOOCV, one spectrum in the dataset
is allocated to the validation data and the remaining spectra
are allocated to the training data. This process is repeated until
each spectrum is used once as the validation data (Tie et al.,
2020). Therefore, there are 479 samples in the training set,
and there is a sample in the testing set. The tests of equality
of group means are used for evaluating the potential of every
independent variable before constructing the model. CRR, area
under the ROC, cumulative gains, and lift charts were used
for comparing the performance of classifiers under different
pretreatment methods. All statistic procedures were operated in
the IBM SPSS Statistics 25 and the Unscrambler X 10.4 software.

Results and discussion

The number of scans is closely related to SNR (signal to
noise ratio) level of the data, and the scan time is closely
associated with Raman intensity of peaks. To acquire the
optimal number and time of scans, 3, 6, and 9 scans were tested.
About 5, 10, and 15 s for scan time were also tested.

Figure 1 is the spectrum based on the different integration
times and number of scan. As shown in Figure 1A, the signal
intensity of the spectra with an integration time of 10 s is
significantly higher than that of 5 s. The peak intensity varied
little as the integration time increased. Therefore, 10-s scan time
of the sample was considered optimal. As shown in Figure 1B,
the peak position and intensity varied little as the number of
scan increased. Considering external interfering elements, six
scans of the sample were considered optimal.

Figure 2 is the repeat experiment in the six kinds of bacteria.
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FIGURE 1

Spectrum based on the different integration times (A) and number of scan (B).

FIGURE 2

Repetitive experimental trial.

The sample was tested in parallel for 10 times. It can be seen
that the spectrum was very similar. The RSD is less than 5%. The
result indicated that the repeatability of the experiment is good.

Visual analysis of spectra

In this study, the CRM technique was used for the detection
and identification of six in total foodborne pathogenic bacteria

species, namely S. typhimurium, S. flexneri, L. monocytogenes, V.
cholerae, S. aureus, and C. botulinum.

The mean normalized CRM spectra of six bacterial species
are shown in Figure 3. Major spectral bands and peaks
assignment are shown in Table 1. Some spectral bands are
common in all species, and every spectrum showed bands
at ca. 746, 1,140, and 1,245 cm−1 assignable to cytosine
and uracil, = C-O-C = (unsaturated fatty acids in lipids),
amide III (random), and thymine, respectively. There are also
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FIGURE 3

Mean normalized spectra of six bacterial species.

TABLE 1 Raman spectral peak assignment observed in the spectra of six bacterial strains.

Range (cm−1) Assignment (Franco et al., 2017;
Witkowska et al., 2017, 2018;
Lemma et al., 2019; Uysal et al.,
2020)

Range (cm−1) Assignment (Franco et al., 2017;
Witkowska et al., 2017, 2018;
Lemma et al., 2019; Uysal et al.,
2020)

720–740 Adenine 1,213–1,295 Amide III (random), thymine

745–790 Cytosine, uracil 1,320–1,330 Amide III (α-helix)

995–1,010 Phenylalanine, C aromatic ring stretching 1,340–1,365 Amide III (protein)

1,025–1,040 Phenylalanine 1,455–1,465 δ(CH2) wagging

1,120–1,145 = C-O-C= (Unsaturated fatty acids in lipids),
galactomannan

1,580–1,590 Guanine ring stretching

1,150–1,195 Aromatic amino acids 1,655–1,670 Amide I (α-helix)

TABLE 2 Intensity and intensity ratio of some peaks between C. botulinum and S. flexneri.

Type Peak intensity (Arbitr. Units) Peak intensity ratio

1,322 cm−1 1,350 cm−1 1,463 cm−1 1,587 cm−1 1,322/1,350 1,463/1,587

C. Botulinum 0.29 0.22 0.33 0.28 1.32 1.18

S. flexneri 0.07 0.20 0.52 0.23 0.35 2.26

many differences in the spectral images. For example, only
L. monocytogenes showed a band at ∼1,094 and 1,574 cm−1

assignable to CC skeletal and COC stretch (Zheng et al., 2020)
from glycosidic link, CN stretching of amide II (Fan et al., 2011),
respectively; only S. aureus showed a band at ∼1,302 cm−1

assignable to amide III (Jarvis et al., 2004). A band was located
at 1,658 cm−1 in all species except V. cholerae. There are few

differences among C. botulinum and S. flexneri. However, it is
possible to differentiate them by using the ratio of the peak
intensities. A total of 1,322/1,350 and 1,463/1,587 were used for
differences between C. botulinum and S. flexneri. A significant
difference of peak intensity ratios was shown as depicted in
Table 2. Therefore, the different species can be characterized
based on the abundant and unique spectral information of CRM.
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TABLE 3 Summary of data dimension reduction by PCA under
different pretreatment methods.

Pretreatment
method

The number
of PCs

Cumulative contribution
rate (%)

Original data 7 99.97

SG 11 99.99

SNV 4 90.78

MSC 11 99.98

SG 1st Der 6 87.05

As shown in Figure 3, mean normalized spectra of different
bacterial species have a high level of similarity; although they
can be differentiated based on several peaks and peak intensity
ratio, visual detection of these minor differences is quite time-
consuming and may lead to misdiagnosis (Lin et al., 2019). Thus,
it is essential to analyze the data combined with multivariate
analysis techniques for revealing minor spectral differences. In
this study, PCA, DT, ANN, and FDA were used for further study.

Unsupervised analysis

In this study, the PCA method was used to construct
classification models of bacterial species based on the four kinds
of pretreatment methods, and it has reduced the dimensionality
of the dataset and extracted feature.

Table 3 shows the results of PCA under different
pretreatment methods. It can be seen that the number of PCs
and corresponding cumulative contribution rate has changed

along with difference of pretreatment methods. Figures 4A–E
represents PCA score plots under various preprocess methods.
These results represented the influence of preprocessed spectra
on PCA models and the possibility of differentiation for bacterial
species with a high accuracy. Figure 4A shows that all bacterial
species can be differentiated. In Figures 4B,D, the samples
of S. aureus and S. typhimurium became more scattered, the
categories were closer to each other, and it was difficult to
distinguish different categories. In Figure 4C, although the
spatial distance of each group became larger, the problem of
overlap was more serious. In Figure 4E, the plot had placed
samples of the same types closer by SG 1st Der, and overlapping
samples were reduced between C. botulinum and S. flexneri
compared to Figure 4C.

Figure 4F represents the most important variables for
classification in the original data. The major positive loadings
were located at ca. 1,322, 1,353, 1,465, and 1,590 cm−1. The
largest loadings in the positive direction were located at ca.
1,353 cm−1 (Amide III (protein)) and ca. 1,590 cm−1 (Guanine
ring stretching). The major negative loadings were located at ca.
755, 1,001, 1,123, 1,221, and 1,302 cm−1. The largest loadings in
the negative direction were located at ca. 755 cm−1 (Cytosine or
uracil) and ca. 1,302 cm−1 (Amide III).

As mentioned above, we can conclude that preliminary
classification can be achieved by PCA model combined
with the preprocess methods. It is worth noting that PCA
is an unsupervised technique, not meant for classification
purpose. DT, ANN, and FDA, these supervised and multivariate
techniques, were used for the construction of classifiers. They
have more advantages than PCA because the information
among the classes is taken into account (Wichmann et al., 2020).

FIGURE 4

PCA results obtained for six bacterial species. (A–E) Represent PCA score plots of various preprocess methods, that is, (A) original data, (B) SG,
(C) SNV, (D) MSC, and (E) SG 1st Der. (F) A PC-1 loading plot based on the original data.
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TABLE 4 Summary of DT modeling results for bacteria species identification expressed in CRR.

Method CRR of training set (%) CRR of testing set (%)

CHAID Exhaustive CHAID CART QUEST CHAID Exhaustive CHAID CART QUEST

Original data 91.9 91.9 90.2 75.7 87.4 87.0 86.7 78.1

SG 91.1 93.2 91.5 84.7 85.8 87.1 89.4 80.3

SNV 88.7 87.4 84.6 83.6 82.2 86.1 84.4 78.7

MSC 90.7 92.5 92.0 85.7 83.7 88.1 89.8 82.6

SG 1st Der 92.2 91.1 100.0 92.3 93.2 91.2 98.1 (157/160) 92.9

To evaluate the potential of every independent variable
before constructing the classification model, the tests of equality
of group means are used for this study. Supplementary
Tables 1–5 give the summary of the tests of equality of
group means with spectra preprocessed by various pretreatment
methods. In each test, the grouping variable was treated as
the factor, and the results of a one-way ANOVA are given for
the independent variable. Smaller Wilk’s lambda values suggest
that the variable is better at discrimination of groups. If the
significance value (Sig) of the independent variable is less than
0.05, it indicates that the variable is significant for the creation
of the models. As shown in Supplementary Tables 1–5, Wilk’s
lambda value of major PCs is smaller, and every Sig value is far
less than 0.5. It indicates that every variable is significant for the
construction of the models and there is not any evident anomaly
(Chiang et al., 2001).

Supervised analysis

Decision tree model
As depicted in Table 4, comparing with the decision tree

based on MSC and SNV, the decision tree based on SG and SG

FIGURE 5

ROC curve of the DT model using the SG 1st Der.

1st Der had a stronger prediction capacity because of its higher
accuracy. SG and SG 1st Der raised accuracy and the ability to
extend of DT model compared to original data, and MSC raised
accuracy of models in part of algorithms, while SNV resulted in
a less model accuracy.

The individual performance for the DT method varied
according to the species. While some species such as species
S. flexneri, L. monocytogenes, V. cholerae, and C. botulinum
yielded good prediction performances, some others such as the
class S. aureus and the S. typhimurium fell short from the overall
average. The optimal DT model on CRM data was obtained
by using CART algorithm (the spectra were preprocessed with
SG 1st Der) showing a CRR for training set of 100.0%. On the
contrary, the testing set given a CRR of cross-validation of 98.1%
(157/160) was correctly classified, one sample from the class S.
aureus was wrongly allocated to the group L. monocytogenes,
and two samples from the class S. typhimurium were wrongly
allocated to the group S. flexneri and V. cholerae.

To evaluate the performance of the optimal DT model
further, the true positive rate (sensitivity) and true negative
rate (specificity) were calculated, and the relationship between
sensitivity and specificity was represented by ROC curve
graphically for all possible thresholds. The area under the ROC
curve (AUC) is widely recognized as the important index of the
performance of a model (IBM USA, 2021b). Chance diagonal is
a line from (0,0) to (1,1). The area under the chance diagonal
is 0.5. The model is effective when AUC is greater than 0.5. As
shown in Figure 5, all the AUC values of six bacteria species in
the DT model are greater than 0.95. Generally, the AUC value

TABLE 5 Summary of ANN modeling results for bacteria species
identification expressed in CRR.

Method CRR of training set (%) CRR of testing set (%)

MLP RBF MLP RBF

Original data 97.6 87.5 95.6 87.7

SG 99.2 82.7 95.7 75.9

SNV 91.6 91.8 92.1 85.0

MSC 100.0 82.4 99.4 (159/160) 76.0

SG 1st Der 97.2 88.3 94.6 82.2
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FIGURE 6

ROC curve (A), cumulative gains (B), and lift charts (C) of the optimal ANN model in this study.

for ROC curve is 1 maximum that indicates that the model
is the best classifier and the values closer to 0 indicate poor
performance. Thus, the performance of the optimal DT model
is excellent (Obuchowski and Bullen, 2018).

Artificial neural network model
As shown in Table 5, red-lettered values represent MLP,

and blue-lettered values represent RBF. Red-lettered values are
higher than the corresponding blue-lettered values; it shows
that a model with MLP algorithm has a better performance

TABLE 6 Summary of FDA modeling results for bacteria species
identification expressed in CRR.

Method CRR (%)

Training set Testing set

Original data 93.2 92.8

SG 94.0 92.8

SNV 89.3 88.9

MSC 93.8 92.8

SG 1st Der 100.0 100.0

compared to RBF algorithm, and the ability to find complex
relationships is more important in this study. SG and MSC
raised accuracy and the ability to extend of MLP model
compared to original data. SG 1st Der resulted in the minor
reduction in model accuracy, while SNV resulted in a less model
accuracy.

The individual performance in the ANN model varied
according to the species, and some species such as the class
S. flexneri fell short from the overall average. The optimal
ANN model was obtained by using MLP algorithm (the spectra
were preprocessed with MSC) showing a CRR for training
set of 100.0%. Meanwhile, the testing set provided a CRR of
cross-validation of 99.4% (159/160) correctly classified, and
one sample from the class S. flexneri was wrongly allocated
to the group C. botulinum. The reason for this can again be
attributed to the similarities between the species. However, our
collective results do highlight that the DT and ANN models
are efficient enough to predict the species identity at the genus
level. This is significant since accurate identification of the
genus of the foodborne pathogenic bacteria may be sufficient in
several applications. For example, in many regulatory practices
of food safety, the goal is often to screen a larger sample volume
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TABLE 7 Summary of Fisher’s discriminant functions.

Function Variance contribution% Cumulative contribution% Correlation Function test Wilks’ Lambda Sig

1 73.6 73.6 0.966 1–6 0.005 0.000

2 16.7 90.3 0.872 2–6 0.075 0.000

3 8.5 98.8 0.785 3–6 0.313 0.000

4 0.9 99.7 0.380 4–6 0.815 0.000

5 0.3 100.0 0.218 5–6 0.952 0.000

6 0.0 100.0 0.019 6 1.000 0.672

First five canonical discriminant functions were used in the analysis. F1 = 1.126PC1 + 0.708PC2 + 0.067PC3-0.092PC4 + 0.050PC5-0.125PC6. F2 = 0.135PC1-
0.797PC2 + 0.293PC3 + 0.987PC4-0.240PC5-0.188PC6. F3 = -0.093PC1 + 0.605PC2 + 0.789PC3 + 0.520PC4 + 0.256PC5-0.195PC6. F4 = 0PC1 -0.236PC2 + 0.600PC3-
0.343PC4+ 0.283PC5-0.240PC6. F5 = -0.022PC1-0.236PC2+ 0.600PC3-0.343PC4+ 0.283PC5-0.240PC6.

FIGURE 7

(A) All-Groups 3D scatter plot and (B) the ROC curve of the FDA model using the SG 1st Der.

than have detailed characterizations of a very small sample set.
In such applications, where fast, efficient, and inter-mediate
screening is necessary, perhaps an initial genus-level accuracy
is a welcome relief, in which the DT and ANN models are quite
capable of providing (Bisgin et al., 2018).

Figure 6A is the ROC curve of the ANN model by using
the MSC, and all the AUC values of six bacteria species in
the ANN model are greater than 0.98. Thus, the performance
of the optimal ANN model is superior. Moreover, there are
also other powerful methods to assess the performance of the
model such as cumulative gains and lift charts. Figure 6B
shows the cumulative gain evaluation curve of the optimal ANN
model in this study. A lift chart is shown in Figure 6C. The
baseline represents the results of random guessing. The lift chart
originates directly from the cumulative gain evaluation curve.
The X-axis of the lift chart is identical with the cumulative
gain evaluation curve, while Y-axis is equal to the ratio of the
cumulative gains of independent curve and the baseline. In
other word, it presents how many times the model is better
than the random choice of samples (IBM USA, 2021a; Nargis
et al., 2021). In Figure 6B, every curve rapidly reaches a very

high cumulative gain value (100%) and then keeps in level
(Tibco USA, 2021). In Figure 6C, each curve is smooth and
drops rapidly to 1. The top 10% would contain approximately
70% of the target samples in the ANN model, but it is only
10% without using the model (see Figure 6B). The target
samples increase six times with the model (see Figure 6C). As
mentioned above, the performance of the optimal ANN model
is excellent.

Fisher’s discriminant analysis model
The LOOCV technique was used as the cross-validation

method to develop FDA model. As shown in the Table 6,
the total model accuracy of training set was 93.2% (Original
data), 94.0% (SG), 89.3% (SNV), 93.8% (MSC), and 100.0%
(SG 1st Der), respectively. The testing set was 92.8% (Original
data), 92.8% (SG), 88.9% (SNV), 92.8% (MSC), and 100.0%
(SG 1st Der), respectively. The accuracy of training set is
similar with the corresponding testing set. It shows that
FDA model is fairly robust against overfitting problem. All
pretreatment methods contributed in the increase of model
accuracy except SNV. The optimal FDA model was obtained
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by using SG 1st Der algorithm; it resulted in a CRR of
training set of 100.0% and a CRR of cross-validation of
100.0%. The individual performance in the FDA model did
not vary according to the species, and the different individual
species yielded good prediction performances in the FDA
model.

Table 7 presents the summary of Fisher’s discriminant
functions in the optimal FDA model. In FDA model, Wilk’s
lambda values are used to test whether each discriminant
function is statistically significant. The range of values is from
0 to 1. 0 represents total discrimination, and 1 represents no
discrimination, since Wilk’s lambda values of top five functions
are greater than 1, and the corresponding Sig is less than 0.05.
These five functions are significant in the model. However,
Wilk’s lambda value of Function 6 is 1, the corresponding Sig is
0.672 being far greater than 0.05, and variance contribution is 0.
Thus, the Function 6 should be discarded. Variance contribution
of top three functions is 73.6, 16.7, and 8.5%, respectively. All
of these contribute 98.8% of all the variations. All-Groups 3D
scatter plot was shown using F1, F2, and F3. As depicted in
Figure 7A, six kinds of bacteria species are clearly distinguished
between each other with a CRR of 100.0%. Figure 7B represents
that all the AUC values of six bacteria species in the DT model
are greater than 0.95. In conclusion, our findings demonstrated
that CRM and FDA model could be used for the identification
of various bacteria species efficiently.

Conclusion

The present study evaluates and reveals the potential of
the CRM and chemometrics methods for the detection and
classification of foodborne pathogenic bacteria. Our findings
showed that different bacteria species can be distinguished
based on characteristic peaks and peak intensity ratio, but it
is time-consuming and not applicable for a large amount of
samples. Then, we explored the impact of different pretreatment
methods on the models. Most pretreatment methods raised the
performance of the models except SNV. Performances of some
classical classifiers were compared for bacterial detection and
identification. CRR, ROC, cumulative gains, and lift charts were
used to evaluate the performance of models. In these studies,
preliminary classification can be achieved by PCA model. In
the DT and ANN model, there is a difference between the
CRR of training set and corresponding testing set. In the
FDA model, the CRR of training set is more similar with the
corresponding testing set. Therefore, the FDA model is more
robust for overfitting problem and offers the highest CRR. In
conclusion, CRM and chemometrics offer a powerful tool for
the discrimination of foodborne pathogenic bacteria; thus, an
application of the technology in the food sector would lead
to a huge benefit.
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