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Antibiotic treatments often fail to eliminate bacterial populations due to heterogeneity
in how individual cells respond to the drug. In structured bacterial populations such
as biofilms, bacterial metabolism and environmental transport processes lead to an
emergent phenotypic structure and self-generated nutrient gradients toward the interior
of the colony, which can affect cell growth, gene expression and susceptibility to
the drug. Even in single cells, survival depends on a dynamic interplay between the
drug’s action and the expression of resistance genes. How expression of resistance is
coordinated across populations in the presence of such spatiotemporal environmental
coupling remains elusive. Using a custom microfluidic device, we observe the response
of spatially extended microcolonies of tetracycline-resistant E. coli to precisely defined
dynamic drug regimens. We find an intricate interplay between drug-induced changes
in cell growth and growth-dependent expression of resistance genes, resulting in the
redistribution of metabolites and the reorganization of growth patterns. This dynamic
environmental feedback affects the regulation of drug resistance differently across
the colony, generating dynamic phenotypic structures that maintain colony growth
during exposure to high drug concentrations and increase population-level resistance
to subsequent exposures. A mathematical model linking metabolism and the regulation
of gene expression is able to capture the main features of spatiotemporal colony
dynamics. Uncovering the fundamental principles that govern collective mechanisms
of antibiotic resistance in spatially extended populations will allow the design of optimal
drug regimens to counteract them.

Keywords: antibiotic resistance, biofilms, cell responses, gene regulation, dynamics

INTRODUCTION

Microbial communities in their natural environments are remarkably dynamic and heterogeneous.
Cellular responses and other physical and biological processes that shape these communities take
place in structured environments that change over time, with the coexistence of diverse phenotypes
and complex behaviors at the population level (Liu et al., 2015; Scott et al., 2017; Fu et al., 2018;
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Mavridou et al., 2018; Mukherjee and Bassler, 2019; Bittihn et al.,
2020; Nadezhdin et al., 2020). In biofilms, the predominant form
of bacteria in the wild, communities are spatially structured,
with high cell density and constrained mobility (Nadell et al.,
2009). In such dense populations, single cells interact with
their immediate environment and collectively modify it, creating
structures with diversified phenotypes at larger scales across the
biofilm (Besharova et al., 2016; Cao et al., 2016). The coupling
between bacterial metabolism and environmental factors, such
as the diffusion of metabolites and other chemical compounds
throughout the microcolony, alter the local availability of these
compounds and create large-scale chemical gradients (Stewart
and Franklin, 2008). This uneven distribution of resources can
affect cell growth, gene expression and susceptibility to antibiotics
in different parts of the colony, leading to the emergence of
phenotypic structures across the population.

One of the main advantages for bacteria associated with
the biofilm lifestyle is resistance against harmful chemical
compounds, such as antibiotics (Bottery et al., 2021). Biofilms
are notoriously hard to treat in the clinic, commonly surviving
much higher drug doses than communities of planktonic
cells (Orazi and O’Toole, 2019). Much of the phenotypic
diversity in such structured environments results from the
decreasing availability of resources that are actively consumed
toward the interior of the colony (Kowalski et al., 2020).
Cells closer to the surface have unrestricted access to fresh
growth medium, while cells in the interior of the colony
have to adapt their metabolism to lower availability of fresh
medium. This phenotypic diversity is advantageous for microbial
communities exposed to environmental stresses, providing
alternative collective means to deal with changing conditions
(Ackermann, 2015; Rego et al., 2017; Patange et al., 2018;
Lee et al., 2019; Nguyen et al., 2020, 2021; D’Souza et al.,
2021). In the event of sudden exposure to insults, the colony
can redistribute and use resources more efficiently during the
activation of cell responses and adjust the spatial distribution
of phenotypes to increase chances of survival (Sánchez-Romero
and Casadesús, 2014; Dewachter et al., 2019). To explain the
large-scale reorganization of microbial populations in variable
environments resulting from the concerted interaction of diverse
phenotypes, we need a quantitative understanding of how
environmental cues are differently sensed and processed by single
cells and integrated into complex behaviors at the community
level. However, despite remarkable advances in understanding
the regulation of cell responses at the molecular level, we still lack
a framework to analyze how regulatory circuits control microbial
behavior at the population level.

Here, we investigate how phenotypic diversity originating
from environmental variations increases resistance at the
population level during drug responses. We focus our analysis
on the tet operon, which provides resistance against tetracycline
(a translation inhibitor) in Escherichia coli, to understand the
role of regulation on reshaping phenotypic structure upon an
abrupt increase in drug concentration (Meier et al., 1988; Le
et al., 2005; Fernández and Hancock, 2012). The expression
of a tetracycline-specific efflux pump TetA is tightly repressed
by the transcription factor TetR, which also represses itself

(Figure 1A). In the presence of tetracycline, TetR binds the drug
and greatly diminishes the affinity for its operators, releasing
expression of TetA, which then actively transports tetracycline
out of the cytoplasm. The tet operon therefore provides an ideal
system to study dynamic regulation; it is tightly repressed, well
characterized, and controls a highly dynamic response which is
crucial for cell survival upon antibiotic exposure (Le et al., 2006;
Muthukrishnan et al., 2012; Schultz et al., 2017).

RESULTS

To characterize how expression of resistance is coordinated
across structured populations during antibiotic responses, we
built a microfluidic device where spatially extended, biofilm-
like microcolonies are exposed to precisely defined dynamic
drug regimens (Bittihn et al., 2020). The device creates confined
environments for the growth of microcolonies by placing traps
170 µm deep, 100 µm wide, and 1.65 µm thick, which can
house a 2-dimensional layer of densely packed cells. These traps
are connected to nutrient supply channels that continuously
deliver fresh medium to one side of the growing colony while
washing away spillover cells (Figure 1B). The design of our
microfluidic device allows fast switching between different media,
which permits sudden exposure of the colony to a high dose
of drug. When loaded into the device, Escherichia coli colonies
grow to fill the traps. As the population receives fresh medium
only from one edge, cells closer to this edge grow fast, while cells
toward the interior of the microcolony grow less. While we do
not directly measure the concentration of metabolites exchanged
with the media, this transition from growth into dormancy was
shown to be consistent with metabolite gradients across the trap
(Bittihn et al., 2020, also see section “Materials and Methods”). In
these experiments, cells at the rear of the traps switched to a non-
dividing phenotype resembling the small, round morphology in
stationary-phase batch cultures (Nyström, 2004), also indicating
that nutrient supply is inherently diffusion limited (Figure 1C).

In principle, either metabolites consumed from the media or
released into it could cause cell growth to decrease toward the
interior of the colony. Instead of a limiting nutrient, the chemical
responsible for the transition to dormancy could be a growth-
inhibiting metabolic by-product which is absent in fresh medium
and accumulates in the interior of the trap. While the direction
of the metabolite gradient would be inverted in this case, so
would be its effect on growth. Therefore, the physical effect on
the colony and its mathematical description would be identical,
provided that the local consumption of nutrients or production
of growth-inhibiting compounds scales with growth rate. In both
cases, the concentration of the critical metabolite is fixed at the
opening of the trap and changes toward the interior, resulting in
a decrease of the growth rate itself when the metabolite reaches
a critical concentration. To simplify our discussion, we will
refer to the “consumption of nutrients” and “nutrient gradients”
throughout the study but mean them to include both possibilities.

We determine the phenotypic structure across a microcolony
of E. coli cells carrying the native tetracycline resistance tet
operon during drug responses by measuring cell growth and
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FIGURE 1 | Nutrient depletion in microcolonies creates a boundary between fast-growing and arrested cells. (A) tet resistance mechanism: tetracycline (Tc), a
translation inhibitor, diffuses across the cell membrane and binds transcription repressor TetR, which becomes inactive and releases expression of both TetR and
TetA. Efflux pump TetA exports tetracycline out of the cell in an ion exchange. (B) Schematic of our microfluidic device. Media supply channels deliver nutrients to
one edge of microcolonies. Nutrients diffuse down the trap and are actively consumed, thereby creating a gradient toward the interior of the colony. A linear mixer
creates 8 different drug concentrations, which are quickly delivered to cell traps through the supply channels. (C) Steady state of an E. coli colony in the absence of
drugs. Nutrient depletion creates a relatively sharp boundary that divides growing cells closer to the surface of the colony and dormant cells in the interior of the trap.
Around the boundary there is a transition zone of slow growth. (D) Cell growth in the lower layers of the trap pushes cells toward the surface of the colony. We obtain
the velocities of this movement at each point in the trap from time-lapse microscopy images using particle image velocimetry (PIV). Green arrows represent velocity
measurements, outliers are replaced by extrapolated values (orange arrows). We then calculate cell growth by differentiating vertical velocities with respect to depth.
The transition zone of 24 µm going from 90 to 10% of maximum growth is highlighted.

expression of resistance genes in real time. We measured
expression of resistance using a two-color reporter plasmid
indicating TetR and TetA expression [PR-GFPmut3 and
PA-mCherry, Schultz et al. (2017)]. Both the resistance proteins

and the fluorescence proteins are stable and not actively degraded
(Nolivos et al., 2019; Reuter et al., 2020), so their intracellular
concentrations are determined by expression and dilution due
to cell growth (we do not observe strong photobleaching,
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which would cause underestimation of resistance proteins
levels). Therefore, fluorescence signals measure intracellular
accumulation of resistance proteins, rather than their expression
rates. We determined cell growth throughout the colony using
particle image velocimetry (Thielicke and Sonntag, 2021), a
numerical method that uses correlations between images in
a time series to calculate velocities in a fluid environment
(Figure 1D). Since the traps are of rectangular shape, cells only
move in one direction toward the opening (which we will call the
“top” of the trap, corresponding to the surface of the colony),
with negligible sideways movement. Therefore, we determine
the cell growth rate at each depth from the top of the trap
by calculating the derivative of velocities along the vertical axis
of movement. Since all relevant transport processes also vary
only in one dimension along the same axis, gene expression
also does not vary sideways and can be expressed solely as a
function of depth. We repeated this analysis in two identical
traps under the same conditions, as repeat experiments, as well
as an identical trap within the same device that is not exposed
to the drug, as a negative control. We tested the robustness of
our measurements both by comparing different vertical sections
of the trap within the same image and by comparing subsequent
images of the trap during steady states both with and without the
drug (Supplementary Figure 5).

The steady-state colony structure in the absence of tetracycline
features a relatively sharp boundary between rod-shaped growing
cells closer to the surface of the colony and small arrested cells
toward the interior. Nutrients are typically actively imported
and consumed by growing cells (Jeckelmann and Erni, 2020),
being constantly removed from the surrounding medium. This
process creates a gradient of these molecules, decreasing from
the surface of the colony into the interior (Flemming et al., 2016;
Bittihn et al., 2020). Given the fast timescales of the diffusion of
small molecules through the lengths of the traps (in the order of
20 s, see section “Materials and Methods”), nutrient diffusion and
consumption are mostly in a quasi-steady state, as other relevant
timescales such as regulation of cell responses or metabolic shifts
are at least an order of magnitude slower. In the absence of drug,
we find cells grow at similar rates across the top part of the trap,
while cells in the bottom part are dormant. These regions are
separated by a sharp transition zone of approximately 25 µm,
which indicates sudden depletion of a limiting nutrient. We refer
to this zone as the “boundary layer.” The depth of this boundary
from the surface of the cell depends on the rate of consumption of
the limiting nutrient by growing cells, which in turn depends on
their growth rate. Therefore, we use the depth of the boundary
between growing and dormant cells, defined by half-maximal
growth, as a measure of the overall metabolic state of the colony
(Figure 1C). A fast-growing colony depletes resources closer
to the surface, while a slow-growing colony will consume less
resources and set the boundary at greater depths.

Exposure to Tetracycline Reshapes the
Phenotypic Structure of the Microcolony
Tracking changes in patterns of cell growth and expression of
resistance genes across the colony during an abrupt exposure

to 100 µg/ml of tetracycline (which is lethal to planktonic
populations), we find an initial reduction of growth among fast-
growing cells near the opening of the trap and reactivation of
previously dormant cells at deeper layers, presumably because
of a redistribution of nutrients toward the interior of the
colony (Figure 2). Tetracycline is a translation inhibitor, which
binds ribosomes and reduces cell growth (Chopra and Roberts,
2001). Therefore, immediately after exposure, cells at the surface
of the colony have their growth rate significantly reduced
(Figures 2B, 3A), which also decreases consumption of nutrients.
Following the exposure, a rearrangement of the growth profile
creates a zone of intermediate growth rates that extends deeper
into the colony (Figure 2) and temporarily reactivates cells
beyond the original boundary, which were dormant before
exposure. This observation is consistent with the reduced
nutrient consumption at the colony surface, where the resulting
surplus of nutrients becomes available to cells further inside the
colony, blurring the boundary between growing and arrested cells
and causing the reactivation.

After a transient period, growth at the colony surface is
restored, and expression of resistance is resumed among growing
cells at the colony surface. Unlike nutrients, active import of
antibiotics is at least very rare (Delcour, 2009; Sugano et al.,
2010; Housden et al., 2021; Rybenkov et al., 2021). In our
case, tetracycline diffuses slowly through the cell membrane,
with a half-equilibration time of approximately 45 min (Sigler
et al., 2000; Reuter et al., 2020). Tetracycline is also not actively
degraded intracellularly by enzymes, so cells do not act as a
significant sink for the drug, as they do for nutrients. Since
diffusion of tetracycline through the extracellular space of the
trap is much faster than uptake by cells and removal by advection
(diffusion time of ∼20 s like for nutrients, see section “Materials
and Methods”), the drug can quickly diffuse from the opening of
the trap into the interior. We confirm the timescale and reach
of diffusion of tetracycline through the trap by measuring the
diffusion of a dye of similar size (sulforhodamine, MW = 558)
added to the medium containing the drug (Supplementary
Figure 2). Therefore, upon exposure to antibiotics, all growing
cells across the colony can sense the presence of the drug and
induce drug responses. As TetA is expressed and growth at
the surface of the colony resumes, so does the consumption
of nutrients, which causes the boundary between growing and
arrested cells to move closer to the opening of the trap once again
(Figures 2E,G). Around 5 h after exposure, after expression of
resistance and cell metabolism have stabilized to the new steady
state, growth at the surface of the colony settles at a rate 75%
of that in the absence of drug, and a sharp boundary is again
delineated 20 µm further into the trap from the location of the
original boundary before drug exposure (Figures 2B,E,G). Upon
removal of tetracycline, the growth profile of the colony returns
to the same levels as before exposure within 3 h.

The transient period following exposure to tetracycline is
dominated by two processes: within the first hour, the growth
profile of the colony is determined by levels of TetA already
present at the time of exposure; then, in the following 4 h,
the growth profile is determined by activation of resistance
in growing cells throughout the colony. Slow-growing cells
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FIGURE 2 | Sudden exposure to tetracycline causes a reorganization of growth and expression patterns across the microcolony. (A) Images of the colony during a
response to sudden exposure to tetracycline at time zero, with expression of repressor TetR shown in green and efflux pump TetA shown in red. Following exposure,
growth arrest of cells near the surface makes nutrients available deeper into the trap, so the boundary between growing and arrested cells becomes diffuse. (B–D)
Kymographs of (B) cell growth, (C) efflux pump TetA and (D) repressor TetR expression during a tetracycline response, a graphical representation of spatial position
over time. Since neither cell growth nor gene expression vary substantially across the horizontal dimension of the trap, we calculate the average value of each
measurement at each depth, at each timepoint. These average values are denoted by the color gradients in the kymographs. Cell growth is noisy near the top of the
colony due to the difficulty in calculating velocities. Expression levels of TetA and TetR are normalized to basal expression levels, obtained from fast-growing cells in
the absence of drug. Above, tetracycline concentration in the medium throughout the experiment, showing the period of exposure. (E) Single cell trajectories:
Superimposed kymograph of cell growth (blue) and TetA expression (red), with black lines showing three approximate trajectories followed by single cells, calculated
from the velocities. Inset: these cells are initially located near each other, by the boundary, shortly after the time of exposure, but later follow divergent paths. (F) Cell
growth and expression of resistance genes TetR (green) and TetA (red) along these trajectories. (G) Boundary position follows the total growth of the colony. The
period of exposure to tetracycline depicted in pink shading. Position of the boundary between growing and arrested cells during the drug response, defined as the
depth of half-maximal growth at each timepoint (black line). The blue shading denotes the interval between 30 and 70% maximal growth at each time point. The total
growth of the colony, defined as the integral of the growth across the whole depth of the trap, is simply the velocity of cells at the top of the trap (blue line).

around the boundary generally show higher levels of TetA
expression prior to exposure (Figure 2C), an effect which will
be discussed in more detail in section “Slow-Growing Cells
Express Higher Levels of Resistance Genes” below. Due to

this growth-dependance in the expression of resistance, when
fast-growing low-TetA cells at the surface of the colony are
suddenly arrested by contact with tetracycline, dormant or slow-
growing high-TetA cells at the boundary are reactivated and
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FIGURE 3 | Transient growth in the interior of the colony during drug exposure induces high levels of resistance. (A) Cell growth, (B) TetA and TetR expression at a
fixed depth of 50 µm during exposure to tetracycline. Cell growth decreases upon exposure but is mostly recovered after 5 h. TetA and TetR expression increase
during exposure but return to pre-exposure levels after drug is removed. (C) Cell growth, (D) TetA and TetR expression at a fixed depth of 115 µm during exposure
to tetracycline. Transient increase in cell growth at lower depths corresponds to the period of reduced growth at the top of the trap. TetA and TetR expression
increase substantially during exposure, and high expression levels are kept even after removal of the drug, when these cells become dormant. The period of
exposure to tetracycline is depicted in pink shading. Shaded areas around the curves denote one standard deviation from the mean.

increase growth to occupy the top of the colony, displacing
the arrested cells (Figures 2B,C). Although preexisting TetA
levels are initially reduced in these cells as they begin to grow
faster, this reduction is compensated by the strong expression of
TetA induced upon exposure, reaching high levels even in fast-
growing cells as the colony approaches steady state (Figure 3).
Throughout this process the levels of repressor TetR change in
similar fashion as TetA, reflecting their common regulation by
TetR itself (Schultz et al., 2017), although fully expressed TetR
does not reach the same increase in relation to basal levels as TetA
does (Figure 3).

As expression of resistance recovers growth at the top of the
colony, the boundary between growing and arrested cells moves
back toward the surface. The temporary activation of dormant
cells deep into the colony, which happens in the transient period
following exposure, induces high levels of resistance in cells
growing slowly in the presence of tetracycline (Figure 3). These
cells once again stop growing when growth is restored at the
surface, providing the colony with a fresh layer of dormant
cells with high basal levels of resistance (Figures 2B–D). Due
to their low metabolism, these cells keep high TetA levels
even after the drug is removed, suggesting a mechanism where
highly resistant dormant cells can be quickly activated in the
event of future drug exposures (we explore this hypothesis in
the next section). The reorganization of growth patterns upon
drug exposure also ensures that the colony is able to keep
consuming the available resources and maintain overall growth.
Despite the reduction of growth at the surface of the colony,

the population as a whole experiences only a mild reduction in
growth during drug exposure (Figure 2G) as active growth is
merely shifted from the surface to the interior of the colony upon
drug exposure (Figure 3).

The complex dynamics of growth and expression of resistance
following drug exposure, particularly around the boundary
between growing and arresting cells, can lead neighboring cells
to different phenotypes. Although it is difficult to track single
cells throughout the experiment, we use the local velocities at
each timepoint to estimate the spatial trajectories followed by
single cells during drug exposure. We follow three “single-cell”
trajectories that initiate at close locations in space, near the
deepest point reached by the boundary, shortly after exposure
(Figure 2E). A first cell, whose trajectory initiates slightly above
the boundary, is quickly pushed toward the surface of the colony
by the transient growth of deeper layers following exposure,
exiting the trap before any significant expression of TetA.
A second cell, whose trajectory initiates at the boundary, is only
slightly dislocated by the transient growth of deeper layers, which
lasts until growth at the surface of the colony is restored. This
trajectory then goes through a period of slow growth when
expression of TetA reaches high levels. Eventually, this cell enters
the fast-growth region above the boundary layer, reducing TetA
levels on its way out of the trap. A third cell, starting right below
the boundary, goes through a period of transient growth itself,
when expression of TetA is high, but does not have enough push
from growth of deeper layers to move significantly up the trap.
This cell eventually goes back to dormancy, keeping high levels

Frontiers in Microbiology | www.frontiersin.org 6 April 2022 | Volume 13 | Article 740259

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-740259 April 20, 2022 Time: 15:41 # 7

Stevanovic et al. Antibiotic Responses in Structured Microbial Populations

of TetA. In general, from the top to the bottom of the colony, we
see the same three phenotypes observed previously in single-cell
studies of drug responses: fast-growing cells expressing moderate
levels of efflux pump TetA close to the surface of the colony,
slow-growing cells overexpressing TetA around the boundary,
and dormant cells with little TetA expression in the deep interior
(Schultz et al., 2017).

Transient Growth in Colony Interior
Increases Resistance for Subsequent
Drug Exposures
The temporary reorganization of growth patterns following drug
exposure suggests a colony-wide mechanism of resistance by
which transient growth promotes high expression of resistance
in dormant cells in the interior of the colony. These resistant
cells are then able to grow and repopulate the colony during
subsequent drug exposures, when fast-growing cells at the
surface of the colony are arrested by sudden contact with the
drug. Since the rate of expression of resistance genes depends
on the cell’s metabolic state, fast-growing cells close to the
surface are better positioned to regulate resistance levels to
optimize growth, whether in the presence or absence of drug.
However, fast-growing cells are particularly affected upon sudden
drug exposures when their resistance levels are low. Therefore,
dormant cells in the interior of the colony, which are not able
to change their protein levels and keep high levels of resistance
even in the absence of drug, can quickly start growing and
replace the arrested cells at the top. In this manner, the colony
can collectively maintain cell growth during drastic changes in
the environment.

To study the dynamics of antibiotic responses in fluctuating
environments, we subjected the colony to windows of 5, 10,
20, and 60 min of tetracycline exposure, delivered every 2 h
(Figure 4). Regardless of the duration of drug exposure, we
observe the same colony dynamics described above. Pulses of
high drug concentrations permanently arrest growth in fast-
growing cells at the top of the colony, which have low TetA levels
at the time of exposure, while promoting growth further into the
colony (Figure 5). Over the next hour, the cells at the top of
the trap are replaced by the progeny of cells located below the
boundary at the time of exposure, which already have significant
levels of TetA upon contact with the drug (Figures 4A,B). This
process is initiated even by short pulses of drug and continues
to take place in the absence of the drug. This suggests both that
growing cells are permanently arrested shortly after contact with
tetracycline and that initial recovery of colony growth does not
depend on new expression of TetA, but on the presence of cells
with preexisting high levels of resistance.

Each pulse of tetracycline was followed by temporary
expression of resistance genes at the top of the colony, which had
mostly subsided by the time of the next pulse (Figures 4B,C).
While TetR was expressed quickly and strongly regardless of
pulse length, TetA concentration was higher after longer drug
exposures, but concentration of either resistance gene was quickly
reduced in growing cells in the absence of drug. On the
other hand, each pulse of tetracycline permanently increased

expression of resistance in slow-growing cells below the boundary
(Figure 5D). Periods of transient growth following each exposure
build up resistance in the slow-growing layer of cells below
the boundary, which is not diluted in the absence of drug
when these cells return to dormancy. This effect is strengthened
during exposures to higher drug concentrations, which induce
longer periods of transient growth following exposure, and
reach dormant cells deeper into the colony (Figure 4D). Similar
transient growth dynamics were observed for short drug pulses
of any length, which were sufficient to permanently arrest fast-
growing cells at the surface of the colony.

We follow a single-cell trajectory initiating below the
boundary at the beginning of the experiment. Slow-growing cells
deep into the colony already show higher expression of resistance
genes than fast-growing cells even before first contact with the
drug. With each pulse of tetracycline, transient growth at the
bottom of the colony moves this cell toward the surface, while
increasing TetA levels (Figures 4D,E). Immediately before the
last exposure, this trajectory is right below the boundary, with
high TetA levels. The cell following this trajectory then resists
the exposure, keeps growing, and quickly moves to occupy the
top of the colony. This trajectory shows the buildup of resistance
by slow-growing cells in the interior of a colony subjected to
frequent exposures to the drug, which allows a quick transition
into fast growth when an exposure causes nutrients to become
available to them.

Slow-Growing Cells Express Higher
Levels of Resistance Genes
The collective dynamics of the drug response in the microcolony
is characterized by markedly different gene expression levels
between fast- and slow-growing cells. To determine the
functional relationship between cell growth and expression of
TetA and TetR, we correlated gene expression with cell growth
across the trap during steady states, both in the absence and
presence of tetracycline. In the absence of drug, we find that TetA
and TetR expression decreases linearly with the cell growth rate
(Figure 6A). This linear relationship is predicted by the theory
of proteome partition, whereby for a cell to grow faster, it needs
to dedicate a larger portion of its protein synthesis capacity for
ribosome production (up to 50%), leaving less resources for the
remaining portion of its proteome (Scott et al., 2010).

Higher expression of TetA and TetR among slow-growing
cells is also found in the presence of drug. A further increase of
TetA expression in slow-growing cells, in comparison to TetR,
might reflect the different steady states reached in the interplay
between drug import, TetA expression and TetR repression at
different growth rates (Møller et al., 2016). At lower growth rates,
a decrease in dilution of intracellular drug could be compensated
by increased export by TetA. However, it should be noted that
high-TetA slow-growing cells around the boundary only go
through a few division cycles (∼6) on their way out of the trap,
and therefore gene expression is not likely to reach equilibrium at
any given growth rate during this process. At extremely low cell
growth in the back of the trap, both TetA and TetR expression
are low even in the presence of drug, since these cells do not
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FIGURE 4 | Previous drug exposures build up resistance in the colony interior to resist future exposures. (A–C) Kymographs of (A) cell growth, (B) efflux pump TetA
and (C) repressor TetR expression during a sequence of tetracycline exposures, with pulses of 5, 10, 20, and 60 min delivered every 2 h. Expression levels of TetA
and TetR are normalized to basal expression levels in fast-growing cells in the absence of drug. Above, tetracycline concentration in the medium during the
experiment. (D) Single cell trajectory: Superimposed kymograph of cell growth (blue) and TetA expression (red), with a black line showing an approximate trajectory
followed by a single cell originating in the interior of the colony, calculated from the velocities. (E) Cell growth and expression of resistance genes along this trajectory.
Cell growth is noisy near the top of the colony due to the difficulty in calculating velocities. (F) Position of the boundary between growing and arrested cells during
drug exposure, defined as the depth of half-maximal growth at each timepoint. Total growth of the colony during the sequence of exposures, defined as the integral
of the growth across the whole depth of the trap. Periods of exposure to tetracycline are depicted in pink shading. The different lines denote exposure to different
drug concentrations.

experience any growth and largely keep the same protein levels
as before drug exposure.

A Mathematical Model Linking
Metabolism and Gene Expression
Captures the Main Features of
Spatiotemporal Colony Dynamics
Both the dynamics of antibiotic responses and the resulting
changes in the phenotypic structure of the colony are ultimately
controlled by gene regulatory circuits (Schultz et al., 2009).
However, upon environmental shifts, the progression of cellular
responses does not only depend on the direct regulation provided
by transcription factors but also on global effects on protein
expression linked to the metabolic state of the cell (Klumpp
et al., 2009; Scott et al., 2010). Failure to quickly deploy
resistance genes results in higher concentrations of intracellular
drug and further reduction in expression of resistance genes
and drug accumulation, a positive feedback known to result in

the coexistence of growing and arrested cells in the presence
of antibiotics (Deris et al., 2013). Therefore, gene regulatory
mechanisms control expression of resistance across the colony
both directly by regulation and indirectly by the reorganization of
growth patterns across the colony resulting from the expression
of resistance and nutrient redistribution (Stewart et al., 2019).

To test whether coupling between direct resistance regulation,
metabolism and environmental interactions is indeed sufficient
to explain the complex spatiotemporal dynamics described above,
we set up an agent-based computational model of growing rod-
shaped bacteria incorporating these three ingredients. Each cell in
the simulation is equipped with a gene regulatory circuit for the
expression of resistance genes, where growth and expression are
sensitive to both drug concentration and nutrient availability, and
nutrient concentration in the environment is tracked separately
by a continuous field throughout the trap (see section “Materials
and Methods” and Supplementary Figure 7 for details). The
regulatory part of the mathematical model closely follows the
previously established resistance mechanism (Schultz et al., 2017)
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FIGURE 5 | Sequence of exposures to tetracycline builds up resistance among slow-growing cells below the boundary. (A) Cell growth, (B) TetA and TetR
expression at a fixed depth of 50 µm during a sequence of exposures to tetracycline, with pulses of 5, 10, 20, and 60 min delivered every 2 h. Cell growth decreases
upon each drug exposure for about 2 h, regardless of exposure duration, but later recovers. TetA and TetR expression increase following each exposure, but later
return to pre-exposure levels. (C) Cell growth, (D) TetA and TetR expression at a fixed depth of 115 µm during a sequence of exposures to tetracycline. Transient
increases in cell growth at lower depths correspond to the periods of reduced growth at the top of the trap. TetA and TetR levels increase further with each exposure.
Expression levels are kept between exposures while these cells become dormant. The periods of exposure to tetracycline are depicted in pink shading.

FIGURE 6 | Steady-state expression of resistance decreases linearly with cell growth. Functional relationship between expression of TetA/TetR and cell growth,
obtained from the steady states with and without drug, both (A) measured in the trap and (B) simulated from the mathematical model. TetA and TetR expression
decrease linearly with the cell growth rate, as predicted by the theory of proteome partition. At extremely low cell growth, both TetA and TetR expression remain low
even in the presence of drug.

and includes the proteome allocation mechanism (Scott et al.,
2010) necessary for growth-dependent expression as described in
the previous section (cf. Figure 6 and Supplementary Figure 8;
also see section “Discussion”).

In the absence of the drug, the colony reaches a steady state
similar to our experimental system (Figure 7A; first snapshot),
where cells close to the outlet at the top grow (blue cells) while
the cells deep in the trap are deprived of nutrients and stop
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FIGURE 7 | Mathematical model recovers main features of colony dynamics during drug response. (A) Snapshots of agent-based simulations, showing transient
reorganization by the growth pattern during a short drug pulse (t = 5.3 h) and during a long pulse (t = 9.3 h) eventually reaching a new drug-induced steady state
(t = 11.9 h), before returning to the original steady state after drug removal (t = 19.1 h). Blue color indicates growth rate. Cells tracked to yield the trajectories in panel
(E) and the time traces in panel (F) are enclosed by a square of the same line style. The full spatiotemporal dynamics can be seen in Supplementary Movie 2.
(B) Kymograph of the growth rate over the course of the simulation. Tet exposure is indicated above. Dots at the top of the kymograph indicate time points of the
snapshots in panel (A). Dashed red line marks the cells in the top (previously growing) part of the cell trap which are subsequently replaced by reactivated dormant
cells already primed with TetA and TetR. (C,D) Kymographs as in panel (B) for TetA and TetR. (E) Superimposed kymograph of cell growth (blue) and TetA
expression (red) with black lines indicating trajectories of three tracked cells (cf. panel A). (F) Time traces of growth rate and TetA expression for the three tracked
cells (cf. panels A,E). (G) Kymograph of the nutrient concentration with black lines indicating the three cell trajectories. The corresponding time traces are displayed
below the kymograph.
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growing (white cells). We then subjected our virtual colony to
two pulses of drug: A short 30 min pulse and a long 500 min
pulse. These pulses triggered changes in the growth pattern and
nutrient distribution (Figures 7A,B,G) as well as expression of
the resistance genes TetA and TetR (Figures 7C,D).

Upon exposure of the colony to the shorter first pulse, we
see two main effects: First, growth is suppressed in the growing
part of the population, which leads to diminished nutrient
consumption and a redistribution of nutrients deeper into the
trap (Figure 7G). This causes dormant cells deeper in the
trap to resume growth, albeit at a reduced rate (Figure 7A,
t = 5.3 h; Figure 7B). When the pulse is over, the growth
pattern returns to its original state (Figure 7A, t = 8.5 h).
However, the expression of resistance genes triggered by the
drug induces a lasting change: When cells in the lower part
of the trap return to their dormant state, their TetA and TetR
concentrations are still elevated, leading to a reservoir of dormant
cells with active resistance. Consequently, these cells are able
to tolerate the next pulse with a higher growth rate, while
growth of cells at the top is suppressed to the same extent as
in the naive colony (wedge-shaped region outlined in red in
Figures 7B–D).

During the longer pulse, we can see the adaptation process
more clearly: The growth boundary initially deepens (albeit
slightly less than during the first pulse due to the reservoir of
resistant cells), but eventually settles at an intermediate position,
when expression of resistance in the growing cells has reached
its steady state (Figure 7A, t = 11.9 h; Figure 7B). Expression is
enhanced in cells that grow slowly due to nutrient deprivation,
leading to the creation of a reservoir of cells with very high
levels of resistance after the steady state under drug exposure is
reached (Figures 7C–E). Again, this reservoir is maintained even
when the colony returns to its original growth pattern upon drug
removal. The full spatiotemporal dynamics can also be observed
in Supplementary Movie 2.

In contrast to the experiment, we had the ability to track
individual cells throughout the simulation, since they are
represented by discrete units. We chose three initial cells and
extracted their growth rate, TetA concentrations as well as
the nutrient availability at their respective positions (squares
in Figure 7A and Supplementary Movie 2; corresponding
trajectories in Figures 7E–G). The initial positions were chosen
similarly to the experiment, such that the deepest cell, despite
moving toward the top during transient growth, stays in the
dormant part of the population, while the middle cell is expelled
from the colony after drug removal, and the top cell leaves
the colony even earlier, shortly after drug exposure during the
long pulse. The time traces clearly show transient growth for
the bottom cell and permanent reactivation of growth for the
top cell upon exposure (Figure 7F). In contrast, the middle cell
experiences a complex sequence of environments during the long
pulse: First, growth is triggered by increased nutrient availability.
While the cells in the upper growing part of the population
recover, the cell is again deprived of nutrients, leading to reduced,
but non-zero growth. Simultaneously, resistance expression is
markedly increased (Figures 7F,G). Finally, the residual growth
allows the cell to reach the region of the trap with high nutrient

availability, which both increases its growth rate and leads to a
decline in resistance levels until the cell leaves the trap.

DISCUSSION

Spatial structure results in organization of the colony with
different phenotypes toward the interior, with different resistance
profiles. This phenotypic structure changes during dynamic
responses and determines resistance at the colony level.
Microcolony microfluidics is an essential tool to describe
how the reorganization of chemical gradients and growth
patterns across bacterial colonies coordinate antibiotic
responses at the population level. In these experiments,
we described how the interplay between drug action, cell
growth and expression of resistance defines the course of
antibiotic responses in single cells and ultimately generates
the large-scale phenotypic structures that dictate colony-
level resistance during drug responses (MacLean et al., 2010;
Kim et al., 2020).

Notably, the rearrangement of growth patterns allowed
the colony to maintain growth and coordinate expression of
resistance upon a sudden exposure to a concentration of drug
large enough to immediately arrest the fast-growing cells at the
surface of the colony. This same concentration of drug is also
sufficient to arrest growth of planktonic populations in liquid
cultures for up to 20 h (Schultz et al., 2017). Since the exposure
to large doses of drug can overwhelm cells before expression of
resistance genes can be accomplished, a strategic reserve of slow-
growing cells with high levels of resistance proteins ensures that
the colony can remain active, replacing lost cells at the surface
and further expressing resistance (Lin et al., 2021). With each
exposure to the drug, transient growth increases resistance levels
at the base of the colony. Therefore, the colony can adjust its
resistance levels over time to the regimens it typically encounters
(Mathis and Ackermann, 2016).

Our model was able to recapitulate the qualitative dynamics of
spatially heterogeneous resistance expression and growth pattern
modulation – most notably the reactivation of dormant cells
upon drug exposure, the adaptation process during resistance
expression that leads to an altered steady state in the presence
of the drug and the persistent accumulation of resistance in
the dormant subpopulation. This, together with the excellent
agreement of single cell traces with the experimental findings,
can serve as evidence that the ingredients of our model and their
mutual coupling are indeed sufficient to explain the complex
dynamics observed experimentally. It is worth noting that, in
addition to nutrient diffusion, resistance expression and growth
modulation by the drug and through nutrients, we found it
necessary to include the dynamic allocation of resources to
different protein sectors suggested by Scott et al. (2010) as an
additional ingredient. Without it, the preferential expression
of resistance in nutrient-deprived cells and, consequently, the
efficient priming of dormant cells for future drug exposure
was not present. Indeed, the growth dependence of expression
produced by this mechanism is very similar to its experimentally
observed counterpart (Figure 6).
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One aspect that is poorly captured by our model is the
time scale of the transition between different metabolic states.
Both the reactivation of dormant cells upon exposure as well
as the establishment of a new steady state happen on a
considerably longer time scale in the experiment compared
to the simulations (compare Figures 2B, 7B). However, the
consequences of transitions between different metabolic states in
bacteria for growth, expression and metabolism are complex. For
example, the exact role and underlying physiology of bacterial
lag phase alone are a topic of active research with many open
questions and could be relevant here (Bertrand, 2019). Therefore,
it is not surprising that our simplified model does not fully
capture the complexity and time scale of these transitions. In-
depth experiments and a possible refinement of the model
will be necessary to disentangle the contributions of general
physiological effects and specific resistance dynamics during
these transitions.

Biofilms can simultaneously deploy multiple strategies to
survive in fluctuating environments. While fast-growing cells at
the surface of the colony can respond and adapt more quickly
to environmental changes, slow-growing cells in the interior
can show distinct expression profiles that are adjusted over
longer timescales, to guarantee survival and repopulation of the
colony upon sudden exposure to harsh conditions. The presence
of both phenotypes, even though in our case it is caused by
physical nutrient limitation, can be viewed as a bet-hedging
strategy that increases flexibility of the colony to survive a
large array of conditions. In the context of antibiotic resistance,
the low metabolism of cells in the interior of the colony can
increase tolerance to a variety of drugs, even in the absence
of a dedicated mechanism of resistance (Crabbé et al., 2019;
Donnert et al., 2020).

Although the cells in our system do not present all the
phenotypic traits of cells in true biofilms, such as matrix
production, we believe that the collective behaviors we observe
are largely generalizable to biofilms, being driven by transport
phenomena and nutrient consumption. Our system could further
be used to analyze alternative scenarios that could result
in different collective dynamics. In particular, the use of a
bactericidal drug could test the trade-off between expression
of resistance in growing cells at the top of the trap and drug
tolerance in dormant cells at the bottom. Many resistance
mechanisms can actively degrade antibiotics, making resistant
cells act as sinks that continuously remove drug from the
extracellular space (Flemming et al., 2016). This scenario could
generate drug gradients on top of nutrient gradients, further
protecting cells in the bottom of the trap and resulting in different
phenotypic structures.

True biofilms show an even richer complexity, with
phenotypic structures being shaped by several bioactive
compounds secreted by the cells (Dietrich et al., 2008). Nutrient
gradients, particularly relating to oxygen availability, were shown
to generate subpopulations that are resistant to antibiotics
(Kowalski et al., 2020; Beebout et al., 2021). Our work provides
a framework to understand the complex collective dynamics
of structured populations that emerge from processes that
are generally studied at the cellular level (Basan et al., 2015).

Our results suggest that the emerging phenotypic structures
are determined by how metabolic and transport processes
interact at larger scales, while single cells moving through
the population adopt the local phenotype without disrupting
large-scale structures.

These experiments with growing finite populations under
controlled dynamical conditions help bridge the gap between
understanding the dynamics of drug responses at the single-cell
level and understanding the resulting effect on the population-
level behavior. A model-based, quantitative description of how
microbial populations adapt the regulation of cell responses
to complex dynamical environments is crucial to understand
community-level behaviors such as antibiotic resistance,
pathogenesis, and biofilm formation, as well as generating
synthetic systems for biotechnology applications (Chait et al.,
2017; Xie and Fussenegger, 2018). The collective strategies of
antibiotic resistance described here are important to consider
when designing clinical treatments for microbial infections, since
biofilms are notoriously hard to clear.

MATERIALS AND METHODS

Media, Drugs, Strains
All strains were derived from E. coli K-12 strain MG1655 rph+
1lacIZYA. The native tet resistance mechanism from the Tn10
transposon was ordered from Genewiz in a pIT3-CH integrating
plasmid and integrated in the chromosome at site HKO22.
Matching fluorescent reporters for TetR and TetA (GFPmut3
and mCherry, respectively), were also ordered from Genewiz
in a pZS1 plasmid and transformed using TSS (Schultz et al.,
2017). The pZS1 vector has a pSC101 origin of replication with
stringent control, which provides good accuracy in fluorescence
measurements due to low copy number variation [10 to 12
copies per cell, Lutz and Bujard (1997)]. All experiments were
performed in EZ-rich defined medium (Teknova) prepared
according to the manufacturer’s instructions with 0.2% glucose
as the carbon source. To prevent cell adhesion to microfluidic
channels, all media were supplemented with 0.075% (w:v) Tween
20. Tetracycline solutions were freshly made from powder stocks
(Sigma) and filter-sterilized before each experiment. All media
containing tetracycline also had 0.008% (v:v) sulforhodamine dye
added, so drug concentration inside the chip could be calculated
from microscopy images.

Microfluidics
To image spatially extended micro-colonies of tetracycline-
resistant E. coli, we used a microfluidic device that consists of
multiple 100 by 170 µm traps (Bittihn et al., 2020). The night
before the experiment, a culture was inoculated from a -80◦C
glycerol stock into lysogeny broth (Difco) supplemented with
the appropriate selection antibiotics and grown overnight in a
shaking incubator at 37◦C. On the day of the experiment, the
saturated overnight culture was diluted 1:1,000 into 5 ml of the
same medium supplemented with 0.075% (w:v) Tween 20 and
incubated until an OD600 of 0.1 was reached. Then, 1 ml of
this culture was spun down at 3,000 g in a standard tabletop
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microcentrifuge for 3 min, and the cells were resuspended in
5 µl of the base medium used for the microfluidic experiment.
The cell suspension was then immediately loaded into the waste
port of the microfluidic device, which had been degassed in a
vacuum chamber for at least 30 min, and base medium was
loaded into all other ports. The experiment was performed
at 37◦C. After the traps had been seeded, media and waste
ports were connected to the corresponding reservoirs and media
channels were flushed with base medium at a high flow rate
(>2,000 µm s−1) before calibrating the flow rate to 100 µm
s−1 in the media channels. A linear on-chip mixer was used to
mix growth media from two inputs in 8 different proportions
to achieve different drug concentrations. One of the inputs can
be switched in real-time between growth media containing no
tetracycline and growth media containing tetracycline to expose
colonies to abrupt shifts in drug concentration. Supplementary
Movie 1 shows a microcolony subjected to the tetracycline
exposure regimens described in Figures 2, 3.

Microscopy
A Nikon Eclipse Ti2 inverted microscope was used with a
Photometrics CoolSNAP HQ2 CCD camera to capture images
and a Lumencor SOLA SE LED Light Engine for fluorescent
excitation. The stage holding the microfluidic device was
enclosed in a plexiglass incubation chamber, maintaining a
constant 37◦C environment. The acquisition software was
NIS-Elements. High-resolution data was acquired at × 30
magnification, with exposure times of 20 ms for phase contrast,
100 ms for GFP (25% LED intensity) and 500 ms for mCherry
(20% LED intensity). With one image for each trap size and
medium composition (16 images), each containing two traps, an
imaging interval of 2 min was possible.

Microscopy Data Analysis
GFP and mCherry fluorescence was extracted from microscopy
images using custom-written MATLAB scripts. Drug
concentration at each time point was calculated by extracting the
fluorescence of the medium flowing through the medium channel
above the traps, as media containing tetracycline also contained
a fluorescent dye. Phase contrast images were stabilized using
the Image Stabilizer plugin in ImageJ. The velocity of cells was
estimated from the stabilized images using the PIVlab tool in
MATLAB (Thielicke and Sonntag, 2021). All images were pre-
processed, regions of interest (ROIs) encompassing the full traps
were selected manually, and three interrogation areas were used
to calculate velocity vectors. Estimates of velocity vectors were
calibrated using reference distances in the microfluidic device,
and the estimated vectors were validated in post-processing by
restricting velocity limits. The local cell growth rate at different
depths of the trap was estimated from the vertical components
of velocity vectors. Assuming that cells in the microfluidic trap
are densely packed and incompressible, the velocity v(x, t) at
a depth x is determined by the instantaneous, cumulative cell
growth rate in the trap v(x, t) =

∫ x
L g(x, t)dx. Therefore, we

calculate the local growth rate by differentiating the velocity
g(x, t) = − d v(x,t)

dx .

Estimation of the Timescales of
Transport Processes in the Medium
Both nutrients and drug penetrate the trap by two processes:
diffusion through the medium and advection, where inflow
of medium into the trap counters the outflow of cells. Here,
we estimate the relative importance of these phenomena in
determining nutrient and drug concentrations in the medium
along the trap. Assuming a fast cell growth rate of 3 doublings
per hour (an overestimation) and a depth of the growing layer
of 100 µm (as seen experimentally), the maximum advection
velocity at the top of the trap is 300 µm h−1. Therefore, the
transfer time of cell mass from the growth boundary to the top
of the trap is on the order of 20 min, and similarly for nutrients
for the counter-flow inward for a volume fraction on the order
of 0.5. The value for the diffusion constant of nutrients found to
be consistent with our experimental observations for this system
is D = 500 µm2 s−1 (Bittihn et al., 2020), which is in line with
known diffusion constants (Stein and Litman, 1990; Ma et al.,
2005), a recent study on biofilm front propagation (Wang et al.,
2017) and the general order of magnitude for small molecules in
water. Therefore, the typical time for nutrients to travel 100 µm
from the top edge to the growth boundary simply by diffusion
is (100 µm)2/D = 20 s. Thus, an upper bound for the Péclet
number in this system is Pe = 20 s/20 min = 1/60, which leads
us to conclude that this system is diffusion-dominated and we
can neglect mass transfer by advection in the growth medium.
In addition, the advection velocities decrease toward zero at the
growth boundary, below which only the (very fast) diffusion
acts. Since diffusion constants for antibiotics are typically on the
same order or even larger (tetracycline has a molecular weight
of 444), this applies to all the relevant substances (nutrients and
antibiotics) in our system. We also confirm the timescale of
diffusion experimentally by measuring the penetration of a dye of
similar size (sulforhodamine, MW = 558) added to the medium
containing the drug (Supplementary Figure 2).

Mathematical Model
We model the main biochemical interactions involved in the
response as a set of differential equations that describe changes in
the concentrations of the intracellular drug (d), the efflux pump
TetA (a), and the repressor protein TetR (r):

ḋ = Ki
(
D (t)− df

)
−

Kaadf

ka + df
− λd

ȧ = f Ha
(
rf
)
− λa

ṙ = f Hr
(
rf
)
− λr

where Ki stands for the import rate, D for extracellular drug
concentration, df for free intracellular drug, Ka for the catalytic
rate constant of TetA, ka the Michaelis constant, respectively, rf
free repressor, and Ha

(
rf
)

and Hr
(
rf
)

the synthesis rates for
TetA and TetR that depend on free TetR. Since the biochemical
binding and unbinding of the substrate to the transcription factor
typically happens at a much faster rate than the aforementioned
processes, we consider their unbound (free) forms (df , rf ) to
be in chemical equilibrium with the bound form [rd] with
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a dissociation constant Kd, such that rf df = Kd [rd]. The
term Ki

(
D (t)− df

)
represents the diffusion of drug across

the membrane into the cell, Kaadf
(ka+df )

the export of drug out
of the cell by the efflux pump. The terms λd, λa and λr
represent the dilution due to cell growth of drug, TetA and TetR,
respectively, where λ is the current growth rate. Both f , which
allows us to modulate the strength of gene expression, and the
growth rate λ depend on the nutrient level and the intracellular
drug concentration.

To model these dependencies, we used the framework
introduced by Scott et al. (2010). In this framework κn and κt are
the nutritional and translational capacity of the cell, respectively.
Here, we refer to their base values (full nutrients, no drug) as κ0

n
and κ0

t , respectively.
For the nutritional capacity, we assume a Monod dependency

on the limiting nutrient concentration c with κn = κ0
n

c
c0+c , where

c0 is the half-maximum concentration, which we assume to
be much smaller than the nutrient concentration at the top
boundary of the trap in order to obtain the sharp growth
boundary. For the translational capacity, we assume inhibition
by tetracycline according to κt = κ0

t
Kribo

Kribo+df
, where the fraction

represents the fraction of free ribosomes in the cell, and Kribo
is the dissociation constant for tetracycline and the ribosome.
Lower Kribo values correspond to stronger inhibition, and vice
versa. According to Scott et al. (2010), the growth rate can then
be calculated as λ =

φc
ρ
·

κtκn
κt+κn

, where φc = 0.48 and ρ = 0.76 are
universal constants.

κ0
t has a universal value of 4.5 h−1for E. coli. κ0

n varies
according to nutrient quality. We chose κ0

n = 7.176 h−1

such that λ0 =
φc
ρ
·

κ0
t κ

0
n

κ0
t+κ0

n
(corresponding to a state without

tetracycline, at full nutrients) yields a maximum growth rate
of λ0 = 0.029 min−1 as observed in the experiment (the full
range of growth rates during the experiment is shown in
Supplementary Figure 1).

We assume that TetA and TetR are part of the P sector of the
proteome, which scales as φP = φc ·

κt
κt+κn

. Without regulation
of the synthesis rates Ha(rf ) and Hr(rf ), we would expect the
concentrations of TetA and TetR to scale in the same way. Hence,
we define f = λ

λ0
·

κt
κt+κn

/
κ0

t
κ0

t+κ0
n

, which leads to steady states

proportional to ∼ κt
κt+κn

and simplifies to f = 1 at full nutrients
and no drug. Example dynamics of these biochemical equations
are shown in Supplementary Figure 7.

We combined the above biochemical equations with an agent-
based model of growing and dividing cells. In this physical
model, cells are represented by rod-shaped particles (a rectangle
of varying length and width 2R with semi-circular caps of radius
R) with diameter 2R = 1 µm. Volume exclusion is implemented
by Hertzian repulsion forces ∼ (2R− d)3/2 for d ≤ 2R, where
d is the distance between the centerlines (from cap center to
cap center) of two cells. We consider the incompressible limit
where repulsion is so strong that the overlap between cells is
minimal at all times. Consequently, the resulting dynamics are
insensitive to the exact force law for repulsion and mechanical
parameters of the cells. Cells grow from a total length of 2 µm

to 4 µm before they divide, with an elongation rate that leads
to a doubling time of ln(2)/λ with λ from above. At birth, the
nominal growth rate λ0 is chosen randomly within a window
of 25% for each cell in order to avoid synchronization of
division, by multiplying the above-mentioned base values κ0

n
and κ0

t by a factor [0.75,1.25]. Cells are removed from the
system when they reach the top of the domain. The left, right
and bottom wall of the domain are modeled with Hertzian
repulsion forces as well.

Each cell is equipped with the biochemical reaction scheme
introduced above. Nutrients are tracked throughout the domain
by a continuous field c(x, y, t) which follows the diffusion
equation ∂tc = Dn∂

2
x c− γ with a boundary condition c = 1 (full

normalized nutrient concentration) at the top boundary of the
domain. The local consumption rate γ(x, y, t) is determined
by the state of the corresponding cells: Each cell consumes
nutrients at a rate γ0·A·λ/λ0, where γ0 is the nominal nutrient
consumption rate at full nutrients and no drug (per unit time and
unit area), and A and λ are the current area and growth rate of
the cell, respectively.

An Euler method with adaptive time stepping was used
for the evolution of the physical equations of motion of the
cells and the biochemical reactions. The size of the time step
was capped at a maximum of 10−4 min, and the maximum
displacement of the cells was kept below 0.02 µm by decreasing
the time step as necessary. The diffusion equation for the
continuous nutrient field was solved using a forward-time
centered-space finite-difference scheme on a grid with a spatial
discretization step size of 1 µm in both directions and the
same time step as for the equations of motion of the cells,
using a standard 5-point stencil in two dimensions. The model
was implemented in Julia (Bezanson et al., 2017). Note that,
to allow for a larger time step when solving the diffusion
equation numerically, we use a diffusion constant Dn in the
simulation that is smaller than the real diffusion constant for
small molecules in this system (which is on the order of 500 m2/s,
see timescale discussion above and Bittihn et al., 2020), but
which still ensures sufficiently fast diffusion across the trap.
This does not alter the results if γ is scaled appropriately and
other time scales in the system are larger than the typical
equilibration time.

Remaining model parameters, from Schultz et al. (2017)
where applicable: Ki = 0.015 min−1, Ka = 50 min−1,

ka = 10 µM, Kd = 0.001 µM, Kribo = 1 µM, Ha(rf ) = A
r5

0,a
r5

0,a+r5
f

,

A = 0.008 µMmin−1, r0,a = 0.0001 µM, Hr(rf ) = R
r3

0,r
r3

0,r+r3
f

,

R = 0.0003 µMmin−1, r0,r = 0.000075 µM, D(t) = 0 or 50 µM,
Dn = 1200 µm2min−1, γ0 = 0.4 a.u.µm−2min−1,
c0 = 0.01 a.u.µm−2.
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