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Beef aging for tenderness and flavor development may be accelerated by elevated 

temperature. However, little to no research has been undertaken that determines 

how this affects other important meat quality characteristics and microbial 

community. This study aims to decrease aging time by increasing temperature. 

Beef were aged and vacuum packaged at 10 and 15°C, and the effects of increased 

temperature on meat physiochemical attributes, microbial community, and flavor 

profile were monitored. The shear force decreased with aging in all temperature 

and showed the higher rate at elevated temperatures compare to 4°C. The 

beef aged at elevated temperatures (10 or 15°C) for 5 days showed equivalent 

shear force value to the beef aged at 4°C for 10 days (p  >  0.05), however, the 

final tenderness was not affected by the elevated temperature. The beef aged at 

elevated temperatures showed a significantly higher cooking loss and less color 

stability compared to 4°C (p  <  0.05). The total volatile basic nitrogen and aerobic 

plate count increased (p  <  0.05) faster at elevated temperatures compare to 4°C. 

Carnobacterium, Lactobacillus and Hafnia–Obesumbacterium were the dominant 

genus in the beef samples aged at 4, 10, and 15°C, respectively. In addition, the 

contents of isobutyraldehyde, 3-methylbutyraldehyde, 2-methylbutyraldehyde, 

and 3-methylbutanol were higher than aged at 4°C (p  <  0.05). Therefore, these 

results suggest that application of elevated aged temperatures could shorten 

required aging time prior while not adversely affecting meat quality. In turn, this 

will result in additional cost savings for meat processors.
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Introduction

Tenderness is the major eating quality of beef, and consumers are willing to pay a higher 
price for the beef that is guaranteed to be tender (Marino et al., 2013). In the beef industry, 
aging is widely used to improve tenderness, which can be affected by complex changes during 
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muscle metabolism after slaughter (Colle and Doumit, 2017). The 
aging of beef is essential to provide a tender product and influenced 
by temperature. Beef were usually aged for 14 days at 4°C by 
processors (Kilgannon et al., 2019). However, this conventional aging 
temperature takes considerable refrigerated space requirements, 
operational losses, and energy (Wahlgren, 1994). Koohmaraie (1992) 
demonstrated that decreasing aging temperature reduced the 
autolysis of key muscle proteins and increasing aging temperature 
could improve tenderness. Consequently, aging temperature 
determined tenderization rates. When beef was aged at higher 
temperatures, beef tenderness improved largely within a shorter 
period (Kim et al., 2018). Pierson (1976) found that aging beef at an 
elevated temperature (20°C versus 3°C) for short periods (3–5 days) 
increasesd muscle tenderness. Meanwhile, Devine (1994) found that 
higher aging temperatures of approximately 10–15°C resulted in the 
highest degree of meat tenderness with the lowest muscle shortening 
and maximum aging potential.

Higher aging temperatures can increase beef tenderness 
within less aging time, meanwhile the proliferation of 
microorganisms in beef is promoted, which can lead to a 
significant reduction in shelf life (Zhu et al., 2004). Discoloration, 
off-odors, and slime formation caused by the deteriorative effects 
of microbial growth makes meat unacceptable to consumers 
(Esteves et  al., 2021). Microbial growth is closely related to 
temperature. For example, total viable bacterial counts in beef 
stored at 10°C for 72 h increased by 2 log CFU/cm2, whereas those 
in beef stored at 5°C increased by 0.4 log CFU/cm2 (Kinsella et al., 
2009). Moreover, Gribble et al. (2014a) reported that the counts of 
lactic acid bacteria (LAB), Enterobacteriaceae, and Brochothrix 
thermosphacta increased with the prolongation of storage time 
regardless of the experimental temperature (−1.5, 0, 2, and 7°C). 
Vacuum packaging is often used to prolong the shelf life of beef, 
given that storage under anaerobic conditions proved to be very 
effective in extending the shelf life of various perishable foods 
(Mansur et al., 2019). Devine (1994) reported that temperatures 
of 10 and 15°C resulted in better tenderness of aged beef but the 
effect of higher aging temperatures on the color, microbial 
community, and flavor of beef were not evaluated.

This study aims to address the paucity of data on the effects of 
high temperatures on meat quality traits, microbial load, and 
flavor parameters and to provide a theoretical basis for shortening 
the aging time of beef.

Materials and methods

Sample preparation

Longissimus dorsi muscles were collected from six Simmental 
cattle (24 ± 1 months old, 470 ± 30 Kg) in a commercial abattoir 
and transferred to the laboratory in an ice box within 2 h. All beef 
were rinsed with sterile water to remove stains and blood, and 
then dried with sterilized paper towels. The muscles were cut into 
300 g samples (6 cm × 6 cm × 10 cm) and vacuum packaged at the 

O2-transmission rate of 40 cm3/m2/day and 85% relative humidity. 
Samples were divided into three groups, and aged at respective 
temperature (4, 10, or 15°C). Samples were analyzed at different 
time points (0, 2, 4, 6, 8, 10, 14, and 18 day for 4°C, 1, 2, 3, 4, 5, 6, 
8, 10, 12, and 14 day for 10°C; 0, 1, 2, 3, 4, 5, 6, and 7 days for 
15°C). The temperature was monitored continuously by using 
remote temperature recorders with high precision control. Each 
analysis was performed using triplicate samples.

Cooking loss and shear force 
measurement

The beef samples (3 cm × 3 cm × 6 cm) were packaged and 
cooked in a water bath at 80°C to achieve a core temperature of 
approximately 70°C. After cooking, the samples were cooled at 
4°C until the core temperature cooled down to 10°C, surface-
blotted with paper towels, and reweighed for weight loss. Cooking 
loss was determined by calculating the weight difference of the 
samples before and after cooking and expressed as the percentage 
of initial weight. Shear force values of samples 
(1.0 cm × 1.0 cm × 3.0 cm) weredetermined across the longitudinal 
direction of muscle fibers by a texture analyzer (TA-XT plus) 
attached with a Warner-Bratzler blade (V-notch, HDP/BSW). The 
cutting line was positioned to avoid fatty and connective tissues 
and was perpendicular to the muscle fiber direction. The shear 
force value was calculated as the mean of the maximum force and 
expressed as in Newtons (N).

Instrumental color measurement

The surface color of the beef samples was measured on each 
analysis day after the samples were blooming for 30 min at room 
temperature. The lightness (L*), redness (a*), and yellowness (b*) 
of the beef samples were measured by a spectrophotometer 
(model CR-410, Minplta, Tokyo, Japan) with a diameter of 8 mm. 
The instrument was set for illuminant D65 and calibrated with a 
standard white plate before measurement. Measurements were 
taken in triplicate at different locations within each sample.

Total volatile basic nitrogen 
measurements

Briefly, 10 g of raw meat (free of subcutaneous fat) was 
weighed into a closed glass vessel with 75 ml of distilled water with 
intermittent shaking for 30 min (room temperature). Immediately 
prior to distillation, 1 g of magnesium oxide was added to the 
sample, and the sample was steam distilled for 5 min. The distillate 
was condensed into a receiving flask containing boric acid (20 g/L) 
with a mixed indicator solution of bromocresol green/methyl red. 
The solution was back-titrated with 0.01 M hydrochloric acid 
solution, and TVB-N was calculated as mg/100 g raw meat.
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Microbiological analysis

A total of 25 g of samples from the top surface (depth: 0.5 cm) 
were blended in 225 ml of 0.85% sterile saline solution for 90 s in 
a stomacher (Ningbo Jiangnan Instrument Factory) at room 
temperature. Samples for microbial testing were prepared in a 
series of decimal dilutions by using sterile saline. Plate count agar 
(PCA) was used for total viable counts (TVCs). Violet red bile 
glucose agar (VRBA) was used for Enterobacteriaceae counts. 
Rogosa and Sharpe agar (MRS) was utilized for LAB counts. 
Cephalothin–sodium fusidate–cetrimide (CFC) agar with 
CFC-selective supplement was applied to determine Pseudomonas 
spp. counts. Streptomycin thallous acetate agar (STAA) with 
STAA selective supplement was employed for Brochothrix 
thermosphacta counts. Each diluent (0.1 ml) was spread on the 
selective medium agar in triplicate. CFC and STAA plates were 
incubated at 25°C for 48 h. PCA and MRS plates were incubated 
at 30°C for 48 h, and VRBA plates were incubated for 24 h at 
37°C. The number of colonies was counted and expressed as 
colony forming units per gram (log CFU/g).

Microbial-community analysis

DNA extraction and PCR
Total microbial genomic DNA was extracted from the beef 

samples using the E.Z.N.A.® soil DNA Kit (Omega Bio-tek, 
Norcross, GA, United  States) in accordance with the 
manufacturer’s instructions. The quality and concentration of 
DNA were determined using 1.0% agarose gel electrophoresis and 
a NanoDrop® ND-2000 spectrophotometer (Thermo Scientific 
Inc., United States). The DNA samples were kept at −80°C prior 
to further use. The hypervariable V3–V4 region of the bacterial 
16S rRNA gene was amplified with primer pairs 338F 
(5′-ACTCCTACGGGAGGCAGCAG-3′) and 806R 
(5′-GGACTACHVGGGTWTCTAAT-3′) using an ABI 
GeneAmp® 9,700 PCR thermocycler (ABI, CA, United States). 
The PCR reaction mixture included 4 μl of 5 × Fast Pfu buffer, 2 μl 
of 2.5 mM dNTPs, 0.8 μl of each primer (5 μM), 0.4 μl of Fast Pfu 
polymerase, 10 ng of template DNA, and ddH2O to the final 
volume of 20 μl. The PCR amplification cycling conditions were as 
follows: initial denaturation at 95°C for 3 min, followed by 
27 cycles of denaturation at 95°C for 30 s; annealing at 55°C for 
30 s and extension at 72°C for 45 s; a single extension cycle at 72°C 
for 10 min; and a final cycle at 4°C. All samples were amplified in 
triplicate. The PCR product was extracted from 2% agarose gel 
and purified by using the AxyPrep DNA Gel Extraction Kit 
(Axygen Biosciences, Union City, CA, United  States) in 
accordance with the manufacturer’s instructions and quantified 
using Quantus™ Fluorometer (Promega, United States).

Illumina MiSeq sequencing
Purified amplicons were pooled in equimolar amounts and 

paired-end sequenced on an Illumina MiSeq PE300 platform/

NovaSeq PE250 platform (Illumina, San Diego, United States) in 
accordance with the standard protocols by of Majorbio Bio-Pharm 
Technology Co. Ltd. (Shanghai, China).

Flavor analysis

The volatile compounds present in beef samples were 
identified and quantified by a GC–IMS flavor analyzer 
(FlavourSpec®, Shandong, China) equipped with a syringe and an 
autosampler unit for headspace analysis. Briefly, 2 g of 
homogenized beef sample was transferred into a 20 ml headspace 
vial, incubated at 60°C for 20 min, the vial was put in an incubator 
and shook at 500 rpm to facilitate the emitting of volatiles into 
headspace, the vial was sealed by using a magnetic cap with a 
silicone septum. The temperature of head space injection needle 
was 60°C and the injection volume was 500 μl. The analytical 
conditions for this test are as follows: Chromatographic column 
type: MXT-5, 15 m, 0.53 mmID, 1.0 μm df (RESTEK, 
United States), to separate the volatile components and coupled to 
ion mobility spectrometry (IMS); carrier/drift gas: N2, with the 
flow ramp starting at 2 ml/min for 2 min, then increasing to 20 ml/
min in 8 min and increasing to 130 ml/min in10 min, finally 
130 ml/min for 5 min, introducing the sample into the capillary; 
column syringe temperature: 85°C. The total GC runtime was 
25 min, triplicate injections and analysis of samples 
were performed.

Statistical analysis

All experiments were performed in triplicate. The mean values 
and standard errors of the means were recorded, outlying 
observations were identified, and implausible values were verified 
with the original source or coded as missing. Differences between 
treatments were analyzed through Tukey’s test. Statistical analyses 
were conducted at a 95% confidence level. Bioinformatics analysis 
was carried out on the microbiota by using the Majorbio Cloud 
platform on the basis of OTU information; rarefaction curves; and 
alpha diversity indices, including observed OTUs. The analytical 
software Laboratory Analytical Viewer and the built-in NIST and 
IMS databases of the GC–IMS Library Search software were used 
for the qualitative analysis of characteristic volatile compounds. 
One-way ANOVA was used to estimate the difference between 
means (p < 0.05).

Results and discussion

Cooking loss and shear force

Cooking loss is the water loss from the meat due to protein 
denaturation during cooking (Kim et  al., 2019). Figure  1A 
illustrates the effect of different aging temperatures on cooking 

https://doi.org/10.3389/fmicb.2022.1091486
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Yu et al. 10.3389/fmicb.2022.1091486

Frontiers in Microbiology 04 frontiersin.org

loss, which tended to increase as the beef aged: the higher the 
aging temperature, the higher the cooking loss. In particular, the 
cooking loss aged at 15°C always higher than aged at 4°C 
(p < 0.05). Similarly, the interaction of aging temperature had an 
effect on the Warner-Bratzler shear force (WBSF) of the beef 
(p < 0.05). Figure 1B shows that with the prolongation of aging 
time, the shear force values show a decreasing trend whether it is 
decreased at 4, 10, or 15°C; specifically, aging affected the shear 
force values of all the beef samples with the meat becoming 
increasingly tender at each time point (p < 0.05). The beef aged at 
elevated temperatures (10 or 15°C) for 5 days had equivalent shear 
force values as the beef aged at 4°C for 10 days (p > 0.05). The beef 
aged at 15°C for 3 days had equivalent shear force values to beef 
aged at 4°C for 8 days (p > 0.05). This indicated that the aging 
period could be shortened by placing the meat at a slightly higher 
temperature than the typical meat aging temperature (4°C). 
However, the final tenderness is not affected by the elevated 
temperature. Aging at 4°C resulted in no significant reduction in 
shear force values before 6 days due to lower temperatures, 
however, the shear force values of the beef aged at 10 and 15°C 
decreased rapidly to 47.9 and 47.1 N, respectively, at the same 
stage of aging. At 14 days after aging at 4°C, the beef samples had 
an average WBSF value of less than 50 N. Aging at 10°C and 15°C 
required about 6 days, to achieve the same results, likely due to the 
enhancement in proteolytic enzyme activity, proteolysis via 
calpains, and collagen fiber breakdown from lysosomal enzyme 
activity at high temperatures (Kim et  al., 2016). Furthermore, 
when the beef shear force under 50 N, the change is no longer 
significant. The time point could be considered as the end of beef 
aging, to save aging time and energy consumption.

Surface color

Meat color is a direct estimate of meat freshness and 
wholesomeness for consumers, who often associate discoloration 

with spoilage (Li et al., 2015). The L*, a*, and b* color attributes of 
beef samples are shown in Figures 2A–C. The L* value decreased 
with the extension of aging time. Groups aged at higher 
temperatures presented significantly decreased L* values compared 
with those aged at 4°C. a* is the most important color parameter for 
fresh meat (Yim et al., 2016). Generally, the higher a* value, the 
fresher the meat. Figure  2B shows that a* decreased with the 
extension of aging time. At the same aging time, the a* values of 
samples aged at 10°C and 15°C were lower than those of samples 
aged at 4°C, indicating that the higher temperature, the more 
unfavorable a* value of beef. With the progression of aging, the b* 
value increased, and the b* value of samples aged at 15 and 10°C was 
significantly higher than that of the samples aged at 4°C (p < 0.05). 
Furthermore, aged at 4°C for 14 days had equivalent b* values as the 
beef aged at elevated temperatures (10 and 15°C) for 5 days, 
indicating that the higher temperature, the more unfavorable the 
effect on meat color.

TVB-N analysis

TVB-N refers to the combined action of endogenous 
enzymes and bacteria in the muscle during the storage of animal 
food (Holman et al., 2021). It is highly temperature-sensitive and 
increases rapidly with small increases in storage temperature 
(Frank et al., 2019). The trend of TVB-N during aging at 4, 10, 
and 15°C was shown in Figure 2D. During aging at 4°C, the 
TVB-N content increased from the initial 4.6 to 12.5 mg/100 g 
after 14 days (p < 0.05). In vacuum-packaged beef aged at 4°C, it 
increased to 15 mg/100 g in approximately 16 days. During aging 
at 10°C, the TVB-N content increased to 13.4 mg/100 g after 
10 days and continued to increase to 15 mg/100 g on the next day. 
The TVB-N content exceeded 15 mg/100 g after 5 days of aging at 
15°C, indicating that the TVB-N values of beef increased rapidly 
at high temperatures, rose slowly in the early stages of storage, 
then rapidly increased.

A B

FIGURE 1

Cooking loss and Shear force analysis on beef samples aging at 4, 10, and 15°C. (A) Cooking loss, (B) Shear force analysis.
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Microbial counts

The changes in the microbial counts of beef samples aged 
at different temperatures are shown in Table 1. Temperature 
appears to be the most important factor that influences the 
spoilage and safety of meat (Kennedy et al., 2005). Significant 
aging time and temperature interactions affected the TVC and 
growth of Pseudomonas, Brochothrix thermosphacta, LAB, and 
Enterobacteriaceae (p < 0.05). Initially, microorganisms were 
present at low levels. The TVC in unaged beef samples was 
3.1 ± 0.01 log CFU/g, indicating that the sample is of good 
quality (Yang et al., 2018). In beef samples aged at 4°C, TVCs 
increased slowly at the beginning of aging but increased 
rapidly on day 6 and exceeded 5.8 log CFU/g by day 14, at 
which the shear force value reduced to less than 50 N. During 
aging at 10°C, the microbial counts exceeded 7.0 log CFU/g 
on day 10, and when the shear value started to drop below 
50 N on day 6, the corresponding microbial count was 6.0 log 
CFU/g. Similarly, during aging at 15°C, the shear value of 
beef started below 50 N on day 5, corresponding to the 
microbial count of 6.3 log CFU/g that did not exceed 7.0 log 
CFU/g (Yang et al., 2016). A TVC total of 7.0 log CFU/g is 

recommended as the load limit at the end of the shelf life for 
red meat, According to the microbial colony counts, the shelf 
life of beef samples as the aged temperature increased. In order 
to the quality and safety of beef, it could be  consider 
transferring the beef to 4°C storage when the shear value of 
beef is reduced 50 N to extend the shelf life, which is also our 
next research program. Pseudomonas, Brochothrix 
thermosphacta, Enterobacteriaceae, and Lactobacillus increased 
with a trend similar to the trend shown by the total number of 
colonies. LAB was the dominant population in the vacuum-
packaged beef samples in this study. Similarly, Gribble et al. 
(2014b) LAB, Enterobacteriaceae, and Pseudomonas spp. 
populations increased when the beef was subjected to higher 
aging temperatures.

Bacterial flora analysis

Overall structural changes in beef bacterial 
communities

In this study, high-throughput sequencing technology was 
used to investigate the microbiota found in beef samples collected 

A B

C D

FIGURE 2

Surface color and TVB-N analysis on beef samples aging at 4, 10, and 15°C. (A) L* value, (B) a* value, (C) b* value, (D) TVB-N value.

https://doi.org/10.3389/fmicb.2022.1091486
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Yu et al. 10.3389/fmicb.2022.1091486

Frontiers in Microbiology 06 frontiersin.org

FIGURE 3

Relative abundance (%) of the top bacterial genera (Genus level) found on beef samples aging 14 days at 4°C, aging 6 days at 10°C, and aging 5 days 
at 15°C.

at 14 days of aging at 4°C (Day14_4), 6 days of aging at 10°C 
(Day6_10), and 5 days of aging at 15°C (Day5_15).

The results of the species annotations were as follows: domain: 
1, kingdom: 1, phylum: 30, class: 69, order: 168, family: 269, genus: 
454, species: 649, OTU: 974. The top five phylum included 
Firmicutes, Proteobacteria, Actinobacteriota, Bacteroidota, and 

unclassified_k__norank_d__Bacteria. The top five genera 
included Lactobacillus, Carnobacterium, Hafnia–
Obesumbacterium, Pseudomonas, and Achromobacter. Figure 3 
shows the percentage of the most abundant bacterial genera in 
Day14_4, Day6_10, 5 Day5_15 and 0 day beef samples because 
these points of time corresponded to shear values that started 

TABLE 1 Microbial counts of beef samples under different aging temperature.

Colony 
counts (lg 
CFU/g)

Temperature Aging time(days)

0 1 2 3 4 5 6 8 10 14 18

Total viable counts 4°C 3.1 ± 0.01 / 3.4 ± 0.05 / 3.9 ± 0.09 / 4.4 ± 0.05 4.8 ± 0.02 5.4 ± 0.05 5.8 ± 0.07 6.9 ± 0.05

10°C 3.9 ± 0.12 4.3 ± 0.08 4.7 ± 0.04 5.2 ± 0.03 5.8 ± 0.11 6.0 ± 0.05 6.7 ± 0.21

15°C 4.1 ± 0.11 4.9 ± 0.04 5.3 ± 0.32 5.9 ± 0.14 6.3 ± 0.26

Pseudomonas spp 4°C 2.0 ± 0.08 / 2.7 ± 0.05 / 2.9 ± 0.06 / 3.2 ± 0.03 3.7 ± 0.06 4.2 ± 0.04 4.4 ± 0.03 4.6 ± 0.04

10°C 2.7 ± 0.03 3.5 ± 0.05 4.2 ± 0.11 4.7 ± 0.09 5.3 ± 0.10 5.7 ± 0.11 5.9 ± 0.14

15°C 2.4 ± 0.11 3.4 ± 0.14 3.8 ± 0.05 4.5 ± 0.03 5.9 ± 0.15

B. thermosphacta 4°C 2.7 ± 0.01 / 3.0 ± 0.05 / 3.5 ± 0.02 / 4.3 ± 0.05 4.7 ± 0.06 5.1 ± 0.03 5.8 ± 0.06 5.9 ± 0.04

10°C 3.8 ± 0.14 4.4 ± 0.13 5.0 ± 0.05 5.2 ± 0.06 5.4 ± 0.08 5.8 ± 0.03 5.8 ± 0.10

15°C 3.1 ± 0.19 3.9 ± 0.06 4.7 ± 0.05 5.1 ± 0.23 5.7 ± 0.31

Lactic acid 

bacteria

4°C 2.5 ± 0.03 / 2.8 ± 0.06 / 3.6 ± 0.11 / 4.6 ± 0.05 5.1 ± 0.04 5.5 ± 0.06 6.3 ± 0.05 6.6 ± 0.06

10°C 3.5 ± 0.03 4.2 ± 0.07 4.9 ± 0.01 5.4 ± 0.02 5.5 ± 0.05 6.2 ± 0.03 6.5 ± 0.09

15°C 3.8 ± 0.14 4.3 ± 0.11 5.6 ± 0.16 6.3 ± 0.09 6.7 ± 0.03

Enterobacteriaceae 4°C 1.4 ± 0.07 / 1.7 ± 0.06 / 1.9 ± 0.02 / 2.3 ± 0.05 2.4 ± 0.04 3.2 ± 0.08 3.7 ± 0.05 4.2 ± 0.05

10°C 1.7 ± 0.10 2.2 ± 0.03 2.5 ± 0.06 3.2 ± 0.04 3.3 ± 0.27 3.5 ± 0.18 3.7 ± 0.07

15°C 2.3 ± 0.04 2.7 ± 0.22 3.3 ± 0.14 3.7 ± 0.17 4.1 ± 0.15
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below 50 N. In the Day_0 sample, the dominant bacterial genera 
were Vagococcus and Carnobacterium, with average relative 
abundances of 17.95 and 17.60%, respectively, followed by 
Lactobacillus, Pseudomonas, Staphylococcus, Hafnia–
Obesumbacterium, and Serratia with abundances ranging from 
5.00 to 9.06%. Leuconostoc, Brochothrix, Lactococcus, and 
Mitochondria were also present in beef samples at abundances 
ranging from 0 to 5.00%. Chaillou et al. (2015) stated that these 
bacteria mainly originated from the meat processing 
environments, such as soil or water. In the sample aged at 4°C for 
14 days, Carnobacterium, Pseudomonas, and Leuconostoc were the 
dominant genera. Carnobacterium increased to 32.55%, 
Pseudomonas increased from 8.78 to 21.01%, and Cryptococcus 
increased from 0.39 to 21.74% in the sample aged at 4°C for 
14 days relative to those in the Day_0 sample. These species belong 
to the genus Cryophilus and exhibit good growth performance at 
low temperatures (Kaur et al., 2021). The genus Lactobacillus was 
clearly the dominant bacterial community in the Day6_10 sample 
and showed a seven-fold increase relative to that in the Day_0 
sample and accounted for 65.02% of the total number of bacteria. 
This genus showed better growth performance at 10°C than at 
other temperatures. In the Day5_15 sample, the genus 

Hafnia–Obesumbacterium predominated, with its content 
reaching 69.24%, far exceeding the number of other genera. This 
result is a good indication that the structure of the flora in beef is 
affected by temperature. Low temperatures significantly favored 
the growth of LAB (Carnobacterium and Leuconostoc), whereas 
higher temperatures favored members of the phylum 
Proteobacteria (Hafnia). Given that the dominant genera often 
develop into specific spoilage bacteria, these results provide ideas 
for the precise prevention and control of spoilage bacteria in high-
temperature aging.

Heatmap analysis of beef bacterial 
communities

A genus-level clustering heatmap based on the top 30 genera 
in terms of relative abundance was constructed to analyze and 
compare the composition and dynamic changes in microbial 
communities in different samples (Figure  4). The horizontal 
coordinate is the sample name, the vertical coordinate is the genus 
name, and the color gradient of the color block shows the variation 
in the abundance of the different species in the sample, with the 
values represented by the color gradient on the right-hand side of 
the graph. The heatmap demonstrated that in the day 0 sample, 

FIGURE 4

Heatmap of bacterial genera in beef samples found on beef samples aging 14 days at 4°C, aging 6 days at 10°C and aging 5 days at 15°C.
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FIGURE 5

Fingerprint spectra of volatile compounds in beef samples different stages aging at 4, 10, and 15°C.

Carnobacterium and Vagococcus clustered together with high 
relative OTU abundances during aging. Carnobacterium, 
Pseudomonas, and Leuconostoc clustered together with high 
relative OTU abundances in Day14_4. Lactobacillus clustered 
together with high relative OTU abundance on Day6_10 during 
aging. Hafnia–Obesumbacterium was present at higher relative 
contents in the Day5_15 sample. The bacterial compositions that 
gradually stabilized at late storage stages were generally dominated 
by bacteria that contribute largely to meat spoilage (Nychas 
et al., 2008).

Characteristic volatile fingerprints

A characteristic fingerprint corresponding to each aging 
temperature was established by using gallery plots, and the 
difference and specific distribution of volatile compounds between 
different aging temperatures were compared intuitively (Figure 5). 
The Gallery Plot plugin of LAV software was used to compare the 
differences in the volatile compounds in beef samples at aged at 
different temperatures comprehensively. The colors of the plots 
indicated the signal strengths of the compounds: the darker the 
signal, the weaker the signal intensity and vice versa (Huang et al., 
2022). The signal intensities of most volatile compounds 
significantly increased after aging at high temperatures, indicating 

that the levels of most volatile compounds were positively 
correlated with the aging temperature.

As shown in Figure  5, all the peaks to be  analyzed in the 
obtained two-dimensional GC–IMS spectrum were automatically 
generated on the basis of fingerprints. Each row in the figure 
represents all signal peaks selected in a beef sample, and each 
column in the figure represents the signal peaks of the same 
volatile organic compounds in different beef samples. The 
substances in the red box in the picture had the highest content 
on 0 day compared to other groups. This substance included 
benzaldehyde, which decreased during aging at 4, 10, or 
15°C. Benzaldehyde, is found in hyacinth, lemongrass, and 
rockrose and is a volatile compound that potentially results from 
the Strecker degradation of tyrosine, which has a bitter almond, 
cherry, and associated with a strong almond odor (Ma et  al., 
2012), if the level are raised too high, the undesirable flavor may 
result. The content of the substances in the yellow box in Figure 5 
increased significantly in the 4°C_14D sample (p < 0.05). These 
substances included 2-heptanone, isobutyl butyrate, 1-octen-3-ol, 
and 1-pentanol. 2-Heptanone can produce a buttery, creamy, and 
cheesy aroma; it can be used as a spice raw material and is critical 
to aging flavor (Resconi et al., 2012). Isobutyl butyrate exists in 
pineapples and other fruits naturally and has a pleasant aroma. It 
is potentially a characteristic compound of fresh beef. 1-Octen-
3-ol is positively correlated with umami flavor and is a volatile 
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alcohol with a mushroom-like aroma that is found in dry-cured 
ham and dry sausage (Tansawat et al., 2013). Positive attributes, 
such as umami and juicy flavors in grain-fed steaks, are correlated 
with 1-octen-3-ol (Song et al., 2011). 1-Pentanol has a strong, 
sweet, balsamic aroma (Liu et al., 2022). Meanwhile, the dominant 
bacterial community was Carnobacterium, including that could 
produce these VOCs at low temperatures. The substances in the 
orange box in Figure 5 have the highest content in the 15C_3D 
sample. They included butanal and ethanol. Butanal is found in 
many essential oils, such as flowers, fruits, and dairy products, and 
has an ethereal fragrance when extremely diluted (Lee et  al., 
2019). Ethanol is the main component of wine, ethanol can also 
be  used to make acetic acid, beverages, baked goods, and it 
generally have a low odour threshold, and thus they partly 
contribute to the flavour of cooked beef, what’s more, butanal and 
ethanol was found to decrease or remain stable at chill 
temperatures, whilst an increase was observed at elevated 
temperatures in vacuum packaged conditions. The substances in 
the green box in Figure 5 have the highest content in the 15C_5D 
sample compare to other groups. They included 2-methylbutanal, 
3-methylbutanal, 3-methylbutanol, 2-methyl-propanal, isoamyl 
acetate, phenylacetaldehyde and 1-penten-3-one, and 2-butanone. 
2-Methylbutanal is described as having a brothy, grainy or boiled 
meat aroma, which improves the sensory value of products (Lee 
et al., 2021). 3-Methylbutanal is a colorless and transparent liquid 
that is used as an intermediate in the production of flavors 
(Mansur et al., 2019). 2-Methylbutanal and 3-methylbutanal are 
Strecker degradation products of isoleucine and leucine, 
respectively (Saraiva et al., 2014). 2-Methyl-propanal is used in the 
synthesis of cellulose esters and flavors and is commonly applied 
in baked goods and meat products (Utama et al., 2018). Aldehydes, 
in general, are unstable and can easily react with other compounds 
to produce compounds with different flavors, it have a low odor-
detection threshold; hence, even a trace amount can contribute to 
meat flavor, and, consequently, they are the most interesting of the 
lipid-derived volatiles (Legako et al., 2016). Isoamyl acetate has 
banana and pear aromas and is widely used in the production of 
various fruity edible flavors (Ercolini et  al., 2009). 
Phenylacetaldehyde is naturally found in chicken, bread, rose oil, 
and citrus oil and confers beef with a clear and evocative aroma 
that differs in accordance with quality grade; specifically, it is 
higher in prime and low-choice steaks than in standard steaks 
(Zhu et al., 2016). 1-Penten-3-one is mainly used as a spice for 
food and in onion, garlic, and mustard flavoring; it has been 
identified as the main contributor to the integral flavor of beef due 
to its high odor activity values (Vilar et al., 2022). 2-Butanone is 
an intermediate in the preparation of pharmaceuticals, fragrances, 
antioxidants, and certain catalysts (Pavlidis et  al., 2019). 
Meanwhile, the dominant bacterial community was Hafnia–
Obesumbacterium, which can use the nutrients in beef to produce 
these compounds (Argyri et  al., 2015). It could conclude that 
different aging temperatures produce different flavor profiles, on 
the one hand, these compounds could be  formed protein 
degradation or oxidation of fatty acids; on the other hand, some 

bacteria studied in this work have probably contributed to 
different levels in the accumulation/depletion of the measured 
metabolic compounds.

Conclusion

The results suggested that high-temperature (10 and 15°C) 
aging had a significantly shorter aging time than conventional 
aging (4°C) without affecting the safety of the product. This 
statement is supported by the practical equivalence of the 
surface color, TVB-N content, microbial counts, and flavor 
traits of the beef samples aged at high temperatures to those of 
the control samples. In this study, combining the total number 
of colonies and shear force values, it could be suggested that 
the aging time should be  set 6 days at 10°C or 5 days at 
15°C. On the basis of this new information, the beef industry 
is recommended to adopt shorter aging periods using slightly 
elevated temperatures 10 °C or and 15°C to capitalize on the 
advantages of a condensed aging period.
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