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Sugar Shock: Probing Streptococcus
pyogenes Metabolism Through
Bioluminescence Imaging

Richard W. Davis IVt#, Charlotte G. Muset*, Heather Eggleston?, Micaila Hill and
Peter Panizzit*

Department of Drug Discovery and Development, Auburn University, Auburn, AL, United States

Streptococcus pyogenes (S. pyogenes) can thrive in its host during an infection, and, as
aresult, it must be able to respond to external stimuli and available carbon sources. The
preclinical use of engineered pathogens capable of constitutive light production may
provide real-time information on microbial-specific metabolic processes. In this study,
we mapped the central metabolism of a luxABCDE-modified S. pyogenes Xen20 (Strep.
Xen20) to its de novo synthesis of luciferase substrates as assessed by the rate of
light production in response to different environmental triggers. Previous characterization
predicted that the Jux operon was under the myo-inositol jolE promotor. In this study,
we revealed that supplementation with myo-inositol generated increased Strep. Xen20
luminescence. Surprisingly, when supplemented with infection-relevant carbon sources,
such as glucose or glycine, light production was diminished. This was presumably due
to the scavenging of pyruvate by L-lactate dehydrogenase (LDH). Inhibition of LDH by
its inhibitor, oxamate, partially restored luminescent signal in the presence of glucose,
presumably by allowing the resulting pyruvate to proceed to acetyl-coenzyme A (CoA).
This phenomenon appeared specific to the lactic acid bacterial metabolism as glucose
or glycine did not reduce signal in an analogous luxABCDE-modified Gram-positive
pathogen, Staph. Xen29. The Strep. Xen20 cells produced light in a concentration-
dependent manner, inversely related to the amount of glucose present. Taken together,
our measures of microbial response could provide new information regarding the
responsiveness of S. pyogenes metabolism to acute changes in its local environments
and cellular health.

Keywords: bioluminescence, biosensor, pathogens, physiology, Streptococcus pyogenes, molecular imaging

Abbreviations: S. pyogenes, Streptococcus pyogenes; luxABCDE, Photorhabdus luminescens lux operon cassette; ffluc, firefly
luciferase; Strep. Xen20, Streptococcus pyogenes Xen20; E. coli, Escherichia coli; FMNH,, reduced flavin mononucleotide; THY,
Todd-Hewitt with yeast extract; SB, sheep blood; GFP, green fluorescent protein; KEGG, Kypto Encyclopedia of Genes and
Genomes; CoA, coenzyme A; BHI, brain-heart infusion; SBA, sheep blood agar; ANOVA, analysis of variance; LB, Luria
broth; PBS, phosphate buffer saline; NAD™, nicotinamide adenine dinucleotide; triose-P, triose phosphate; HPr, histidine-
containing carrier protein; HPr, HPr(Ser-P); PEP, phosphoenolpyruvate; BPG, 1,3-bisphosphoglyceric acid.
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INTRODUCTION

Streptococcus pyogenes (S. pyogenes) infections often manifest
as necrotizing fasciitis or cellulitis (Carapetis et al., 2005).
Surveillance Report for 2019 reported 25,050 new cases of
S. pyogenes infections for every 34.6 million individuals. The
incidence of cellulitis or necrotizing fasciitis over the same period
was 44.7 and 4.5%, respectively. The total rate for 2019 showed
7.6 per 100,000 cases, and 9% of those resulted in death (Centers
for Disease Control and Prevention, 2019).

An intriguing preclinical method for real-time in vivo
tracking of these harmful pathogens during an infection
is bioluminescence. Although the use of engineered light-
producing microbes has a limited diagnostic value, the benefit
of these types of bacteria for preclinical experimentation is
often underappreciated. For example, deposition of bacterial-
targeted dyes in vivo during preclinical testing can be readily
verified by co-localization with the light signal from one of these
engineered microbes. Typically, such studies require that the
parental strain be transformed with plasmids containing either
the Photorhabdus luminescens lux operon cassette (luxABCDE)
or the firefly luciferase (ffluc) enzyme. One significant limitation
to the use of these pathogens is the gap in our understanding
regarding changes in the light production by these microbes. The
luxABCDE cassette often is placed on a transposable element,
so expression is dependent on its random insertion into the
genome of the parent bacterium (Chu et al,, 2009). As such,
light production can be linked to cellular processes that are
inherent to the microbe and report on the microbes’ response
to its local environments. Previously, we studied a luxABCDE-
modified S. pyogenes Xen20 (Strep. Xen20) to track the spread
of cutaneous infection in wild-type mice (Davis et al., 2015).
By ex vivo colony forming units’ (CFUs) determination and
Gram-staining histology, we noted live Streptococcus present in
the distal organs of the infected animals. Our findings did not
support the non-invasive bioluminescent imaging (BLI) results,
suggesting either the signal was below the limit of detection
or there was a breakdown of the light production in vivo. We
found that light production by Strep. Xen20 decreased with the
increasing D-glucose concentration, thereby, essentially serving
as a glucose biosensor within the animal. Recently, Mimee et al.
(2018) reported on a similar light-producing Escherichia coli
(E. coli) used in an ingestible bacterial-electronic system that
detects the presence of heme in a model of gastric bleeding. Such
microbial systems or devices could serve as biosensors in venues
ranging from clinical to industrial.

Light production by the emitting microbes follows the
conversion of activated fatty acyl compounds to fatty aldehydes
via the luxCDE system (Meighen, 1993). These fatty aldehydes
drive the luxAB complexes, which use molecular oxygen and
reduced flavin mononucleotide (FMNH,) to produce fatty acid,
water, oxidized flavin mononucleotide, and light. Therefore, an
essential requirement of bioluminescence is the availability of
critical reactants, such as non-anoic acid, FMNH,, and adenosine
triphosphate (ATP) (Meighen, 1991). In this study, we showed a
differential light production based on catabolite repression and
gluconeogenesis for streptococcal and staphylococcal strains of
similar Jux-cassette design. Furthermore, we challenged these

microbes with different stimuli (i.e., myo-inositol, oxamate, and
carbon sources). We monitored their relative light production
to dissect processes that would promote or repress the light
production pathway in these strains. Given our results, it may
be possible to use these light-producing pathogens as biosensors
for the rapid assessment of physiologic processes and the local
microbial environment.

RESULTS

D-Glucose Inhibits Bioluminescence
From Strep. Xen20

Our previous results indicated that the luminescence of
Strep. Xen20 did not accurately reflect bacterial load in vivo
and suggested this may be due to a D-glucose-mediated
inhibitory effect (Davis et al,, 2015). To confirm this finding
on a static medium, we plated Strep. Xen20 on Todd-
Hewitt with yeast extract (THY) plates supplemented with
0 or 50 mM D-glucose. For this experiment, cells were
grown overnight and imaged for luminescence (Figure 1).
Colonies with D-glucose supplementation showed decreased
luminescence. Interestingly, the presence of sheep blood (SB)
also significantly reduced the bioluminescence produced
by Strep. Xen20. Similar CFUs were also observed by
colony counting.

The lux Operon in Strep. Xen20 Is

Regulated by Inositol and Glucose Levels
Strep. Xen20 has the luxABCDE cassette inserted in the iol operon
used for inositol catabolism. More specifically, the gene is under
the iolE promoter (Park et al., 2003), which encodes 2-keto-myo-
inositol dehydratase (Yoshida et al., 2004). The IolR repressor
controls the entire iol operon (Yoshida et al., 1999). Under
high inositol conditions, the repressor is liberated, and genes
are expressed. As such, we tested the contribution of inositol
to bioluminescence expression in Strep. Xen20. The results
(Figure 2A) indicate increased light from bacterial cells grown
in the presence of myo-inositol. In contrast, co-supplementation
of Strep. Xen20, with both inositol and a low concentration of
glucose (3 mM), overcame this inositol-dependent enhancement.
All BLI signal returned to baseline in less than 3 h (Figure 2B).
To evaluate this inositol benefit in actively growing cells, equal
portions of Strep. Xen20 were spread on Luria broth (LB) plates in
the absence or the presence of 6 mM myo-inositol, of 50 mM D-
glucose, or both additives (Figure 2C). Results paralleled Figure 1
and the tube tests in Figures 2A,B. BLI from bacterial plates
at 14, 24, and 38 h in the presence of D-glucose plates showed
near-complete loss of light production, and this was only slightly
counteracted by the addition of myo-inositol at the 38 h time
point (Figure 2C).

To support cross-conditional comparisons and to coordinate
timing, we imaged the four distinct conditions simultaneously
over 2 days, i.e., the Strep. Xen20 kinetic profile showed a definite
2-reaction trace with the development of a new inositol peak at
16-17 h that was almost, approximately, fourfold greater than
the amount of light emitted by the LB control (Figures 2D,E).
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0 mM D-glucose

THY

SBA

FIGURE 1 | Glucose effect on bioluminescent production of S. pyogenes Xen20. Strep. Xen20 was plated on Todd-Hewitt with yeast extract (THY) without (A) or
with the addition of excess D-glucose (B) or on sheep blood agar (SBA) and incubated for 20 h at 37°C (C).

50 mM D-glucose

Radiance
(p/secl/cm?/sr)

Despite similar bacterial growth over the time course, the
BLI signal for both the 50 mM D-glucose- and 6 mM myo-
inositol-supplemented conditions showed markedly lower light
production. Conversely, Staph. Xen29 showed no change in light
production with 6 mM inositol supplementation alone and an
approximately twofold increase when grown in the presence of
D-glucose that was inositol-independent (Figures 2F,G). These
results agree with previous research that showed the expression
of green fluorescent protein (GFP), placed under the iolE
promoter, was decreased in glucose-rich conditions under the
iolE promoter in Salmonella enterica serovar Typhimurium strain
14028 (Kroger et al., 2011).

Substrate Sources for Bioluminescence

of Streptococcus pyogenes

Since inositol cannot function as a carbon source in S. pyogenes
M49 strains [based on the Kypto Encyclopedia of Genes and
Genomes (KEGG) genomic data], we investigated the agonistic
or antagonistic effects of central metabolites on the production
of light. As previously stated, bacterial bioluminescence is
dependent on the production of substrates by the bacterial
cell (Meighen, 1993); therefore, we investigated the link of
bioluminescence to central metabolism in S. pyogenes (see
pathway scheme in Figure 3). Bioluminescence is entirely
dependent on the availability of activated acyl donors, which are
produced de novo by the bacterial cell and serve as the substrate
for the lux operon to create fatty aldehydes. These substrates
are then converted to fatty acids in the presence of FMNH,
and oxygen, thereby releasing light. Activated acyl donors are

synthesized in one of two ways, first, coenzyme A (CoA)-
containing acyl compounds can be created via the breakdown of
fatty acids by B-oxidation (green box, Figure 3); second, CoA-
containing fatty acid building blocks can be created via the fatty
acid biosynthesis pathway (salmon box, Figure 3). The second
pathway is dependent upon the creation of acetyl-CoA by the
glycolysis/lactic acid fermentation pathway (blue box, Figure 3).

Although the KEGG pathways are not available for Strep.
Xen20, a pathway exists for the closely related M49 serotype
ancestor NZ131' (Mcshan et al., 2008). The analysis of this
pathway revealed important allosteric and feedback mechanisms
for bioluminescence production. First, M49 strains lack the p-
oxidation path beyond the creation of hexadecanoyl-CoA from
hexadentate. In contrast, S. aureus NCTC8325, the parental strain
of a frequently manipulated strain RN4220, showed increased
capacity for degradation of fatty acids. Therefore, in M49 strains,
most activated acyl donors must be created by the fatty acid
biosynthesis pathway. The analysis of these pathways revealed
M49 to have all necessary enzymes for these pathways, which
led us to investigate the contribution of glycolytic compounds
on the BLI signal.

Dependence of Luminescence on

Glucose Homeostasis

Strep. Xen20 processes sugars by homolactic fermentation, a
process that utilizes D-glucose as the preferred carbon source
(Levering et al, 2012). Based on KEGG genome available

Thttp://www.genome.jp/dbget-bin/www_bget?genome:T00780
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FIGURE 2 | Myo-inositol regulates luminescence of S. pyogenes Xen20. (A) Representative time course of Strep. Xen20 cells. Samples were grown to the stationary
phase and then diluted in fresh phosphate-buffered saline (PBS) supplemented with one of either 3 or 6 mM myo-inositol or 3 or 6 mM D-glucose. (B) Quantification
of luminescent signals from samples shown in panel (A) shown as the maximum rate of photons generated (max flux). (C) Bioluminescent imaging (BLI) of 65 mm
Luria broth (LB) plates containing no additive (control), 50 mM glucose, 6 MM myo-inositol, or both taken at 14, 24, and 38 h after incubating at 37°C. (D) Strep.
Xen20 growth on 6-well, flat-bottomed culture plates coated with LB agar containing either both myo-inositol and glucose (1, indicated in red), no additive (2, blue),
50mM glucose (3, purple), or 6 MM myo-Inositol (4, green) and imaged over 48 h in the IVIS. (E) BLI quantification of the plates from panel (D) as the total rate of
photons generates (Total flux). (F) Staph. Xen29 incubated on 6-well, flat-bottomed culture plates coated with LB agar containing either no additive (control), 6 mM
glucose, 6 MM myo-Inositol, or both and imaged over 60 h in the IVIS. (G) BLI quantification of the plates from panel (D) as the total rate of photons generates (Total
flux).

data, glycine is converted to pyruvate via conversion to
serine by L-serine dehydratase in reactions essential to the
formation of one-carbon metabolites. Therefore, we utilized
D-glucose as a glycolytic carbon source and glycine as
a non-glycolytic carbon source. D-glucose is present at

physiological concentrations ranging between 3.9 and 5 mM
in healthy adult mice (Lee and Bressler, 1981). Therefore, we
tested exogenous D-glucose and glycine at either 3 or 6 mM
(Figures 4A,B). The addition of either exogenous D-glucose and
glycine to Strep. Xen20 decreased the BLI signal (Figures 4C,D).
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FIGURE 3 | De novo synthesis of acyl donors via central carbon metabolism in Streptococcus. Activated acyl donors, the substrates for the luxABCDE machinery,
are made by the breakdown of fatty acids through g-oxidation (denoted as green region) or by the synthesis of an activated carrier protein (ACP)-containing
metabolites via fatty acid biosynthesis (denoted as salmon region). Since S. pyogenes lacks the B-oxidation pathway, all substrates for light production in Strep.
Xen20 are created by acetyl-coenzyme A (CoA)-dependent fatty acid biosynthesis generated by homolactic fermentation (denoted as blue box). The asterisk
indicates the sole carbon sources tested. Allosteric activators, such as inorganic phosphate (Pi), fructose bisphosphate (FBP), and glucose-6-phosphate (G6P) are
shown in green text, and allosteric inhibitors, including adenosine triphosphate (ATP), nicotinamide adenine dinucleotide (NAD +), and triose phosphate (triose-P), are
shown in red text. Abbreviations used in here is as follows: histidine-containing carrier protein (HPr), phosphorylated HPr [HPr(Ser-P)], phosphoenolpyruvate (PEP),

and 1,3-bisphosphoglyceric acid (BPG).

In contrary to this, the addition of D-glucose or glycine increased
the luminescence expression in Staph. Xen29 (Figures 4E,F).

Physiologically Relevant Limitations in
Bioluminescence Can Be Attributed
Solely to Metabolites Upstream of

Pyruvate

To test tissue-derived carbon sources, we perturbed the
carbon source equilibrium of both light-producing pathogens
(Strep. Xen20 and Staph. Xen29) by characterizing the glucose
dependency of BLI signal. The dose-dependent effect of
D-glucose on light production was monitored following
incubation with M9 minimal media supplemented only
with casein hydrolysate and yeast extract (Figure 5). The

supplements meant to provide the microbe with amino acids
and cofactors essential for protein and DNA synthesis. In
this moderately enhanced M9 medium, we found that Strep.
Xen20 produced detectable levels of luminescence. Providing an
additional glycolytic carbon source, in the form of D-glucose,
did not significantly increase radiance. In contrast, Staph.
Xen29 produced only moderate levels of luminescence in the
absence of further carbon sources. The addition of 6 mM
D-glucose significantly increased the production of light in
Staph. Xen29. Similar to D-glucose, Strep. Xen20 grown in
modified M9 alternatively supplemented with glycine (3 mM)
produced no significant increase in BLI signal. In contrast,
all supplementations increased bioluminescent expression in
Staph. Xen29 cells with a maximal BLI signal when glycine was
present (Figure 5).
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FIGURE 4 | The effect of monosaccharides on bioluminescence production by Gram-positive pathogen. (A) Representative time course of Strep. Xen20 or Staph.
Xen29. For all samples, cells were grown to the stationary phase then diluted in fresh phosphate-buffered saline (i.e., control) supplemented with either D-glucose or
glycine as indicated. (B) Similar time course for Staph. Xen29. (C) Quantification of the Strep. Xen20 luminescent signal from (A). (C,D) Quantification of luminescent
signal from samples shown in panel (A) for Strep. Xen20 represented as either the maximum rate of photons generated (shown on the left as max flux) or as the
relative maximum signal normalized to the control (shown on the right as flux/control) displayed as a function of time. The black dashed line indicates a ratio at the
threshold of 1.0. (E,F) Similar quantification of panel (B) for Staph. Xen29. All samples are color coded as indicated and the experiment performed, as shown in the
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FIGURE 5 | Increased luminescence production by Gram-positive pathogen incubated in M9 medium supplemented with casein hydrolysate and yeast extract.
ODg0o nm and luminescence were measured using a Thermo Fischer VarioSkan plate at 20 min intervals over 160 min at a constant 37°C. (A) Representative time
course of Strep. Xen20. For all samples, cells were grown to stationary phase then diluted in fresh M9 medium containing casein hydrolysate and yeast extract (i.e.,
control) supplemented with either D-glucose or glycine as indicated. (B) Similar time course for Staph. Xen29. (C,D) Quantification of the Strep. Xen20 luminescent
signal from (A) represented as either the maximum rate of photons per second (max flux) and as the relative maximum signal normalized to the control (shown on the
right as flux/control) displayed as a function of time. The black dashed line indicates a ratio at the threshold of 1.0. (E,F) Similar quantification of panel (B) for Staph.
Xen29. All samples are color coded as indicated and the experiment performed, as shown in the “Materials and Methods” section.
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Restriction of Luminescence Is

Dependent on L-Lactate Dehydrogenase
Homolactic fermentation produces pyruvate that is either
converted to acetyl-CoA by pyruvate dehydrogenase or to lactate
by L-lactate dehydrogenase (LDH, blue box, Figure 3). Pyruvate
conversion by pyruvate dehydrogenase would prepare substrates
relevant to light production. In contrast, conversion by LDH
would scavenge pyruvate away from this potential pool. To test
the effect of pyruvate conversion to lactate and the availability
of the acetyl-CoA pool, various concentrations (0-64 mM) of
oxamate, an inhibitor of LDH, were added to Strep. Xen20 cells
(Figure 6; Feldman-Salit et al., 2013). However, luminescence was
constant up to 32 mM oxamate (Figure 6A). At 64 mM oxamate,
the radiance increased for the glucose-containing sample, but
there was also an observed decrease in cell density. A diffusion
assay tested the effect that drug eluted into agar has on light
production (Figure 6B). Equal CFUs of Strep. Xen20 cells were
added to the quadrants of an agar plate, and an oxamate or
relevant control discs were added (Figure 6B). Discs were then
imbued with equivalent volumes applied to them (20 pl), and the
solutions were sterile water, glucose alone (0.022 mg), oxamate
(0.14 mg), and both glucose and oxamate. Dried discs were placed
on the agar plates. Bioluminescence production was higher in
quadrants with oxamate (Figure 6C).

Determining Plasma Glucose
Concentrations Based on Relative

Luminescence

Given the dependence of Strep. Xen20 bioluminescence
on glucose homeostasis, we sought to correlate glucose
concentration with the relative light production of Strep. Xen20.
Light production of Strep. Xen20 decreased at relatively similar
rates when added to an equal volume of glucose in phosphate-
buffered saline (PBS). However, each sample displayed a different
time to initial decrease and terminal luminescence (Figure 7A).
Glucose concentration in the PBS and mouse plasma samples
was confirmed using a commercial blood glucose meter. Based
on the linear relationship, the mouse plasma had a glucose
concentration of 3.3 mM (Figure 7B). After the D-glucose
standards were allowed to incubate with the Strep. Xen20 culture
overnight, an exponentially decreasing relationship was found
to exist between the amount of glucose and Strep. Xen20 BLI
(Figure 7C). The data were analyzed using a single exponential
and used to predict glucose concentration in mouse plasma. Our
predicted concentration of glucose in the mouse plasma matched
actual glucometer values determined independently.

DISCUSSION

Competition for carbon sources and energy may affect the
survival of S. pyogenes during an infection. Previously, we
found that a luxABCDE-incorporated S. pyogenes had reduced
light production in D-glucose-enriched medium (Davis et al.,
2015). Although this trait is less desirable for Strep. Xen20
utility in non-invasive imaging of infections, it highlights a

unique ability of bacterial luciferase to serve as a biosensor of
activated or repressed metabolic pathways. We explored the use
of Strep. Xen20 as a biosensor that could respond to changes
in its local environment by altering its light production. This
biosensor would fundamentally differ from the current utilization
of isolated luciferases in biochemical assays. Specifically, our
biosensor reports the activity of metabolic enzymes (substrates
for light production) rather than on the level of promoter
activity intrinsic to firefly or Renilla luciferase (under a bolus
of the substrate).

Initially, genetic evidence pointed to iolE as the gene sequence
interrupted by the luxABCDE pathway (Park et al, 2003).
Results of inositol supplementation (Figure 2) indicate a genetic
regulation of the luxABCDE bioluminescence. According to the
KEGG metabolic pathways for NZ131, M49 serotype strains of
Strep. Xen20 do not contain the enzymes necessary to convert
this inositol further into usable carbon sources to enter glycolysis
or the citric acid cycle. Therefore, we tested the effects of other
carbon sources to link the creation of luminescent substrates to
the central metabolism of the bacterial cell.

Our analysis of the KEGG metabolic pathways for NZ131
revealed no enzymes capable of fatty acid degradation beyond
the creation of hexadecanoyl-CoA (see the scheme in Figure 3).
Necessary activated fatty acyl compounds must then be created
via the fatty acid biosynthesis pathway, which utilizes acetyl-
CoA as building blocks for the creation of fatty acid chains. As
previously mentioned, acetyl-CoA is produced in S. pyogenes
via homolactic fermentation. Taken together, this suggests
S. pyogenes has a more simplified route to the production of
the essential light-producing building block than its counterpart
S. aureus.

Glucose is utilized in one of the two ways, namely, first,
it can be transported into the cell by phosphotransferases,
which convert it to glucose-6-phosphate during uptake, and
fed into the fermentation process; second, it can be converted
to glucose-6-phosphate by hexokinase (Levering et al., 2012).
The addition of D-glucose and glycine was shown in this
study to decrease the bioluminescence of Strep. Xen20. As
seen in Figure 3 and reviewed elsewhere (Levering et al,
2012), excess glucose during homolactic fermentation causes
the conversion of pyruvate to lactate by the enzyme LDH due
to increased levels of fructose-bisphosphate (FBP), intensified
by the inhibition of pyruvate conversion to acetyl-CoA by
increased triose phosphate levels. Therefore, the decreased
bioluminescence observed in D-glucose supplementation may
be due to the reduced acetyl-CoA pool and subsequent lack
of fatty acid biosynthesis precursors. As such, we tested the
addition of an inhibitor of LDH to attempt to restore the
acetyl-CoA pool and improve the luminescent signal (Feldman-
Salit et al., 2013). Oxamate-containing discs allowed for the
increased light production in the dispersion area (Figure 6).
Therefore, bioluminescence is diminished in the presence of
increased glucose due at least in part to its generation of
FBP. This FBP acts on LDH to scavenge the pool of available
pyruvate, committing it to the production of lactate rather than
the fatty acyl precursor acetyl-CoA. Glycine supplementation
showed comparable bioluminescence levels at concentrations
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FIGURE 6 | Oxamate inhibition partially recovers the bioluminescent signal. (A) Strep. Xen20 in the stationary phase were combined with PBS alone (i.e., control) or
PBS with concentrations of 6 mM glucose and 0-64 mM oxamate. Represented is the flux from cells treated with oxamate divided by the flux from cells in PBS alone
(ratio flux). The data represent seven trials without or without glucose at the indicated times. Expansion of the 64 mM oxamate concentration with and without
glucose over 60 min shown (denoted in red inset). (B) Strep. Xen20 was grown on LB agar with disks containing either a water control (upper right), 64 mM oxamate
(lower right), 6 mM glucose (upper left), or both glucose and oxamate (lower left) monitored for 48 h. (C) Quantification of the luminescent signal from panel (B) as
the total rate of photons generates
(total flux).

equal to those of D-glucose. Although glycine is first converted
to pyruvate, gluconeogenesis can convert this pyruvate back to
triose phosphate and/or FBP, creating a similar effect to D-glucose
supplementation.

Interestingly, the addition of amino acid sources, such as
casein hydrolysate, relaxed the inhibition of bioluminescent
signal by D-glucose and glycine supplementation (Figure 5).
According to the KEGG diagram for S. pyogenes NZ131,
L-alanine can be converted to pyruvate and can contribute to
luminescence. In contrast, amino acids that are converted to
fumarate are unable to contribute due to the lack of citrate
cycle activity. Leucine, valine, and isoleucine are converted
to their subsequent oxopentanoates, but subsequent reactions
are not possible due to a lack of 3-methyl-2-oxobutanoate
dehydrogenase. It is unclear which amino acid or a combination
of amino acids plays a role in increasing the Strep. Xen20 light
production in the presence of glucose and, as such, dissection of
that would require further study.

The application of the data gathered in this study led us to
investigate how Strep. Xen20 might be used as a living sensor of
local glucose concentration. The results of our glucose standards

and mouse plasma glucose levels give proof-of-concept evidence
that Strep. Xen20 can be used to determine the approximate
levels of blood glucose in a sample, similar to the heme sensing
capabilities of the luminescent E. coli (Mimee et al., 2018). In
this study, we evaluated the Strep. Xen20 luminescence using
mouse plasma. However, it is entirely feasible that Strep. Xen20
could detect glucose in other species and in the host. Additionally,
incorporating the lux operon in other homofermentative bacteria
such as Lactococcus lactis or Streptococcus thermophilus could
prove useful for additional research or as other options for
biosensor candidates.

To the best of our knowledge, these results are the first
to highlight the effects of the central metabolism on the
bacterial luciferase system. It is conceivable that directed
insertion of the luxABCDE operon could generate a biosensor
that reporters on the presence of trace heavy metals or the
presence of toxicity compounds, such as arsenic (De Mora
et al, 2011; Huang et al., 2015). It would be easy to ignore
the complications of light production by using non-integrated
plasmid versions of LuxAB in these pathogens and injection
luciferin substrate, such as the ffluc system previously described
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FIGURE 7 | Utilizing Strep. Xen20 bioluminescence production to estimate
plasma glucose concentrations. (A) Strep. Xen20 cells in the stationary phase
were added to equal volumes of PBS with 0-10 mM glucose. The
luminescence was measured with a luminometer every 20 min for 2 h. Curves
through the points are connected via a cubic spline, and no parameters were
obtained. (B) The glucose levels (mg/dl) of each PBS and glucose solution
were measured using a commercially available blood glucose meter. Mouse
plasma (indicated on graph in red) was also tested for blood glucose levels,
which were used to estimate millimolar concentration. (C) Final luminescence
in the Strep. Xen20 sample in glucose between 0 and 8 mM after incubation
overnight. The exponential relationship yielded an equation of

y = 16,7000e*0-882¢ (R2 = 0.9861) and was used to estimate the mouse
plasma glucose level based on luminescence of the Strep. Xen20.

in S. pyogenes (Loh and Proft, 2013). This would be simpler,
in many regards, but future correlations of metabolism-
dependent light production with RNA-seq technology could
provide new avenues for the high-throughput assessment of
compounds that disrupt molecular pathways regulating these
dangerous pathogens.

MATERIALS AND METHODS

Chemicals and Reagents
Brain heart infusion (BHI), sheep blood agar (SBA), and THY
were from BD Biosciences (San Jose, CA) or RPI. Kanamycin and

D-glucose were purchased from Research Products International
(RPL Mt. Prospect, IL). Glycine was purchased from AMERSCO
(Solon, OH). Unless otherwise specified, all reagents were
purchased from Sigma Aldrich. M9 minimal medium was
prepared as previously described (Miller, 2010).

Bacterial Strains, Cultivation Conditions,
and Imaging

Strains Strep. Xen20 and Staph. Xen29 (PerkinElmer Inc.,
Waltham, MA) were grown to stationary phase (ODgpgpnm > 1) in
BHI broth for 18 h at 37°C, and approximate concentration was
determined by light scattering at ODggg »m per manufacturer’s
instructions. Cultivation conditions were altered either in the
liquid media or on the solid media and supplemented with
additives, as indicated. Plates and tubes were imaged using the
IVIS Lumina XRMS or Lumina II system (PerkinElmer Inc.).
BLI was reported as calibrated units of radiance (p/sec/cm?/sr)
using the Livinglmage software version 4.7 (PerkinElmer Inc.),
allowing for comparisons between detectors.

Bioluminescence Kinetic Assays

To test if the lux operon was, in fact, under iolE (Park et al.,
2003), we diluted bacteria in PBS containing myo-inositol, D-
glucose, or both in a final 1 ml volume at equivalent ODggg 5m.
Tubes were incubated and imaged in the IVIS Lumina XRMS
on a 37°C stage and imaged every 20 min for 160 min. Strep.
Xen20 was also streaked on a secondary set of plates with LB
(RPI) alone or supplemented with either 6 mM myo-inositol,
50 mM D-glucose, or both myo-inositol and D-glucose. Plates
were incubated at 37°C and imaged at 14, 24, and 38 h. Catabolite
repression was assessed by supplementation of agar with myo-
inositol or D-glucose or both in 6-well, flat-bottomed culture
plates (Costar, Corning, NY) and imaged every 1.5 h with the IVIS
Lumina IT for 48 h.

The effect of carbon source availability was determined by
incubating cells in sterile PBS (i.e., control) or PBS supplemented
with either 3 mM or 6 mM of D-glucose or glycine. Sample
tubes were diluted and imaged as before. To determine the
contribution of growth rate to Strep. Xen20 expression, this
process was repeated for M9 minimal medium supplemented
with 1% casein hydrolysate and 0.3% yeast extract. This media
provides necessary cofactors for growth in the absence of
confounding carbon sources.

Oxamate Inhibition Assay

To determine the contribution of LDH on Strep. Xen20
bioluminescence, Strep. Xen20 cells in the stationary phase
were added to PBS containing a final concentration of 6 mM
D-glucose in a 96-well plate. Varying amounts of oxamate were
added for final concentrations of 0-256 mM. ODggg nm and
luminescence were measured using a Thermo Fischer VarioSkan
plate at 20 min intervals over 160 min at a constant 37°C.
For comparison purposes, cells treated with oxamate were
compared with those untreated in both the control and glucose-
supplemented groups. In addition, Strep. Xen20 was grown and
imaged for bioluminescence over 48 h on an LB agar plate
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containing discs saturated with solutions containing 6 mM
oxamate, 6 mM D-glucose, or both. The discs were prepared by
the addition of 4 equal volume solutions (20 pl) corresponding
to sterile water, glucose alone (0.022 mg), oxamate (0.14 mg), and
both glucose and oxamate. The discs were dried before placing
them on the agar plates.

Plasma Glucose Effect on

Bioluminescence

To evaluate Strep. Xen20 as a potential monitor of local plasma
glucose concentrations, Strep. Xen20 grown to the stationary
phase in BHI was combined in a 1:1 ratio with glucose in
PBS at concentrations between 0 and 10 mM. Strep. Xen20
was also combined with C57BL6 mouse plasma (Innovative
Research, Novi, MI). The light production was then monitored
at 20 min intervals at 37°C for 2 h using the Glomax 20/20
Luminometer (Promega, Madison, WI). A final measurement
was also taken after the samples had been allowed to incubate
overnight at room temperature. The glucose level in the glucose
standards and mouse plasma were also measured directly using
a commercially available ReliOn™ PRIME blood glucose meter
(Wal-Mart Stores, Inc., Bentonville, AR) ReliOn PRIME blood
glucose test strips. The meter was unable to determine the glucose
levels at < 2 mM.

Statistical Analysis
Statistical means of each group were analyzed using two-way,
repeated-measures analysis of variance (ANOVA) on R 3.1.2.7

2 http://www.r-statistics.com/on/r/
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