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Analysis of serum antioxidant 
capacity and gut microbiota in 
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Introduction: The hypoxic environment at high altitudes poses a major 

physiological challenge to animals, especially young animals, as it disturbs 

the redox state and induces intestinal dysbiosis. Information about its 

effects on Holstein calves is limited. 

Methods: Here, serum biochemical indices and next-generation sequencing 

were used to explore serum antioxidant capacity, fecal fermentation 

performance, and fecal microbiota in Holstein calves aged 1, 2, 3, 4, 5, and 

6 months in Tibet.

Results and Discussion: Serum antioxidant capacity changed with age, with 

the catalase and malondialdehyde levels significantly decreasing (p  < 0.05), 

and superoxide dismutase levels significantly increasing (p  < 0.05) with 

age. No significant differences (p  > 0.05) in total volatile fatty acid levels 

were noted between the groups. In all groups, Firmicutes, Bacteroidetes, 

and Actinobacteria were the three most dominant phyla in the gut. Gut 

microbial alpha diversity significantly increased (p  < 0.05) with age. Principal 

coordinate analysis plot based on Bray–Curtis dissimilarity revealed 

significant differences (p  = 0.001) among the groups. Furthermore, the 

relative abundance of various genera changed dynamically with age, and 

the serum antioxidant capacity was associated with certain gut bacteria. 

The study provides novel insights for feeding Holstein calves in high-

altitude regions.
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1. Introduction

The Tibetan Plateau, the world’s highest plateau (Gu et  al., 2007), occupies a 
quarter of the Chinese land area (Wu, 2001). Its unique environment and climate are 
characterized by low temperature, strong ultraviolet radiation, and low atmospheric 
partial oxygen pressure (Guo et  al., 2014). This poses a major challenge to local 
animals (Cheviron and Brumfield, 2012; Guo et  al., 2014). Hypoxia causes 
inflammation, which affects immune function, leading to altitude sickness and 
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chronic diseases, such as pulmonary hypertension (Pham 
et  al., 2021). Furthermore, hypoxic conditions affect redox 
homeostasis (Samanta and Semenza, 2017). Hypobaric 
hypoxia negatively affects the body’s redox reactions, leading 
to the production of reactive species, which disrupt cellular 
components (such as lipids and proteins), leading to 
degradation of the antioxidant system (Strapazzon et al., 2016; 
Mrakic-Sposta et  al., 2021). In addition, oxidative stress 
contributes to the development of inflammation, termed 
oxidative inflammation, which may affect the animal’s health.

Calves are important to Tibetan economy. Calf development 
is considered one of the most important issues affecting the health 
and profitability of dairy cow (Soberon et al., 2012). Calf growth 
and development are influenced by energy intake and genetic 
potential (Lohakare et  al., 2012). Calves are functional 
monogastric animals at birth, and their nutrient and energy intake 
mainly depend on the intake of milk or milk replacer until the 
rumen function matures (Khan et al., 2016; Steele et al., 2016; 
Korst et al., 2017).

The intestinal microbiota is considered an endocrine organ, 
and the molecules produced by the gut microbes affect the host’s 
health. Intestinal microbiota is critical for the development and 
differentiation of the gut mucosal epithelium, as well as the 
mucosal immune system (Sommer and Bäckhed, 2013). Hence, 
it plays a key role in immune system stimulation, and metabolic 
and nutritional homeostasis (Ayalew et al., 2021). In addition, 
colonization of young ruminants, such as goat (Zhuang et al., 
2020), yak (Guo et al., 2020), and pig (Ma et al., 2019), by gut 
microorganisms affects the production performance and 
lifelong health of these ruminants. Guo et al. (2020) reported 
the development and maturation of rumen microbiome 
throughout the life of yak bred in the highlands. However, there 
are only a few reports on the establishment of gut microbiota in 
dairy cow in high-altitude regions during early animal 
development. Furthermore, the relationship between serum 
antioxidant capacity and gut microbiota in calves in high-
altitude regions is not known.

In the current study, we analyzed the serum biochemical 
indices and fecal microbiota in Holstein calves (holsatia) bred 
in Tibet, aged from 1 month to 6 months, to address the above-
mentioned knowledge gaps. We hypothesized that the serum 
antioxidant capacity and gut microbiota would change with 
age and that the gut microbiota contributes to serum 
antioxidant capacity at high-altitude regions. Hence, 
we  compared the serum antioxidant capacity, fecal 
fermentation performance, and gut microbiota in Holstein 
calves of different ages grow in high-altitude regions to explore 
the resistance mechanism to high-altitude hypoxic 
environments in calves. To our knowledge, this is the first 
study on the serum antioxidant capacity and gut microbiota 
in Holstein calves at a high altitude; furthermore, it provides 
new insights into the growth and development of ruminants 
at high altitudes.

2. Materials and methods

The study procedures were approved by the Ethical Committee 
of China Agricultural University’s College of Animal Science and 
Technology (permit number: AW22121202-1-2).

2.1. Study region, animals, and 
management

In August 2021, 36 male Holstein calves were selected according 
to age from a herd of 365 calves that were born in 2021, had the same 
father, and were raised at Zhizhao Farm (Lhasa, China). Calves with 
a similar body weight at birth (35.29 ± 1.67 kg) were divided into six 
groups (1, 2, 3, 4, 5, or 6 months of age; M1, M2, M3, M4, M5, and 
M6 groups, respectively) were selected, with six individuals per 
group. Calves in the M1 and M2 groups were maintained in 
individual pens (3.0 m × 1.6 m × 1.8 m; length × width × height). To 
keep the pens clean and dry, oat hay was used as bedding, and it was 
replaced daily. The calves were fed milk three times daily (08:30, 
14:30, and 19:30 h) before weaning; the diet was supplemented with 
starter from 7 days of age. The calves were weaned gradually at 
3 months of age. After weaning, the calves are fed oat hay and the 
starter ad libitum. The composition of the starter was as follows: 
crude protein, 24.08%; ether extract, 4.50%; ash, 11.52%; calcium, 
1.42%; and phosphorus, 0.7% (dry matter based).

2.2. Blood sample collection and analysis

For analysis, 15 ml of blood was collected from the tail root 
using vacuum tubes before morning feeding. The blood samples 
were immediately centrifuged for 10 min at 3000 rpm. The 
obtained serum was immediately placed and stored at −20°C for 
testing. Tumor necrosis factor α (TNF-α), immunoglobulins (Ig)
A, G (IgG), and M (IgM) were analyzed using enzyme-linked 
immunosorbent assay kits (Laibotairui Bioengineering Institute, 
Beijing, China). The GF-D200 automatic biochemical analyzer 
(Jiangsu Zecheng Bioengineering Institute, CLS880, Jiangyin, 
China) was used to determine serum aspartate transaminase 
(AST), alanine transaminase (ALT), and total cholesterol (TC) 
levels. Commercial kits (Nanjing Jian Cheng Bioengineering 
Institute, Nanjing, China) were used to determine the total 
antioxidant capacity (T-AOC), and superoxide dismutase (SOD), 
glutathione peroxidase (GSH-Px), malondialdehyde (MDA), and 
catalase (CAT) levels in the serum. All assays were performed 
according to the manufacturers’ guidelines.

2.3. Fecal sample collection

Some fecal samples from Holstein calves were immediately 
frozen in liquid nitrogen (−196°C) for fecal microbiota analysis 
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and the remaining samples were stored at −20°C for analyzing 
fecal fermentation parameters.

2.4. Volatile fatty acid (VFA) analysis

For VFA analysis, after dilution, the feces were thawed and 
centrifuged at 8000 × g for 15 min at 4°C. VFAs in the supernatant 
were determined using gas chromatography, as described 
elsewhere (Erwin et al., 1961).

2.5. DNA extraction, polymerase chain 
reaction (PCR), and 16S rRNA sequencing

Bacterial DNA was extracted from 1 g of fecal sample using 
the OMEGA kit (Omega Bio-Tek, Norcross, GA, USA), following 
the manufacturer’s instructions. DNA concentration and purity 
were evaluated using the Nanodrop  2000 Spectrophotometer 
(Thermo Scientific, Waltham, USA). To amplify the V3–V4 region 
of the bacterial 16S rRNA gene, primers 338F (5′-ACTC 
CTACGGGAGGCAGCA-3′, forward) and 806R (3′-GGAC 
TACNNGGGTATCTAAT-5′, reverse) were used. The following 
PCR amplification program was used: 5-min denaturation at 
95°C; 28 cycles at 95°C for 45 s, 55°C for 50 s, and 72°C for 45 s; 
and a final extension at 72°C for 10 min. The amplified fragments 
were identified using 2% (w/v) agarose gel electrophoresis, 
purified using the Agencourt AMPure XP kit (Beckman Coulter 
Genomics, Indianapolis, IN, USA), and quantified using PCR 
(ABI 9700; Thermo Fisher Scientific, Waltham, MA, USA). The 
purified PCR products were sequenced following standard 
protocols, using a 2 × 250 bp sequencing kit and Illumina MiSeq 
(Illumina, San Diego, CA, USA).

2.6. Quality control and sequence 
analysis

QIIME 1.8 (Caporaso et al., 2010) was used to filter out 
reads with scores ≤20 (low quality) and reads <200 bp, and to 
remove barcode tags. PEAR 0.9.6 (Zhang et al., 2014) was used 
to combine the sequences and Flash 1.20 (Magoč and Salzberg, 
2011) was used to demultiplex them. UCHIME (UCHIME 
Algorithm) (Edgar et al., 2011) was used to eliminate reads 
and chimeric sequences with a combined length of less than 
230 bp. All sequences were subsampled according to the same 
sample size for further analysis to eliminate errors. Ribosomal 
Database Project classifier (Cole et  al., 2009) was used to 
classify the sequences into operational taxonomic units 
(OTUs) based on a sequence similarity threshold of 97%. 
OTUs were compared with those in the SILVA 128 database 
for bacterial species categorization (Quast et al., 2013). All 
values were obtained using UCLUST to generate a 
representative OTU table (Edgar, 2010).

QIIME 1.8 (Caporaso et  al., 2010) was used to determine 
alpha diversity at the OTU level, including Chao, Shannon, 
Simpson, and Ace indices, and the results were plotted using 
“ggplot2” in R (version 4.0.5) (Wickham, 2009). For beta-diversity 
analysis, a Bray–Curtis dissimilarity matrix was used for principal 
coordinate analysis (PCoA) in R 4.0.5 using the “vegan” package 
(Oksanen et  al., 2016). Functional differences in the fecal 
microbiota in samples were predicted using PICRUST 2 and two 
regions.1

2.7. Statistical analysis

Wilcoxon rank test was used to compare alpha-diversity 
indices among different groups using the “dplyr” package in R 
(Wickham, 2017). The Bray–Curtis dissimilarity matrices were 
analyzed in R, and subsequently, the PCoA analysis was 
performed; the results were displayed using the “ggplot2” tool. 
Kruskal–Wallis H test in R 4.0.5 was used to evaluate the difference 
in relative abundance at the phylum, family, and genus levels, as 
well as the microbiota function, among the six groups. The 
relationship among the core OTUs, age, and fecal fermentation 
parameters was analyzed and visualized using the “Psych” package 
(Revelle, 2018) and the “corrplot” package (Jami et al., 2013) in R.

3. Results

3.1. Effects of growth stage on serum 
biochemical indices

3.1.1. Effects of growth stage on serum 
antioxidant capacity

The results of serum antioxidant capacity analyses are 
presented in Figure  1. CAT activity (Figure  1A) decreased 
significantly (p  < 0.05), whereas there were no significant 
differences (p > 0.05) in GSH-Px activity (Figure 1B) and T-AOC 
(Figure  1E) among the calf groups. However, MDA level 
(Figure 1C) exhibited volatility, which is associated with dietary 
changes. In addition, SOD activity (Figure  1D) increased 
significantly with age (p < 0.05).

3.1.2. Effects of growth stage on other serum 
biochemical indices

As shown in Figures 1F–M, no significant differences in the 
serum IgA, IgG, IgM, and TNF-α levels were detected among the 
groups, indicating a lack of inflammation. In addition, the ALT 
and AST levels significantly increased (p < 0.05) with age, and with 
a major shift between the M3 and M4 growth stages. Furthermore, 
the serum glucose (GLU) and TC levels decreased with age.

1 https://github.com/picrust/picrust2
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3.2. Feces fermentation parameters of 
Holstein calves of different ages

No significant differences were observed among the six groups 
in terms of fecal levels of TVFA, acetate, propionate, butyrate, and 
valerate (p > 0.05), with the acetate to propionate ratio (AP) 
increasing with age (p < 0.05; Figure 2).

3.3. Gut microbiota of Holstein calves of 
different ages

3.3.1. Sequencing metrics of the gut microbiota
Overall, 1,164,140 raw sequences were obtained, with an 

average of 34,260.78 ± 2992.40 (mean ± SD) in each sample. 
Furthermore, an average of 405.61 ± 161.85 OTUs per sample was 
detected at 3% sequence dissimilarity. In addition, the average 
Good’s coverage was 0.997 across all 36samples, implying adequate 
sequence coverage in the samples.

3.3.2. Gut microbiota profiles
We identified 280 genera belonging to 100 families 

representing 16 phyla. As shown in Figure 3, at the phylum level, 
seven bacterial phyla present in all six groups and with relative 
abundance >0.01% were detected. The most dominant phyla were 

Firmicutes (65.94%), Bacteroidetes (29.34%), and Actinobacteria 
(4.03%), followed by Proteobacteria (0.31%), Cyanobacteria 
(0.14%), Spirochaetota (0.13%), and Patescibacteria (0.12%). At 
the family level, nine families present in all six groups and with 
relative abundance >5% were detected. The most dominant 
families were Lachnospiraceae (15.58%), Oscillospiraceae (12.41%), 
and Muribaculaceae (7.95%), followed by Lactobacillaceae 
(6.16%), Eubacterium_coprostanoligenes_group (5.78%), 
Bacteroidaceae (5.65%), Ruminococcaceae (5.49%), and 
Prevotellaceae (5.17%). Furthermore, six bacterial genera present 
in all groups and with relative abundance >5% were detected. The 
top three most abundant genera were Ruminococcaceae_UCG-005 
(10.39%), norank_f__Muribaculaceae (7.95%), and Lactobacillus 
(6.16%), followed by norank_f__Eubacterium_coprostanoligenes_
group (5.78%), Bacteroides (5.65%), and unclassified_f__
Lachnospiraceae (5.50%).

3.3.3. Diversity of fecal microbiota
Shannon (Figure 4A), Simpson (Figure 4B), Ace (Figure 4C), 

and Chao richness indices (Figure  4D) in calves at different 
growth stages were significantly different (p < 0.05). We evaluated 
the core bacteria in all calves and found 168 OTUs that were 
common in all samples (Figure 5A). To evaluate the presence of 
variations in the fecal microbiota in calves at different growth 
stages, we visualized the outcomes of Bray–Curtis dissimilarity 
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FIGURE 1

Effects of growth stage on serum antioxidant capacity and other biochemical indices in calves in Tibet. The following parameters were analyzed: 
(A) catalase (CAT) level; (B) glutathione peroxidase (GSH-Px) level; (C) malondialdehyde (MDA) level; (D) superoxide dismutase (SOD) levels; 
(E) total antioxidant capacity (T-AOC); (F) immunoglobulin (Ig) A level; (G) IgG level; (H) IgM level; (I) tumor necrosis factor α (TNF-α) level; 
(J) glucose (GLU) level; (K) alanine transaminase (ALT) level; (L) aspartate transaminase (AST) level; and (M) total cholesterol (TC) level. The results 
are shown as mean ± SEM. The differences among the six groups are indicated by various letters (p < 0.05); the number of calves in each of the six 
groups was 6.
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analysis using a PCoA plot (Figure 5B). ANOSIM revealed that 
the six groups were statistically different (p = 0.001).

3.3.4. Changes in the fecal bacteria in Holstein 
calves with age

We performed Kruskal–Wallis H test to determine 
significantly different genera (among the 10 most relatively 
abundant genera) between groups (Supplementary Image 1). With 
age, the relative abundance of norank_f__Eubacterium_
corostanoligenes_group increased (p < 0.05); the relative abundance 
of Ruminococcaceae_UCG-005, norank_f__Muribaculaceae and 
Rikenellaceae_RC9_gut_group, unclassified_f_Lachnospiraceae 
increased and then decreased (p < 0.05); the relative abundance of 
Lactobacillus, Bacteroides, and Blautia decreased (p < 0.05); the 
relative abundance of Olsenella and Bifidobacterium increased 
overall (M1–M6 groups), but fluctuated after weaning (M4 group; 
p < 0.05).

3.3.5. Correlation of fecal bacteria with fecal 
fermentative parameters in Holstein calves of 
different ages

We next investigated the potential effect of fecal bacteria on 
the fermentative parameters and serum antioxidant capacity in 
calves. Accordingly, we  performed a correlation analysis 

between serum antioxidant capacity and VFAs, and the relative 
abundance of genera (top 50) using Spearman’s rank correlation 
(Supplementary Image 2). Considering the antioxidant 
capacity, 13 genera were significantly positively correlated 
(|r| > 0.3, p < 0.05) with the SOD level; 1 genus was positively 
associated with T-AOC; and 4 genera were positively correlated 
with the GSH-Px level. Furthermore, 24 genera were 
significantly correlated (p < 0.05) with the MDA level, of which 
16 showed a positive correlation (p < 0.05) and 8 showed a 
negative correlation (p < 0.05). Seven genera were significantly 
correlated (p < 0.05) with the CAT level, of which 4 showed a 
positive correlation (p < 0.05) and 3 showed a negative 
correlation (p < 0.05). Considering VFAs, 3 genera significantly 
correlated (p < 0.05) with acetate levels, of which 2 showed a 
positive correlation (p < 0.05) and 1 showed a negative 
correlation (p < 0.05). Twelve genera were significantly 
correlated (p < 0.05) with the propionate level, of which 4 
showed a positive correlation (p < 0.05) and 8 showed a negative 
correlation (p < 0.05). Furthermore, 13 genera significantly 
correlated (p < 0.05) with the butyrate level, of which 5 showed 
a positive correlation (p < 0.05) and 8 showed a negative 
correlation (p < 0.05). Finally, 10 genera significantly correlated 
(p < 0.05) with TVFAs, of which 5 showed a positive correlation 
(p < 0.05) and 5 showed a negative correlation (p < 0.05).

A

D E

B C

FIGURE 2

Effects of growth stage on fecal levels of volatile fatty acids (VFAs) in dairy calves. The following are shown in the figures: fecal levels of individual 
VFAs (A–C), total volatile fatty acids (TVFA; D), and acetate to propionate ratio (AP; E). The results are presented as mean ± SEM. The differences 
among the six groups are represented by various letters (p < 0.05); the number of calves in each of the six groups was 6.
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3.4. Functional predictions using 
PICRUSt2

The function of gut bacteria in dairy calves of different ages 
was predicted using PICRUST2 and differences in Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway abundance 
among different groups were determined (Table  1). ANOSIM 
revealed the enrichment of six pathways in the six groups (p < 0.05; 
Table  1), with “biosynthesis of amino acids,” “microbial 
metabolism in diverse environments,” “purine metabolism,” 
“pyrimidine metabolism,” “amino sugar and nucleotide sugar 
metabolism,” and “glycolysis/gluconeogenesis” belonging to 
“Global and overview maps,” “Nucleotide metabolism,” and 
“Carbohydrate metabolism,” and all belonging to “Metabolism.”

4. Discussion

As one of the extreme environments, high altitude poses a 
major challenge to animal survival. Thegut microbiota is 
important for the health of ruminants. Understanding the 
establishment of this microbial community and its changes with 
the host’s age is essential for understanding the core microbial 
community and its effect on the host (Ley et al., 2008; Zilber-
Rosenberg and Rosenberg, 2008; Jami et al., 2013). To date, some 
studies have focused on the gastrointestinal microbes of young 
indigenous ruminants, such as yak (Guo et al., 2020), bred at a 

high altitude, but no such data are available for Holstein dairy calf. 
Therefore, we explored the dynamic changes in fecal microbiota 
and serum antioxidant capacity in the early growth stages of 
Holstein calves in Tibet (from 1 month to 6 months of age).

First, we determined the serum antioxidant capacity and other 
serum biochemical indices. The analysis suggested that the serum 
antioxidant capacity (including CAT, MDA, and SOD levels) 
changes between the M3 and M4 growth stages. We interpreted 
this finding to indicate oxidative stress experienced by calves 
because of weaning stress. Unlike the early weaning practiced at 
2 months of age in most areas, the early weaning at high altitudes 
occurs when the calf is 3 months old because of poor living 
conditions. Weaning stress induces oxidative damage, as reported 
previously (Luo et al., 2016; Wei et al., 2017). Weaning of high-
altitude calves results in dual stress of weaning and hypoxia. The 
antioxidant defense system plays an important role under extreme 
stress, and alterations in the CAT, MDA, and SOD levels reveal 
systemic oxidative damage. Hence, weaning led to oxidative injury 
and altered antioxidant enzyme activities. ALT and AST are 
important indicators of liver function, and changes in the AST and 
ALT levels indicate that oxidative stress may lead to liver cell 
damage (Benerji, 2013). In fact, oxidative stress is a common 
mechanism damaging hepatocellular function.

We also detected fluctuations in the serum GLU and fecal 
VFA levels (including acetate, propionate, butyrate, TVFAs, and 
acetate to propylene ratio) in Holstein calves before and after 
weaning, which may be associated with a shift in the way energy 

A

C

B

FIGURE 3

Composition of the fecal bacteria at the phylum (A), family (B), and genus levels (C) in different-age calves in Tibet. Others, bacteria with relative 
abundance ≤0.01%; the number of calves in each of the six groups was 6.
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is supplied. As reported previously, a decrease in the serum 
GLU level with age may be caused by decreased milk provision 
(Hill et  al., 2010). This indicates that the serum GLU level 
decreases with the development of ruminant function in calf 
(Hugi and Blum, 1997). After weaning, the energy in calf is 
mainly derived from VFAs produced via fermentation by 
intestinal microbiota, and it no longer solely depends on the 
intake of milk (Tao et al., 2018). In addition, the production of 
VFAs may be  related to the structure of the intestinal 
microbiota. Therefore, we explored the differences in the gut 
microbiota in calves of different ages. Indeed, we  observed 
significant differences according to age.

Between weaning and 1 year of age, the rumen of dairy cow 
contains adult-like microbiota (Dill-McFarland et  al., 2017). 
Age-related differences in the gut bacteria have also been observed 
in dairy calf. Particularly, weaning stress induces disturbances in 
the gut microbiota in calf (Kim et al., 2012; Devine et al., 2013) In 

the current study, we observed the greatest changes in microbiota 
between the M3 and M4 groups. The relative abundance 
of Ruminococcaceae_UCG-005, norank_f_Muribacuiaceae, 
Lactobacillus, norank_f_Eubacterium_coprostanoligenes_group, 
Bacteroides, unclassified_f_Lachnospiraceae, Blautia, 
Bifidobacterium, Rikenellaceae_RC9_gut_group, and Olsenella was 
affected by weaning. Among those, the relative abundance of 
Ruminococcaceae_UCG-005 increased and stabilized after 
weaning. These bacteria are critical probiotics in the animal 
intestine, and degrade starch and cellulose by secreting copious 
amounts of cellulase and hemicellulase, with the degradation 
products providing energy to the host (Kim et  al., 2012). 
Ruminococcaceae_UCG-005 is strongly linked to chronic 
inflammation, metabolic disorders, and mycotoxin exposure in 
weaned pigs (Mateos et  al., 2018). Furthermore, the relative 
abundance of norank_f__Muribaculaceae and Rikenellaceae_RC9_
gut_group increased and then decreased. Muribaculaceae 

A B

C D

FIGURE 4

Alpha diversity analysis. (A) Shannon index at the operational taxonomic unit (OTU) level. (B) Simpson index at the OTU level. (C) Ace index at the 
OTU level. (D) Chao index at the OTU level. Data are shown as mean ± SEM. Different lowercase letters indicate significant differences among 
different groups (p < 0.05); the number of calves in each of the six groups was 6.
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members are specialists in the fermentation of complex 
polysaccharides (Ormerod et al., 2016; Lagkouvardos et al., 2019) 
and produce propionate as a fermentation end product 
(Smith et  al., 2021). Rikenellaceae_RC9_gut_group degrades 
cellulose and hemicellulose, and can produce propionate, acetate, 
and/or succinate as fermentation end products (Zened et al., 2013; 
Graf, 2014; Rosenberg et al., 2014; Sha et al., 2020).

We also observed that the relative abundance of 
Lactobacillus decreased and the genus ceased to be detectable 
after the M4 stage. Lactobacillus members exert a variety of 
beneficial effects in the host, including affecting antioxidant 
capacity (Lin and Chang, 2000; Shi et  al., 2021). In fact, 
Lactobacillus, as probiotics, increases the serum SOD and 
GSH-Px levels (Martarelli et al., 2011). This suggests that a 
decrease in the relative abundance of Lactobacillus may 
decrease the antioxidant capacity in calves at high altitudes. 
Consistent with this, Lactobacillus and Bifidobacterium 
contribute to the increase in erythrocyte SOD and GSH-Px 
levels, and total antioxidant status (Ejtahed et  al., 2012). 
Furthermore, the relative abundance of norank_f__
Eubacterium_corostanoligenes_group increased in the M1–M3 
growth period, then decreased, and increased again after the 
M4 period, which was associated with decreased TC, as 
previously reported (Madden, 1995). The relative abundance 
of unclassified_f_Lachnospiraceae also fluctuated. This 
bacterium is an important butyrate producer residing in the 
gut (Dahiya et al., 2019).

The relative abundance of Bacteroides and Blautia decreased 
significantly (fluctuating at M4). Bacteroides members are well-
known for their ability to degrade polysaccharides (Lapébie et al., 
2019). Blautia is a novel functional genus with potential probiotic 

components. The relative abundance of Bifidobacterium 
drastically decreased over the M1–M3 period, but then increased 
(and fluctuated) in M4–M6 calves. Bifidobacterium members are 
dominant bacteria that provide beneficial effectors to calves 
during the milk-feeding period Finally, the relative abundance of 
Olsenella increased overall (M1–M6) but fluctuated (Vlková 
et al., 2006) after weaning (the M4 group). Olsenella produces 
VFAs by fermenting starch and glycogen substrates (Göker 
et al., 2010).

Exposure to a hypoxic environment at a high altitude disrupts 
the systemic redox balance and leads to hypoxic oxidative stress 
(Samanta and Semenza, 2017; Gaur et al., 2021), which is related 
to the damage of the intestinal barrier (McKenna et al., 2022; 
Wang et  al., 2022). In the current study, using Spearman 
correlation analysis, we analyzed the relationship between the gut 
microbiota and serum antioxidant capacity. Many bacteria were 
associated with the antioxidant capacity, including members of 
Lachnospiraceae and Ruminococcaceae. These findings suggest that 
supplementation of solid starters at weaning is the main cause of 
changes in the antioxidant status and gut microbiota during the 
growth and development of calves (Zhuang et al., 2020). Increasing 
the abundance of Lachnospiraceae and Ruminococcaceae members 
has been reported to control host oxidative stress in a previous 
study (Uchiyama et al., 2022), which is consistent with the findings 
of the current study.

Further studies are needed to explore the mechanism of 
oxidative damage in calves at high altitudes. The findings of the 
current study suggest that strategies that alter the abundance of 
certain bacteria, such as supplementation of antioxidant additives, 
could be used to regulate hypoxic stress and improve high-altitude 
adaptability of young animals.

A B

FIGURE 5

Flower diagram plot and beta-diversity analysis of the fecal microbiota of calves in different age groups. (A) Flower diagram plot. OTUs present in 
all groups are identified as the core community of all groups. (B) Principal coordinates analysis (PCoA) plots of microbiota in different samples; the 
number of calves in each of the six groups was 6.
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5. Conclusion

In the current study, for the first time, we evaluated the serum 
antioxidant capacity and gut microbiota in Holstein calves at a 
high altitude. The analysis revealed that the serum antioxidant 
capacity and gut microbiota change with calf age. We observed 
that the gut microbiota in each age group change temporally, 
which was related to changes in the diet, growth development, 
and gut microbiota interactions. In addition, based on the 
correlation between serum antioxidant capacity and gut 
microbiota, we identified specific microbes that are related to the 
serum antioxidant capacity. This study provides new insights into 
how reshaping gut microbiota could improve the health and 
production performance of Holstein calves bred at high altitudes.
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TABLE 1 Functional predictions of significantly different KEGG pathways of fecal bacteria at three levels (only level III pathways that were 
significantly different at p < 0.05 and abundances >0.01% are shown).

KEGG_Pathway Group SEM p

Level I/Level II/
Level III

M1 M2 M3 M4 M5 M6

Metabolism 0.769 0.769 0.764 0.771 0.764 0.765 0.0175 0.121

Global and overview 

maps

0.405 0.402 0.406 0.406 0.404 0.406 0.00063 0.156

Biosynthesis of 

secondary metabolites

0.089 0.089 0.091 0.091 0.091 0.091 0.0002 0.092

Biosynthesis of amino 

acids

0.043bc 0.043c 0.046a 0.045abc 0.045abc 0.046ab 0.0004 0.010

Microbial metabolism 

in diverse environments

0.045a 0.044ab 0.043b 0.043b 0.043b 0.043b 0.0001 0.006

Nucleotide metabolism 0.031a 0.030a 0.028b 0.029ab 0.029ab 0.028ab 0.0003 0.002

Purine metabolism 0.017a 0.017ab 0.015c 0.016abc 0.016abc 0.016bc 0.0002 0.001

Pyrimidine metabolism 0.013 0.013 0.012 0.012 0.013 0.012 8.32E-05 0.054

Carbohydrate 

metabolism

0.105 0.102 0.098 0.100 0.100 0.099 0.0006 0.130

Amino sugar and 

nucleotide sugar 

metabolism

0.013 0.012 0.011 0.012 0.012 0.011 0.0001 0.003

Glycolysis / 

Gluconeogenesis

0.013a 0.013ab 0.011b 0.012ab 0.012b 0.011b 0.0002 0.000

Genetic information 

processing

0.087 0.089 0.089 0.087 0.001 0.090 0.0020 0.522

Translation 0.0370 0.038 0.038 0.037 0.038 0.039 0.0002 0.084

Ribosome 0.024 0.025 0.025 0.025 0.025 0.026 0.0001 0.056

Environmental 

information processing

0.056 0.055 0.055 0.053 0.001 0.054 0.0195 0.774

Cellular community—

prokaryotes

0.019c 0.020bc 0.022a 0.020abc 0.022a 0.021ab 0.0002 0.001

Quorum sensing 0.013 0.013 0.015 0.014 0.015 0.014 0.0002 0.006

Differences between four groups are presented in the form of different letter (p<0.05).
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