AUTHOR=Chen Jing , Zhang Jianing , Zhu Longping , Qian Chunguo , Tian Hongru , Zhao Zhimin , Jin Lu , Yang Depo
TITLE=Antibacterial Activity of the Essential Oil From Litsea cubeba Against Cutibacterium acnes and the Investigations of Its Potential Mechanism by Gas Chromatography-Mass Spectrometry Metabolomics
JOURNAL=Frontiers in Microbiology
VOLUME=13
YEAR=2022
URL=https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2022.823845
DOI=10.3389/fmicb.2022.823845
ISSN=1664-302X
ABSTRACT=
Cutibacterium acnes (C. acnes) is an anaerobic Gram-positive bacterium generally considered as a human skin commensal, but is also involved in different infections, such as acne and surgical infections. Although there are a variety of treatments, the side effects and the problem of bacterial drug resistance still limit their clinical usage. In this study, we found that essential oil (EO) distilled from fresh mature Litsea cubeba possessed promising antibacterial activity against C. acnes. In order to elucidate its potential mechanism, bacteriostatic activity test, Live/Dead kit assay, scanning electron microscope (SEM), transmission electron microscope (TEM), and metabolomics were employed. In addition, the content of adenosine triphosphate (ATP) in bacterium and the activities of key enzymes involved in critical metabolic pathways were detected using a variety of biochemical assays. The results showed that EO exhibited significant antibacterial activity against C. acnes at a minimum inhibitory concentration (MIC) of 400 μg/mL and a minimum bactericidal concentration (MBC) of 800 μg/mL, and EO could destroy C. acnes morphology and inhibit its growth. Moreover, results from our study showed that EO had a significant effect on the C. acnes normal metabolism. In total, 86 metabolites were altered, and 34 metabolic pathways related to the carbohydrate metabolism, energy metabolism, amino acid metabolism, as well as cell wall and cell membrane synthesis were perturbed after EO administration. The synthesis of ATP in bacterial cells was also severely inhibited, and the activities of key enzymes of the glycolysis and Wood-Werkman cycle were significantly affected (Pyruvate Carboxylase, Malate Dehydrogenase and Pyruvate kinase activities were decreased, and Hexokinase was increased). Taken together, these results illustrated that the bacteriostatic effect of EO against C. acnes by breaking the bacterial cell morphology and perturbing cell metabolism, including inhibition of key enzyme activity and ATP synthesis. The results from our study may shed new light on the discovery of novel drugs with more robust efficacy.