AUTHOR=Sun Nan , Wang Yuxin , Chen Jianhua , Wang Pingzhi , Song Weitang , Ma Peifang , Duan Yabin , Jiao Ziyuan , Li Yixiao TITLE=Colonization and Interaction of Bacteria Associated With Chinese Chives Affected by Ecological Compartments and Growth Conditions JOURNAL=Frontiers in Microbiology VOLUME=13 YEAR=2022 URL=https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2022.775002 DOI=10.3389/fmicb.2022.775002 ISSN=1664-302X ABSTRACT=

Chinese chive has a long history of planting in China. At present, there are many studies on endophytic bacteria and rhizosphere microorganisms of Chinese chive, but the effects of ecological compartment and growth conditions on bacterial communities in Chinese chives are unclear. Here, we aimed to elucidate the differences in bacterial a-diversity, β-diversity, community structure, core species differences, interaction networks and predicted metabolic functions among bacterial communities in different ecological compartments (the phylloplane, leaf endosphere, stem endosphere, root endosphere, and rhizosphere) in Chinese chives in an open field, a solar greenhouse, an arched shed, and a hydroponic system. Sixty samples were collected from these five ecological compartments under four growth conditions, and we compared the bacterial profiles of these groups using 16S rRNA sequencing. We evaluated the differences in diversity and composition among bacterial communities in these ecological compartments, analyzed the bacterial interaction patterns under the different growth conditions, and predicted the bacterial metabolic pathways in these ecological compartments and growth conditions. The results showed that the effects of ecological compartments on bacterial diversity, community composition, interaction network pattern, and functional expression of Chinese chives were greater than those of growth condition. Ecological compartments (R2 = 0.5292) could better explain bacterial community division than growth conditions (R2 = 0.1056). The microbial interaction networks and indicator bacteria in different ecological compartments showed that most of the bacteria that played the role of key nodes (OTUs) in each ecological compartment were bacteria with high relative abundance in the compartment. However, the bacteria that played the role of key nodes (OTUs) in bulbs were not Proteobacteria with the highest relative abundance in the compartment, but Actinobacteria that were significantly enriched in the root endosphere and rhizosphere ecological compartments. In addition, interactions among bacteria were interrupted in the hydroponic system, and specific bacterial communities and interaction patterns in Chinese chives varied among growth conditions. Prediction of metabolic functions indicated that plant metabolic activity related to stress responses and induction of system resistance was greater in belowground ecological compartments.