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Editorial on the Research Topic

Emerging frontiers of microbial functions in sustainable agriculture

Introduction

Climate change scenarios have significantly impacted food production, crop, and soil quality.

Many developed countries are using microbes as an alternative to chemical fertilizers. Microbes

play a pivotal role in soil fertility through the nutrient cycling process (Patil and Solanki, 2016;

Kumari et al., 2020). Different kinds of microbes associated with soil and plants are involved

in many fundamental processes, such as biological nitrogen fixation, biotic and abiotic stress

regulation, and plant growth promotion (Verma et al., 2020; Mandal et al., 2023). Microbial

diversity and function are regulated through the host type, age, ecosystem, climatic condition,

and geographical location. The Research Topic “Emerging Frontiers of Microbial Functions

in Sustainable Agriculture” is in the “Microbe and Virus Interactions with Plants” section

in the journal Frontiers in Microbiology. We present a summary of 12 published original

research papers.

Plant microbiome diversity and function

Microbial symbiosis helps plants draw minerals, which boost their growth and defense,

through chelation and mineralization. These potential microbiomes can be utilized as

bioinoculants to sustain crop production. The structures of plant-associated communities are

strongly impacted by soil texture, geography, and agrochemicals, including mineral fertilizers,

intercropping systems, developmental stages, and crop rotation (Habig and Swanepoel, 2015;

Galazka et al., 2018; Dastogeer et al., 2020; Mandal et al., 2020; Solanki et al., 2020). Kim et al.

discussed the decrease of N-cycling communities, such as nifH, archaeal amoA, and nirS, and

the increase of bacterial amoA with N fertilization. The report concludes that soil acidification

and high nutrient availability disrupt soil N-cycling communities in the cover cropping of

corn monocultures. However, cover cropping has a limited impact after 2 years, and long-term

applications may cause significant modifications in the microbial communities. On the other
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hand, Zheng et al. emphasized the importance of tree ages and

soil texture in bacterial diversity and composition. Proteobacteria,

Acidobacteria, and Actinobacteria were the dominant bacterial taxa

in pomelo tree soil. Soil properties, such as pH and phosphorus

availability, play important roles in shifts in bacterial communities.

Bacterial genera Sinomonas and Streptacidiphilus were found to be

unique in red soil, while Actinoallomurus and Microbacterium were

found in paddy soil. The microbial co-occurrence network showed

that old trees (20 and 30 years) have more complex networks and are

more stable than young trees. Li et al. showed that phytase-producing

Pseudomonas spp. is predominantly found in the alpine grassland of

the Qinghai-Tibetan Plateau. These bacteria can promote the growth

of Lolium perenne L and show multiple plant growth-promoting

traits, such as P solubilization, plant production, nitrogen fixation,

1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity,

and antimicrobial activity. Nong et al. described Burkholderia sp.

strain GXS16, a diazotrophic bacteria colonization response in

sugarcane roots. Bacterial colonization enhances antioxidants, such

as H2O2 and malondialdehyde. Differentially expressed genes linked

to ethylene pathways were much more highly expressed than those

linked to abscisic acid and gibberellin.

Microbes and agricultural practices

Plant rhizosphere and endosphere-associated microbes are

strongly involved in nutrition transport and plant growth

development (Solanki et al., 2019). Organic manure positively

influences microbial functions and improves soil nutrient availability

and uptake by plants (Alori et al., 2017; Jiao et al., 2019). Zhao et

al. revealed that cattle manure improves oat plant root length and

surface. Bacterial genera Pseudoxanthomonas, Pseudomonas, and

Sphingomonas, and the fungal phylum Ascomycota, were positively

related to oat biomass and nutrient accumulation during cattle

manure application. Results revealed that Basidiomycota is more

abundant in cattle manure deposition treatment than the control.

Moreover, cattle manure disrupts the growth of pathotrophs, such

as the fungal genera Alternaria and Fusarium, and encourages the

development of saprotrophic and symbiotrophic fungi.

Soil health restoration through different kinds of microbes is an

ecological process (Solanki et al., 2019; Solanki et al., 2021), and soil

health monitoring through microbial activity and response plays an

essential role in all restoration processes. Bhaduri et al.. discussed

the major strategies that can help restore and maintain ecosystem

stability. Various bio-indicators, such as microbial biomass, enzymes,

genetic markers, metabolites, and microbial communities, could be

used to identify soil health in the presence of different pollutant-

contaminated soil samples. Next, Choudhary et al. reported that soil

properties and fungal communities play a significant role in climate-

smart agricultural (CSA) practices. The fungal taxon Ascomycota

was found to be abundant in rice-based CSA scenarios. Additionally,

higher levels of soil organic carbon and nitrogen were found in CSA

scenarios, improving crop yield.

Microbes and plants: Biotic and abiotic
stresses

Biotic and abiotic factors are considerable limitations in

sustainable agriculture production. In recent years, drought stress has

become a major issue for agriculture sectors in developing countries

(Yandigeri et al., 2012; Wang et al., 2018). Morales-Quintana et al.

showed that the fungal endophytes Penicillium brevicompactum and

P. chrysogenum, isolated from Antarctic vascular plants, provoke

drought stress regulation in strawberry plants. These endophytes

enhance photosynthetic activity, antioxidants, and proline content

and reduce lipid peroxidation, which helps plants regulate drought

stress. These symbiotic fungi can also be used as an eco-friendly

strategy to cope with drought in other crops. Palmieri et al. revealed

that patulin biosynthesis by Penicillium expansum strongly correlates

with extracellular pH in wounded apples. The pH modulation by

Papiliotrema terrestris LS28 is vital for reducing the amount of

patulin. Jia et al. delved into the microbial diversity associated with

healthy and wilted Paeonia suffruticosa rhizosphere soil. Fungal

genera Fusarium, Cylindrocarpon, and Neocosmospora were directly

associated with plant yield reduction and disease incidence. Bacterial

and fungal networks were more complex in diseased plants than

in healthy ones. The bacterial network significantly impacted the

diseased plants that provide a comfortable environment in which the

fungal group can grow efficiently. Dastogeer et al. showed that the

microbiomes of leaf and grain tissues are altered significantly at the

Magnaporthe oryzae infection site. The bacterial genus Rhizobium

increased, whereas the fungal genera Tylospora, Clohesyomyces, and

Penicillium declined in the symptomatic leaf and grain tissues.

The microbial network identified several direct interactions between

Magnaporthe oryzae and other microbes. A higher percentage of soil

bacteria was tracked from healthy root samples.

Fruit-associated microbiome

Microbial communities are associated with fruit surfaces and

internal tissues and are impacted by the host’s age, evolution, and

diversity. The fruit carposphere harbors a wide diversity of microbes

(Droby and Wisniewski, 2018). In this regard, Zhimo et al. identified

15 bacterial and 35 fungal core taxa that are abundant at different

stages of the apple carposphere of three cultivars that grow in the

same environmental conditions. This study represents the strong

microbial cross-domain associations, uncovers potential microbe-

microbe correlations in the apple carposphere and provides essential

information regarding microbial recruitment in the fruit carposphere

and its influence over time.

Conclusion

The non-judicial use of agrochemicals, including fertilizers, and

mismanagement of natural soil and water resources greatly impact

soil microbial community function, which may result in barren

or unproductive soil in the long term. Moreover, soil degradation

through the depletion of soil carbon is a critical factor for judging

soil carrying capacity and its future utility. In this regard, it is

highly pertinent that plant rhizosphere microbes and their symbiotic

associations or endophytes play an optimistic candidature, and that

their proper use sustains the utility of the soil in the long term.

Perspectives

• Microbial resources and their significance for maintaining

soil ecosystems has been highly recognized in recent decades.
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However, microbial performance varies greatly depending on

the various biotic and abiotic factors that are directly linked with

the agroecological conditions.

• Nutrient cycling, restoration of pollutant-contaminated soil,

and protection of soil and plant diversity are only possible by

the virtue of symbiotic association among microbes in plants

and soil.

• Soil health represents the accumulation of healthy soil biota

or biodiversity over a period of time or through the proper

management of soil biotic components.

• Bridging multiple technologies to better understand the

microbial relationships in plant growth and soil productivity.

Here, several molecular approaches are applied to extract the in-

sight information. However, research and obstacles run parallel

with each other, and advanced technologies may help unlock the

secret information in the future.
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