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Accumulating evidence has demonstrated various associations of long non-

coding RNAs (lncRNAs) with human diseases, such as abnormal expression due 

to microbial influences that cause disease. Gaining a deeper understanding 

of lncRNA–disease associations is essential for disease diagnosis, treatment, 

and prevention. In recent years, many matrix decomposition methods have 

also been used to predict potential lncRNA-disease associations. However, 

these methods do not consider the use of microbe-disease association 

information to enrich disease similarity, and also do not make more use of 

similarity information in the decomposition process. To address these issues, 

we here propose a correction-based similarity-constrained probability matrix 

decomposition method (SCCPMD) to predict lncRNA–disease associations. 

The microbe-disease associations are first used to enrich the disease semantic 

similarity matrix, and then the logistic function is used to correct the lncRNA 

and disease similarity matrix, and then these two corrected similarity matrices 

are added to the probability matrix decomposition as constraints to finally 

predict the potential lncRNA–disease associations. The experimental results 

show that SCCPMD outperforms the five advanced comparison algorithms. In 

addition, SCCPMD demonstrated excellent prediction performance in a case 

study for breast cancer, lung cancer, and renal cell carcinoma, with prediction 

accuracy reaching 80, 100, and 100%, respectively. Therefore, SCCPMD shows 

excellent predictive performance in identifying unknown lncRNA–disease 

associations.
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Introduction

Non-coding RNAs such as microRNAs (miRNAs), 
Circular RNA (circRNA) and long non-coding RNAs 
(lncRNAs) play crucial roles in controlling the biological 
processes of plants and animals (Zhang et al., 2020b; Wang 
et al., 2021a, 2022). Owing to their roles as genetic regulators 
in the development of complex disorders such as cancer, 
miRNAs have the potential to serve as diagnostic markers and 
therapeutic targets (Chen et al., 2019b; Hill and Tran, 2021; 
Huang et al., 2022a,b). Several algorithmic models have also 
been developed for the exploration of miRNA–disease and 
miRNA-disease associations (Chen et al., 2019c, 2021a; Zhang 
et  al., 2021a,b). However, as medicine advances, more and 
more studies have also shown that lncRNAs play an important 
role in many different diseases (Cao et al., 2019). LncRNAs are 
RNA molecules with transcriptional lengths above 200 
nucleotides that lack protein-coding capabilities (Xing et al., 
2021). For example, HOXA-AS2 was identified as a novel 
cancer-associated lncRNA, which exhibits aberrant expression 
in a variety of malignancies, including breast, gastric, 
gallbladder, hepatocellular, and pancreatic cancers (Wang 
et al., 2018a). With increasing recognition of the importance 
of lncRNAs, more in-depth research has focused on the 
relationship between lncRNAs and diseases. However, 
traditional biological validation experiments are time-
consuming and costly; thus, there is an urgent need to develop 
accurate and effective computational methods to determine 
possible lncRNA–disease associations. Many computational 
models have recently been developed to successfully predict 
possible lncRNA–disease associations, which can be classified 
into three main categories.

The first category is characterized by machine-learning 
methods (Zhang et al., 2020a; Lan et al., 2022). Chen and Yan 
(2013) proposed the first such approach to predict lncRNA–
disease associations using Laplace regularized least squares in 
a semi-supervised learning framework. Subsequently, by 
combining genomic, glomerular, and transcriptomic data, 
Zhao et al. (2015) devised a computational method based on a 
simple Bayesian classifier approach, which led to the discovery 
of 707 potential cancer-associated lncRNAs. Zhu et al. (2021) 
predicted lncRNA–disease associations by integrating several 
similarity matrices and combining incremental principal 
component analysis and random forest techniques. However, 
supervised learning-based models such as support vector 
machine and plain Bayesian classifiers rely heavily on difficult-
to-obtain negative sample (Chen et al., 2017).

The second category is based on building biological 
networks to predict lncRNA–disease associations (Zhang et al., 
2019a, 2020c). Sun et al. (2014) proposed RWRlncD, a global 
network computational strategy that applies restart random 
wandering (RWR) on lncRNA functional similarity networks 
to infer potential associations between human lncRNAs and 
disease. Zhang et  al. (2019b) integrated known topological 

interactions of lncRNA–disease, lncRNA–miRNA, and 
miRNA–disease to construct a linked tripartite network, and 
used the topology of the obtained network to calculate the 
similarity of disease pairs and lncRNA pairs. Finally, rule-
based inference methods were used to predict new lncRNA–
disease associations. Zhou et al. (2021) employed a rotating 
forest classifier to train prediction models after creating a 
heterogeneous network by combining relationships among 
miRNAs, lncRNAs, proteins, drugs, and diseases. However, the 
heterogeneous networks constructed by these network-based 
approaches relying on the relationships of lncRNAs themselves, 
miRNAs, proteins, and drugs to lncRNAs (diseases) can result 
in failure in reliable predictions of new diseases and/or 
new lncRNAs.

The third category includes matrix decomposition methods 
(Chen et al., 2018a,b, 2021b; Xie et al., 2021). To effectively predict 
probable relationships, Fu et al. (2018) employed matrix triple 
decomposition to split a data matrix from heterogeneous data 
sources into low-rank matrices and reconstruct the lncRNA–
disease association matrix. Based on probabilistic matrix 
decomposition, Xuan et al. (2019) deduced probable lncRNA–
disease associations by assuming that low-rank matrices are 
positively distributed with Gaussian noise. To enhance the 
potential association between lncRNAs and diseases, Gao et al. 
(2021) optimized the lncRNA and disease space by multi-labeling 
and fusing these labels. Finally, co-matrix decomposition was used 
to predict lncRNA–disease correlations. Wang et  al. (2021b) 
treated the discovery of disease-associated lncRNA as a 
recommender system problem, and predicted the relationships 
between lncRNA and diseases using a graph-regularized 
non-negative matrix decomposition approach. (Liu et al., 2021) 
proposed an lncRNA–disease association prediction approach 
based on double sparse collaborative matrix decomposition. To 
boost the sparsity, the L2,1-norm was introduced to the 
conventional co-matrix decomposition method. However, none 
of the algorithms presented above use similar information of 
lncRNA and disease as constraints to optimize the matrix 
decomposition algorithm. Thus, there is still some room for 
improvement in the prediction performance.

Traditional probabilistic matrix decomposition only uses 
probabilistic linear models with Gaussian noise to model the 
interaction of lncRNAs with diseases. Based on the assumption 
that similar lncRNAs/diseases are usually interrelated with the 
corresponding disease/lncRNA, we here propose a correction-
based similarity-constrained probability matrix decomposition 
(SCCPMD) method for predicting lncRNA–disease associations. 
Considering the noise effect of the similarity matrix of lncRNAs 
and diseases, the noise is reduced by correcting the similarity 
matrix using a logistic function to highlight strong correlations 
within the similarity range [0,1] while diluting weak correlations. 
The lncRNA and disease similarity are then used as constraints in 
the probability matrix decomposition process, resulting in two 
low-rank matrices to predict the potential lncRNA–disease 
association. Leave-one-out cross-validation (LOOCV) and 
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five-fold cross-validation (5-fold CV) were performed to validate 
the predictive performance of SCCPMD using known lncRNA–
disease association datasets. The final area under the curve (AUC) 
values of SCCPMD reached 0.9787 and 0.9528 ± 0.0036 with 
LOOCV and 5-fold CV, respectively, which were both better than 
the prediction performances obtained with existing advanced 
algorithms. In addition, we  confirmed the effectiveness of 
SCCPMD in application to three test cases of human diseases: 
breast cancer, lung cancer, and renal cell carcinoma (RCC).

Materials and methods

Datasets

We used the LncRNADisease database (Bao et  al., 2019), 
which provides a dataset of lncRNA–disease associations. After 
removing duplicate lncRNAs and diseases as well as non-human 
data, 1,690 unique experimentally validated lncRNA–disease 
associations were obtained, including 447 unique lncRNAs and 
218 unique diseases. The lncRNA–disease associations were 
described by building a disease–lncRNA adjacency matrix, 
Y Rnl ndÎ ´ , where nl  and nd  represent the number of lncRNAs 
and diseases, respectively. The matrix Y  is defined as follows:

 
Y i j

l i d j
,

lncRNA has no association with disease

lncRNA
( ) = ( ) ( )0

1 ll i d j( ) ( )
ì
í
ï

îï is associated with disease
 

(1)

In other words, if an lncRNA li  is confirmed to be associated 
with a disease d j , then Y i j,( )  is set to 1; otherwise, Y i j,( )  is 0.

Semantic similarity of disease

We built a directed acyclic graph (DAG) based on the 
descriptor data from the Medical Subject Headings (MeSH) of the 
National Library of Medicine1 to determine the semantic similarity 
among diseases. A disease d  is described by 
DAG d d V d E d( ) = ( ) ( )( ), , , where V d( )  and E d( )  are the 

vertex set and edge set of the DAG , respectively. Based on the 
DAG  layer structure of disease d , we can calculate the semantic 

value ( S ) of disease m  to disease d  as follows:

 
( )

( )
1 ,

max{0.5  ,
d

d

if m d
T m

T m m children of m if m d∗

== 
∈ ≠′ ′  

(2)

According to the DAG  of a disease, the semantic value of a 
disease is defined as the sum of the ancestral nodes of the disease 

1 https://www.nlm.nih.gov/mesh/meshhome.html

and the semantic contribution value of the disease to itself, 
expressed by the following equation:

 

T T md
m V d

d= ( )
Î ( )
å

 

(3)

Based on the above steps, we  can construct the semantic 
similarity matrix SS  to represent the semantic similarity between 
disease di  and disease d j :

 
SS d d

T m T m

T Ti j
m V d V d d d

d d

i j
i j

i j

,( ) =
( ) + ( )( )

+
Î ( )Ç ( )å

 
(4)

Gaussian interaction profile kernel 
similarity for diseases

To address the sparsity of the semantic similarity matrix 
of diseases and integrate more information on disease 
similarity, we used microbe-disease associations to calculate 
Gaussian similarity of diseases. We  downloaded human 
microbe-disease associations from the Human Microbe-
Disease Association Database (HMDAD). Microbe-disease 
associations were described by creating a microbe-disease 
adjacency matrix, A Rm nÎ ´ , where m  and d  represent the 
number of microbes and diseases, respectively. As a measure 
of disease similarity, we  constructed Gaussian interaction 
spectral kernel similarity using radial basis functions. 
We calculated the Gaussian interaction distribution based on 
the adjacency matrix A. The Gaussian interaction spectral 
kernel similarity between disease di and disease dj can 
be calculated by the following equation:

 
( ) ( ) ( ) 2

, exp :, :,i j dGD d d A i A jγ = − −    
(5)

 
( ) 2

1

1/ : ,
=

 
=    

∑
n

d
i

A i
n

γ γ
 

(6)

Integrated similarity for diseases

We combine the disease semantic similarity SS  with the 
disease Gaussian similarity GD  to construct the final disease 
similarity matrix SD . as follows, for disease di  and disease d j , 
SD d d GD d di j i j, ,( ) = ( )  if SS = 0  and SD d d SS d di j i j, ,( ) = ( )  
otherwise.
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Expression similarity of LncRNAs

LncRNA expression profiles can be  utilized to reflect the 
similarity between lncRNAs, since related lncRNAs exhibit 
co-expression characteristics in various tissues (Chen et al., 2019a). 
For this purpose, we used RNA-sequencing data retrieved from the 
ArrayExpress database to create lncRNA expression profiles. The 
Spearman correlation coefficient between the expression profiles of 
two lncRNAs was then used to determine the degree of similarity 
in their expression patterns, defined as ES , where ES l li j, ,( )Î[ ]0 1  
denotes the expression similarity of lncRNAs li  and l j .

SCCPMD method

Overview
SCCPMD involves the following five steps, which are 

schematically outlined in Figure  1: (i) constructing lncRNA–
disease association networks, (ii) constructing DAGs based on 
MeSH information to calculate the disease semantic similarity SS  
and calculating disease Gaussian similarity GD  based on microbe-
disease associations, (iii) integration of disease semantic similarity 
and disease gaussian similarity to obtain disease similarity SD , 
(iv) calculating lncRNA expression similarity ES  based on 
Spearman correlation coefficients, (v) performing logistic function 
transformation for similarity correction of disease similarity and 
lncRNA expression similarity to reduce the noise introduced by the 
similarity matrix during matrix decomposition, and (vi) using the 
proposed constrained probability matrix decomposition method 
to help predict potential lncRNA–disease associations.

Similarity correction
To reduce the noise that lncRNA and disease similarity 

matrices introduce during matrix decomposition, similarity 
correction techniques were used. The noise present in the 
similarity matrix is reduced by the logistic function so as to 
enhance the strong correlations in the similarity range [0,1] while 
diluting the weak correlations. This approach has previously been 
used in the study of disease-related genes (Vanunu et al., 2010). 
The logistic function is defined as follows:

 
L x

eax b
( ) =

+ +
1

1  
(8)

L x( ) » 0  when xÎ[ ]0 0 3, .  and L x( ) »1  when xÎ[ ]0 6 1. , . 
This means that weakly similar coefficients in the range of [0,0.3] 
are lost information, whereas strong similar coefficient values in the 

range of [0.6,1] usually exhibit significant co-expression of the 
relationship. Accordingly L 0( )  needs to be close to 0; therefore, 
we set L 0 0 0001( ) = .  to obtain b = ( )log 9999 . In addition, a  is 
a correction degree coefficient that is used for parameter adjustment 
of the model. The corrected lncRNA expression similarity LE  and 
the disease similarity LD  are thus obtained as follows:

 
LE i j

e
i j nl

a ES i j b
, ,

,
( ) =

+
Î[ ]´ ( )+

1

1
1, ,

 
(9)
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e
i j nd

a DS i j b
, ,

,
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+
Î[ ]´ ( )+

1

1
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(10)

Constraint probability matrix decomposition
Following the similarity correction steps outlined above, we can 

obtain the association matrix Y  representing the relationship 
between lncRNA and disease from the corrected lncRNA–lncRNA 
expression similarity LE  and the corrected disease–disease 
similarity LD . The values of LE  and LD  fall in the [0,1] interval. 
Let W Rk nlÎ ´ and D Rk ndÎ ´  be the lncRNA and disease latent 
feature matrices, where k nl ndÎ ( )min , . The latent feature vectors 
specific to lncRNAs and diseases are represented by the column 
vectors Wi  and Dj , respectively. The goal is then to find lncRNA 
and disease latent models (W Rk nlÎ ´  and D Rk ndÎ ´ ) whose 
product (W DT ) can reconstruct the interaction matrix Y . From 
a probabilistic point of view, the conditional distribution of the 
observed interactions Y Î{ }0 1,  is expressed as:

 
( ) ( )2 2

1 1
| , , | ,

ij
nl nd IT

ij i j
i j

P Y W D f Y W Dσ σ
= =

 =   ∏∏
 

(11)

where f x|, |,m s 2( )  is the probability density function of 
the Gaussian normal distribution with mean 𝜇 and variance 
s 2 , and Iij  is the indicator function that is equal to 1 if the 
lncRNA li  is related with disease d j  and is 0 otherwise. A 
probabilistic representation of the association matrix Y  is 
then given by 

2( , ,P Y W D σ ). We use the following zero-mean 
spherical Gaussian priors on the lncRNA and disease 
eigenvectors as a generative model for the lncRNA and disease 
latent models:

 
( ) ( )2 2

1
| | 0,

nl
iW W

i
P W f W Iσ σ

=
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(12)

 
( ) ( )2 2

1
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where I  is a k -dimensional identity diagonal matrix. Then, 
the posterior distribution of lncRNA and disease characteristics 
is derived as:

( ) ( )
( )

( ) ( )
( )

( ) ( )
( ) ( )( ) ( )( )

( )
( ) ( )

2 2 2
, , , , ,

2 2 2
, | , , ,

2 2 2
, , ,

2 2 2
| , , , , | ,

2 2 2
, , ,

2 2 2
~ | , , , | ,

22 2
| , , | |

2
| ,

1 1

2 2
| 0, | 0,

1 1

P W D Y W D
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P Y W D Y P W D W D

P Y W D

P Y W D P W D W D

P Y W D P W P DW D
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(14)

Taking the logarithm of equation (11), the distribution is 
transformed to:

( ) ( )

( ) ( )

22 2 2
2

1 1

2 2
1 1

2

1 1
2 2

1ln , | , , ,
2

1 1
2 2

ln1
2

ln ln

nl nd
T

ij ij i jW D
i j
nl nd

T T
i i j j

i j

nl nd
ij

i j

W D

P W D Y I Y W D

W W D D

I
c

nl k nd k

σ σ σ
σ

σ σ

σ
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= =

= =

= =

= −

− −

  
  
  − +  
  + + 

∑∑

∑ ∑

∑∑

 

(15)

where c  is a constant. With the hyperparameters held constant, 
maximization of the log posterior for lncRNA and disease 
characteristics is identical to minimization of the sum of squared 
errors with a quadratic regularization term objective function:

FIGURE 1

Flow chart of the SCCPMD approach.
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( )2 22

1 1 1 1

1min
2 2 2= = = =

− + +∑∑ ∑ ∑
nl nd nl nd

T W D
ij ij i j i jFro Fro

i j i j
I Y W D W Dλ λ

 

(16)

where 
2 2/=W Wλ σ σ ，

2 2/=D Dλ σ σ , 
2⋅ Fro  represents the 

Frobenius norm. However, the conventional probabilistic matrix 
decomposition model only uses a probabilistic linear model with 
Gaussian noise to depict the interaction between lncRNAs and 
diseases, leaving room for improvement. Based on the assumption 
that similar lncRNAs are usually interrelated with corresponding 
diseases and vice versa, CPMD takes more biological information 
(such as the similarity of lncRNAs and diseases) into account for 
the prediction. Accordingly, we suggest the following as a new 
objective function for CPMD:

( )2 22

1 1 1 1
2 21 2

1min
2 2 2

2 2

= = = =
− + +

+ − + −
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nl nd nl nd

T W D
ij ij i j i jFro Fro

i j i j

T T
Fro Fro

I Y W D W D

W W LD D D LE

λ λ

λ λ

 

(17)

where Wi  represents the k -dimensional potential feature 
vector of lncRNAs, W WT is the lncRNA weighted similarity 
matrix, and D DT  is the disease weighted similarity matrix. Here, 
we use the gradient descent algorithm to solve the optimization 
problem in equation (14). First, the corresponding Lagrangian 
function G f  of equation (14) is defined as:

( )( )
( ) ( )

( ) ( )( )
( ) ( )( )

( )( )

1

2

1
2

2 2

2

2

T T T T T T
f

T TW D

T T T T T

T T T T T

T T

Tr I YY YD W W DY W DD W

Tr WW Tr DD

Tr LD LD LDW W W W LD W WW W

Tr LE LE LED D D D LE D DD D

Tr W Tr D

λ λ

λ

λ

Γ = × − − +

+ +

+ − − +

+ − − +

+ Φ + Ψ
 

(18)

where 𝑇𝑟(∙) denotes the trace of the matrix, and 𝛷=[jik ] and 
𝛹=[y jk ] are the constraints 𝑊𝑖𝑘≥0 and D 𝑗𝑘≥0 for Lagrange 
multipliers. The partial derivatives of W  and D  are:

 

( )
( )( )12
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T
W

I DY DD W
W

W W LD WW Wλ λ
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∂
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(20)

Using the Karush-Kuhn-Tucker conditions jik ikW =0 and 
y jk jkD =0，the following equations for Wik  and Djk  can 
be obtained:

 

I DY DD W W W W
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T T
ik

ik W ik ik

T
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Thus, we can obtain the following update rule:

( ) ( )( )( )
( )( ) ( ) ( )( )

1
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2
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T
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2

jk new
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D jkjk jk

I WY D LE
D D
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λ

λ λ

× +
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× + +
 

(24)

In accordance with equations (20) and (21), the matrices W  
and D  are continuously updated until reaching the objective 
function’s local minimum. Finally, the predicted lncRNA–disease 
interaction matrix is calculated using the formula Y W DT* = . In 
general, the 𝑗th column of Y*  indicates the interaction score 
between disease d j  and the lncRNA, with a higher score 
indicating a more significant interaction.

Results and discussion

Assessment indicators

Both LOOCV and 5-fold CV methods were utilized to 
assess the SCCPMD model’s efficacy in predicting potential 
lncRNA–disease associations (Huang et al., 2022c; Sun et al., 
2022). Each proven lncRNA–disease association is listed as a 
test sample in the LOOCV framework, whereas the other 
unidentified relationship pairings are listed as training samples. 
All confirmed lncRNA–disease associations are separated into 
five groups in the 5-fold CV framework, and in each 
experiment, one group is chosen as the test group and the other 
as the training group. Using this method, we ran the experiment 
100 times and computed the mean of all outcomes. Since the 
lncRNA–disease dataset only contains a small number of 
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known lncRNA–disease associations and the AUC is known to 
be insensitive to a skewed class distribution, we used the AUC 
of the receiver operating characteristic curve to evaluate the 
performance of SCCPMD (Zhao et al., 2022).

Optimal parameter selection

There are six parameters in SCCPMD: a k W D, , , ,l l l1 , and 
l2 . To tease out the effect of these five parameter choices on the 
model, we  performed 100 experiments in the 5-fold CV 
framework and calculated the average AUC values. First, there is 
a similarity correction component for parameter a . We searched 
for the optimal parameter in the range of −1 to −10. Figure 2 
clearly shows that the highest AUC value was 
reached when a = -4 .

The parameter k  represents the number of lncRNA and 
disease latent feature matrix row vectors, which determines the 
size of the latent feature matrix. As shown in Figure 3, we restricted 
the range of k  from 10 to 100. The highest AUC value was 
achieved for SCCPMD when k = 20 .

Parameters l l lW D, , ,1 and l2 exist in the constrained 
probability matrix decomposition part, which controls the 
influence of each part in the final update rule of the lncRNA and 

disease characteristic matrix. As shown in Figures 4, 5, we set the 
range of all four parameters to be from 0.1 to 1.

Based on the above experiments, the best values of  
these five parameters were finally determined as 
a k W D= - = = = =4 20 0 8 0 6 0 61, , . , . , .l l l , and l2 0 8= . .

Algorithm comparison

To evaluate the predictive performance of the SCCPMD 
model, SCCPMD was compared with five existing advanced 
methods: dual sparse collaborative matrix factorization (DSCMF; 
Liu et al., 2021), geometric matrix completion lncRNA–disease 
association (GMCLDA; Lu et al., 2020), local random walk-based 
prediction of human lncRNA and disease associations (Li 
et  al.,  2021), probabilistic matrix factorization method for 
identifying lncRNA–disease associations (PMFILDA; Xuan et al., 
2019), and bi-random walks for predicting lncRNA–disease 
associations (BRWLDA; Yu et al., 2017). As shown in Figure 6, the 
AUC value of the SCCPMD curve in the LOOCV framework was 
0.9787, which was larger than that obtained with the other 
prediction methods (DSCMF, AUC = 0.9101; GMCLDA, 
AUC = 0.9086; LRWHNLDA, AUC = 0.9083; PMFILDA, 
AUC = 0.8850; and BRWLDA, AUC = 0.8376), indicating that the 

FIGURE 2

The impact of different α  values under 5-fold cross-validation.
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performance of SCCPMD is better than that of existing calculation 
methods. To further validate the prediction performance of 
SCCPMD, the 5-fold CV framework was used for validation. As 
shown in Figure  7, SCCPMD obtained a reliable AUC of 
0.9528 ± 0.0036, which was much higher than the AUC values of 
0.8946 ± 0.0038, 0.8804 ± 0.0009, 0.8844 ± 0.0014, 0.8705 ± 0.0047, 
and 0.8172 ± 0.0014 for the comparison methods DSCMF, 
GMCLDA, LRWHNLDA, PMFILDA, and BRWLDA, respectively. 
The computational methods we compared were only for lncRNA-
disease association pairs, predicting potential associations based 
on the similarity between lncRNA and disease. The SCCPMD 
model uses microbe-disease associations to enrich disease 
similarities, while correcting the similarity matrix to highlight 
strong similarities and reduce noise in the original similarities. 
Therefore, SCCPMD shows better performance than these five 
methods and would be  more favorable for the prediction of 
lncRNA–disease associations.

Case study

Malignancy, as a general term to refer to cancer, has a 
significant negative impact on human health. With a global annual 
mortality rate of more than 10 million, cancer remains one of the 
main contributors to mortality (Zaimy et al., 2017). To validate the 
actual predictive performance of SCCPMD for lncRNA–disease 

associations, three cancer types with high hazard were selected as 
disease case studies: breast cancer, lung cancer, and RCC. The 
predicted correlations were validated in three lncRNA–disease 
association databases: the lncRNA disease database, Lnc2cancer 
database, and MNDR database.

Table  1 shows the top  10 lncRNAs that were predicted to 
be associated with breast cancer using our model, nine of which have 
previously been reported to be associated with breast cancer. Breast 
epithelial cells can become cancerous when they proliferate 
uncontrollably in response to several oncogenic stimuli (Fahad, 
2019). Four lncRNAs, including LINC00667, were identified by 
analysis of gene expression data from 768 breast cancer patients in 
The Cancer Genome Atlas database, suggesting potential predictive 
biomarkers for breast cancer with clinical value (Zhu et al., 2020). 
Among these markers, PVT1 has been reported to affect mature 
adipogenic mediators by regulating p21 expression in triple-negative 
breast cancer cells (Wang et al., 2018b). Functional studies showed 
that the proliferation, migration, and invasion of breast cancer cells 
overexpressing LINC01089 were significantly reduced and that 
epidermal growth factor reversed these effects (Yuan et al., 2019). 
TSIX is an lncRNA that has been explored as a stable non-invasive 
breast cancer immunological biomarker, which plays a role in X 
chromosome inactivation and breast cancer (Salama et al., 2020).

Table  2 shows the top  10 lncRNAs that were predicted to 
be associated with lung cancer using our model, all of which have 
been reported to play roles in lung cancer. Despite improvements 

FIGURE 3

The impact of different k  values under 5-fold cross-validation.
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in our knowledge of lung cancer risk, progression, immunologic 
control, and treatment choices, lung cancer—a malignancy that 
starts in the bronchial mucosa or glands of the lungs—remains the 
most common cause of cancer-related death (Bade and Cruz, 
2020). Amplification of PVT1 in lung cancer patients was 
associated with a poor prognosis for survival. PVT1 levels are 
increased in lung cancer cells, which promotes their growth and 
metastasis both in vivo and in vitro (Pan et  al., 2020). The 
expression of SNHG1 in non-small cell lung cancer (NSCLC) 
tissues and cells is high. Silencing SNHG1 could suppress the 
migration and invasion of NSCLC cells, which also promoted 
apoptosis and decreased the cell proliferation rate (Li and Zheng, 
2020). Considerable upregulation of the lncRNA CDKN2 B-AS1 
has been detected in both lung cancer tissues and cell lines (Wang 
et al., 2020). In vitro studies demonstrated that blocking NEAT1 
with short hairpin RNA prevented lung cancer cells from surviving 
and migrating or invading (Ma et al., 2020). Table 3 shows the 
top 10 lncRNAs that were predicted to be associated with RCC 
with our model, all of which have been associated with RCC in 
previous studies. RCC comprises a group of malignant tumors 
originating from the renal cortical epithelium, most commonly in 
the upper pole of the kidney (Pullen Jr, 2021). By inhibiting cell 
cycle progression and reversing the epithelial-to-mesenchymal 
transition (EMT) phenotype, NEAT1 knockdown could reduce the 
rate of RCC cell proliferation and suppressed RCC migration and 
invasion (Liu et al., 2017). By controlling EMT-related genes, loss-
of-function and gain-of-function pathways demonstrated that 

CRNDE promotes the migration and invasion of clear cell RCC 
cells (Ding et  al., 2018). MEG3 has been proposed to induce 
apoptosis in RCC cells by activating the mitochondrial pathway 
(Wang et  al., 2015). Functional assays revealed that MIAT 
knockdown prevented kidney cancer cells from proliferating and 
metastasizing both in vitro and in vivo (Qu et al., 2018).

Conclusion

An increasing number of studies have shown that exploration 
of potential lncRNA–disease associations can be expedited and 
more effectively performed by developing computational models. 
Recent results have also showed that matrix decomposition is a 
reliable method for predicting lncRNA-disease associations. 
We here propose a novel method to predict unknown lncRNA–
disease associations based on corrected similarity added as a 
constraint to the probability matrix decomposition (SCCPMD). 
We  confirmed the excellent performance of SCCPMD, 
demonstrating superiority in prediction to existing advanced 
algorithms, which is attributed to the following three factors: (1) 
the disease Gaussian similarity obtained by fusing microbe-
disease associations calculation can solve the original problem of 
sparse disease semantic similarity, (2) the corrected similarity 
performance highlights the effects of strong correlations while 
reducing the effects of weak correlations, thus reducing the overall 
noise in the matrix; and (3) introducing lncRNA and disease 

FIGURE 4

The impact of different Wλ  and Dλ  values under 5-fold cross-validation.
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similarity constraints in the traditional probability matrix 
decomposition makes better use of this biological information to 
improve the prediction performance. The AUC values of 
SCCPMD in the LOOCV and 5-fold CV frameworks reached up 
to 0.9787 and 0.9528 ± 0.0036, respectively, which were much 
higher than those obtained with the comparative algorithms. 
Additionally, we chose three complex diseases as case studies, 
demonstrating that SCCPMD performs well with real-world 
clinical data.

Although SCCPMD enriches disease similarity using 
microbe-disease associations, prediction results are also affected 
by microbe-disease associations. In addition, relying on a single 
lncRNA expression similarity can also make the model limited. 
Integration of more similarity information is expected to make the 
proposed model more robust. Therefore, in future work we will 
try to combine more bioinformatic datasets and fuse multiple 
lncRNA similarities to improve the robustness and predictive 
performance of the model.

FIGURE 5

The impact of different 1λ  and 2λ  values under 5-fold cross-validation.

TABLE 1 Top 10 lncRNAs predicted by SCCPMD to be connected to 
breast cancer.

Rank lncRNA name Evidence 
(PubMed ID)

1 LINC00667 31,897,133

2 PVT1 30,371,726

3 PINK1-AS unknown

4 LINC01089 31,417,284

5 TSIX 31,998,636

6 MSR1 26,967,566

7 LINC01638 30,002,443

8 CDKN2B-AS1 unknown

9 H19 32,124,962

10 NEAT1 30,957,286

TABLE 2 Top 10 lncRNAs predicted by SCCPMD to be connected to 
lung cancer.

Rank lncRNA name Evidence 
(PubMed ID)

1 PVT1 33,167,678

2 SNHG1 31,788,970, 28,147,312

3 CDKN2B-AS1 33,116,641

4 NEAT1 32,296,457, 31,646,570

5 MEG8 30,262,664

6 KCNQ1OT1 31,486,494

7 MALAT1 32,141,554

8 H19 31,190,899

9 MEG3 31,585,300

10 PCAT6 30,464,520
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FIGURE 6

Area under the receiver operating characteristic curve (AUC) values of leave-one-out cross-validation (LOOCV) between SCCPMD and the other 
five comparison models.

TABLE 3 Top 10 lncRNAs predicted by SCCPMD to be connected to 
renal cell carcinoma.

Rank lncRNA name Evidence 
(PubMed ID)

1 NEAT1 28,968,960

2 CRNDE 30,129,055

3 MEG3 26,223,924

4 MIAT 30,041,179
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