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Introduction: Widespread Fasciola gigantica infection in buffaloes has caused 

great economic losses in buffalo farming. Studies on F. gigantica excretory and 

secretory products (FgESP) have highlighted their importance in F. gigantica 

parasitism and their potential in vaccine development. Identifying FgESP 

components involved in F. gigantica-buffalo interactions during different 

periods is important for developing effective strategies against fasciolosis.

Methods: Buffaloes were assigned to non-infection (n = 3, as control group) 

and infection (n = 3) groups. The infection group was orally administrated 250 

metacercariae. Sera were collected at 3, 10, and 16 weeks post-infection (wpi) for 

the non-infection group and at 0 (pre-infection), 1, 3, 6, 8, 10, 13, and 16 wpi for the 

infection group. FgESP components interacting with sera from the non-infection 

and infection groups assay were pulled down by co-IP and identified using LC–

MS/MS. Interacting FgESP components in infection group were subjected to 

Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathway and gene 

ontology (GO) functional annotation to infer their potential functions.

Results and discussion: Proteins of FgESP components identified in the non-

infection group at 3, 10, and 16 wpi accounted for 80.5%, 84.3%, and 82.1% of all 

proteins identified in these three time points, respectively, indicating surroundings 

did not affect buffalo immune response during maintenance. Four hundred 

and ninety proteins were identified in the infection group, of which 87 were 

consistently identified at 7 time points. Following GO analysis showed that most of 

these 87 proteins were in biological processes, while KEGG analysis showed they 

mainly functioned in metabolism and cellular processing, some of which were 

thought to functions throughout the infection process. The numbers of specific 

interactors identified for each week were 1 (n = 12), 3 (n = 5), 6 (n = 8), 8 (n = 15), 10 

(n = 23), 13 (n = 22), and 16 (n = 14) wpi, some of which were thought to functions 

in specific infection process. This study screened the antigenic targets in FgESP 

during a dense time course over a long period. These findings may enhance the 
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understanding of molecular F. gigantica-buffalo interactions and help identify 

new potential vaccine and drug target candidates.

KEYWORDS

Fasciola gigantica, co-immunoprecipitation, excretory and secretory products, 
interaction, LC–MS/MS, screening

1. Introduction

Fasciolosis is a widespread zoonotic disease caused by Fasciola 
hepatica and Fasciola gigantica that primarily affects public health 
and economically important livestock. It is considered as one of 
the top  17 neglected tropical diseases (Piedrafita et  al., 2010). 
Fasciola hepatica mainly infects sheep and cattle worldwide, while 
F. gigantica mainly infects buffalo in the subtropic and tropic 
zones (Doy and Hughes, 1984; Chen et al., 2000; Zhang et al., 
2005; Aghayan et  al., 2019; Niedziela et  al., 2021). Since its 
infection of livestock leads to annual economic losses of >$3 
billion worldwide (Calvani and Šlapeta, 2021). In addition, at least 
2.4 million individuals are infected worldwide and 180 million are 
at risk of new infections (Meemon and Sobhon, 2015). Despite 
affecting human and livestock health in an area that represents up 
to 77% of the global population, research interest in F. gigantica 
consistently lags behind that of F. hepatica (Agatsuma et al., 2000), 
and little is known about the factors that contribute to the 
pathogenicity and virulence of F. gigantica.

F. gigantica metacercariae ingestion by the definitive host 
leads to excystation and the release of newly excysted juveniles 
(NEJs) that burrow through the duodenal wall into the 
peritoneum. They then move toward the liver and penetrate the 
liver capsule. The immature flukes migrate through the liver for 
11 weeks, reaching and maturing in the bile ducts for 12–16 weeks 
post-infection (wpi), after which they commence egg laying 
(Calvani and Šlapeta, 2021). The F. gigantica life cycle in definitive 
mammalian hosts largely relies on excretory and secretory 
products (FgESP) since they act as antigens that stimulate humoral 
and cell-mediated immunity and also function in fluke survival 
and host–parasite interactions (El-Ghaysh et  al., 1999; Zhang 
et al., 2006; Novobilsky et al., 2007; Hacariz et al., 2011; Wang 
et  al., 2021). Some FgESP components, such as cathepsin L1, 
cathepsin B, saposin-like protein 2 (SAP-2), have been identified 
to identify potential vaccine candidates (Chantree et al., 2013; 
Kueakhai et al., 2013, 2015).

Previous proteomic studies have shown that the FgESP release 
profile varies across three developmental stages: the NEJ 24 h post-
excystment, immature fluke 21 days post-infection (immature), and 
adult (Lalor et al., 2021). In the early infection stage, NEJs secrete a 
range of stage-specific peptidases and proteolytic-related proteins to 
break down extracellular matrix components that maintain tissue 
integrity and participate in fluke invasion (Di Maggio et al., 2019; 
Davey et al., 2022). During the liver migratory phase, immature fluke 

secretions are dominated by peptidases involved in blood digestion, 
cathepsin peptidases, and their inhibitors to support tissue 
penetration and blood feeding (Lalor et al., 2021). Once adults arrive 
at the bile duct, they feed on and detoxify bile components by 
expressing cathepsin L and B peptidases, enzymes, peptidase 
inhibitors, legumain, helminth defense molecules, and glycoproteins 
(Meemon et al., 2004; Ghosh et al., 2005; Adisakwattana et al., 2007; 
Sansri et al., 2013; Ryan et al., 2020; Cwiklinski and Dalton, 2022), 
some of which function in immunoregulation (Ticho et al., 2020). 
Therefore, it is vital to identify the FgESP components produced by 
F. gigantica at different developmental stages to understand 
molecular buffalo-F. gigantica interactions and the F. gigantica 
development process in buffalo. However, difficulties in obtaining 
parasites at different developmental stages in vivo and in vitro make 
it impossible to obtain and study FgESPs at different developmental 
stages. Consequently, FgESPs produced by adults, which can be easily 
obtained, were identified in buffalo serum during different 
F. gigantica infection periods to identify changes in them.

Huang first explored the interaction of FgESP with buffalo 
serum at three-time points (6, 10, and 14 wpi; Huang et al., 2019a). 
Considering the complex interaction mechanisms between 
F. gigantica and buffalo at larval and adult stages, it is still required 
to conduct continuous and periodic observations concerning host-
pathogen interactions. Furthermore, the recent completion of 
genome and transcriptome sequencings (Zhang et  al., 2017; 
Pandey et al., 2020; Luo et al., 2021) enables us to obtain more 
protein sequence information (UniProt F. gigantica database; 
downloaded on 2021/11/19) of F. gigantica in public databases. The 
sera of F. gigantica-infected buffalo were collected at seven time 
points (1, 3, 6, 8, 10, 13, and 16 wpi) and co-immunoprecipitated 
(co-IP) to pull down FgESP components that interacted with them. 
These components were characterized by liquid chromatography–
tandem mass spectrometry (LC–MS/MS) and bioinformatics. This 
approach can be used to analyze specific proteins and provide a 
reliable basis for the screening of diagnostic antigens of F. gigantica.

2. Materials and methods

2.1. Preparation of buffalo serum 
representing different infection periods

Fasciola gigantica metacercariae were collected from Galba 
pervia experimentally infected with miracidia, encysted on 4 cm2 
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polythene strips, and stored in distilled water at 4°C until required. 
Each metacercariae batch was examined for viability and 
then counted.

Six 6-month-old buffaloes of Murrah, Nili-Ravi, 
Mediterranean, and their crossbreds with indigenous buffaloes in 
Guangxi (China) were randomly assigned to non-infection (A1, 
A2, and A3) and infection (B1, B2, and B3) groups, with three in 
each group (Supplementary Table S1). They were stall-fed on a 
balanced diet in the dairy of the Buffalo Research Institute, 
Chinese Academy of Agricultural Sciences, and Guangxi Zhuang 
Nationality Autonomous Region. They were confirmed free from 
fluke infection through indirect FgESP enzyme-linked 
immunosorbent assays (ELISA; Supplementary Table S2) and 
coprological examination (Zhang et  al., 2006). In week 0, the 
infection group was given a gelatine capsule containing 250 viable 
F. gigantica metacercariae, while the non-infection group were 
mock-inoculated with 0.85% sodium chloride solution without 
metacercariae, the mean numbers of flukes recovered were 
55.5 ± 14.1 (22.2 ± 5.6 of infection dose) in infection group (Wang 
et al., 2022b). Whole blood was collected from the non-infection 
(3, 10, and 16 wpi) and infection (0, 1, 3, 6, 8, 10, 13, and 16 wpi) 
groups for serum preparation and stored at −80°C until needed.

2.2. FgESP preparation

FgESPs were prepared as previously described (Novobilský 
et al., 2007). Briefly, adult F. gigantica were collected from infected 
buffaloes’ livers and washed three times in warm phosphate-
buffered saline (PBS, pH 7.2) to remove the residual material. 
Next, flukes were incubated in sterile Roswell Park Memorial 
Institute (RPMI) 1,640 media supplemented with antibiotics and 
antimycotics (10,000 UI/ml penicillin G and 10 mg/ml 
amphotericin B) at 37°C for 2 h. Then, flukes were transferred into 
sterile RPMI 1640 media and incubated at 37°C for a further 5 h. 
After incubation, the supernatant was centrifuged at 2,500 g for 
30 min at 4°C and then filtered through a 0.22 μm nylon filter. 
Finally, the supernatant was concentrated, freeze-dried into a 
powder, and stored at −80°C. Before use, the powder was 
dissolved in deionized water. Its protein concentration was 
determined using a Bicinchoninic Acid (BCA) Assay Kit (Beijing 
Solarbio Science & Technology Co., Ltd., China).

2.3. Co-IP of FgESP-antibody binding 
proteins

The Protein A/G Plus-Agarose Immunoprecipitation Kit 
(Santa Cruz Biotechnology, USA) was used to pull down the 
FgESP-serum antibody binding proteins according to the 
manufacturer’s instructions. For the non-infection group, 5 mg of 
FgESPs was incubated with 1 ml of serum (A1, A2, and A3 at 3, 10, 
and 16 wpi) and 20 μl of Protein A/G Plus-Agarose Beads at 4°C 
for 2 h. Next, pellets were collected by centrifugation at 1,000 g and 

4°C for 5 min. Then, the pellets were washed three times with 
500 μl PBS and centrifugation at 1,000 g and 4°C for 5 min. After 
the final washing, the sediment was resuspended in 50 μl PBS, and 
10 μl was used for sodium dodecyl sulfate-polyacrylamide gel 
electrophoresis (SDS-PAGE) analysis. The remaining 40 μl was 
used for LC–MS/MS identification.

For the infection group, 5 mg of FgESPs was precleared 
(negative serum and FgESP pull down non-specific interaction 
proteins through Co-IP) by incubation with 1 ml of negative (week 
0) serum and 20 μl of Protein A/G Plus-Agarose Beads at 4°C for 
2 h. After pelleting the beads by centrifugation at 1,000 g and 4°C 
for 5 min, the supernatant was transferred and divided equally into 
three fresh tubes. Next, 500 μl of corresponding buffalo sera (B1, 
B2, and B3 at 1, 3, 6, 8, 10, 13, and 16 wpi) was added to each tube 
with 20 μl of Protein A/G Plus-Agarose Beads and incubated at 
4°C overnight. The pellet was collected by centrifugation at 1,000 g 
and 4°C for 5 min. The pellets were washed three times with 500 μl 
PBS and centrifugation at 1,000 g and 4°C for 5 min. After the final 
washing, sediments were resuspended in 50 μl PBS, and 10 μl was 
used for SDS-PAGE analysis. The remaining 40 μl was used for 
LC–MS/MS identification.

2.4. In-solution trypsin digestion

Liquid mass spectrometry (LMS) was performed by gel 
chromatography, and the protein solution was conducted to 
SDS-PAGE, then the targets band was extracted from the gel and 
cut into 0.5 mm cubes. Next, the decolorized gel was washed three 
times with acetonitrile solution until gelatinous particles were 
completely white. Then, 500 μl of 10 mM dithiothreitol was added 
and incubated at 56°C for 30 min. Next, 500 μl of a decolorizing 
solution was added and mixed at room temperature for 10 min. 
Then, the gelatinous particles were centrifuged at 3,000 g to 
remove the supernatant. Next, 500 μl of 55 mM iodoacetamide was 
added and incubated for a further 30 min at room temperature 
before being centrifuged at 3,000 g. Then, 500 μl of decolorizing 
solution was added and incubated for 10 min at room temperature 
before being centrifuged at 3,000 g to remove the supernatant. 
Next, 500 μl of acetonitrile was added until the micelles were 
completely whitened and then vacuum-dried for 5 min. Then, 
trypsin was added according to the gel volume and incubated in 
an ice bath for 30 min. Next, 25 mM ammonium bicarbonate (pH 
8.0) was added and incubated at 37°C overnight. Then, 300 μl of 
extraction solution (60% acetonitrile and 5% formic acid) was 
added and sonicated for 10 min. Finally, the solution was 
centrifuged at 3,000 g, and the supernatant was collected and 
vacuum-dried.

2.5. LC–MS/MS analysis

The sample was dissolved with 20 μl of 0.2% trifluoroacetate, 
centrifuged at 10,000 rpm for 20 min, and dried with a vacuum 
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concentrator (LaboGene, SCAN SPEED 40, Denmark). Samples 
were then adjusted to 1 μg/μL using the machine’s buffer. The 
sample volume was set to 5 μl, and the collection scan mode was 
set to 60 min. In the sample, we scanned for peptides with a mass-
to-charge ratio of 350–1,200. The mass spectrometry data was 
collected using the Triple TOF 5600 + LC/MS system (AB SCIEX, 
USA). The peptide samples were dissolved in 2% acetonitrile with 
0.1% formic acid and analyzed using the Triple TOF 5600 Plus 
mass spectrometer coupled with the Eksigent nanoLC system (AB 
SCIEX, USA). The peptide solution was added to the C18 capture 
(3 μm; 350 μm × 0.5 mm; AB Sciex, USA) and C18 analytical 
(3 μm; 75 μm × 150) columns with a 60 min time gradient and a 
300 nl/min flow rate for gradient elution. The two mobile phases 
were buffers A (2% acetonitrile, 0.1% formic acid, and 98% water) 
and B (98% acetonitrile, 0.1% formic acid, 2% water). For 
information-dependent acquisition, the MS spectrum was 
scanned with a 250 ms ion accumulation time, and the MS 
spectrums of 30 precursor ions were acquired with a 50 ms ion 
accumulation time. The MS1 spectrum was collected in the range 
350–1,200 m/z, and the MS2 spectrum was collected in the range 
100–1,500 m/z. The precursor ion dynamic exclusion time was set 
to 15 s.

2.6. Data analysis

The raw MS/MS files were submitted to ProteinPilot 
(version 4.5,1 SCIEX, Redwood City, CA, USA) for analysis. 
ProteinPilot’s Paragon algorithm was used to search the 
UniProtKB-A1E5T4 (A1E5T4_FASGI) database (access time is 
2021/11/19) and identify proteins using the following 
parameters: TripleTOF 5,600, cysteine modification with 
iodoacetamide, and biological modification as the ID focus. The 
identified protein results were subject to certain filtering 
criteria. Peptides with an unused score > 1.3 (credibility of 
>95%) were considered credible, and proteins containing at ≥1 
unique peptide were retained.

3. Results

3.1. Fasciola gigantica infection 
confirmation

Fasciola gigantica infection was confirmed in the three 
buffaloes in the infection group based on positive indirect FgESP-
based ELISA findings 2 wpi. F. gigantica eggs were also detected 
in the faeces between 12 and 14 wpi. In addition, autopsies at 16 
wpi found livers from the infection group to show obvious gross 
pathological lesions, and adult flukes were detected and the mean 
numbers of flukes recovered were 55.5 ± 14.1 (22.2 ± 5.6 of 

1 https://sciex.com.cn/products/software/

infection dose), indicating established infections (Wang et  al., 
2022a). All buffaloes in the non-infection group had negative 
indirect FgESP-based ELISA findings.

3.2. SDS-PAGE confirmation

SDS-PAGE indicated that serum-derived antibodies could 
recognize and pull down specific FgESP components at different 
infection periods in the non-infection and infection groups 
(Figure 1). The molecular weights of majority of specific proteins 
identified and pulled down by non-infection groups ranged from 
25.0 kDa to 116.0 kDa, while infection group ranged from 
18.41 kDa to 116.0 kDa.

3.3. LC–MS/MS analysis of non-infection 
and infection groups

In the non-infection group, individual buffalo were applied 
to analyze the percent of interacting proteins in three stages of 
infection: early (3 wpi), middle (10 wpi) and late (16 wpi), and 
the effect of external environment on the experiment was 
evaluated by the percentage of the number of shared proteins 
identified in the three stages compared with the total number of 
proteins in the three stages. A1W3:318/395 = 80.5%; 
A1W10:318/426 = 74.6%; A1W16:318/416 = 76.4%, A2 and A3 
were also displayed (Table 1).

Overall, 509, 533, and 519 specific proteins were identified in 
buffaloes A1, A2, and A3, of which 419 were identified in all three, 
accounting for 82.3, 78.6, and 80.7% of all proteins identified at 3, 
10, and 16 wpi, respectively (Table 2; Figure 2). As total of 632 
proteins were identified in all three buffaloes, 3 wpi accounting for 
80.5% of all proteins identified, 10 and 16 wpi accounting for 84.3, 
and 82.1% of all proteins identified, respectively (Table  2; 
Supplementary Table S3).

In the infection group, 490 specific proteins were identified 
across all examined wpi. The numbers identified were 171 (1 
wpi), 109 (3 wpi), 186 (6 wpi), 230 (8 wpi), 248 (10 wpi), 251 (13 
wpi), and 237 (16 wpi). Overall, 87 proteins were identified 
consistently across all examined wpi. The numbers of specific 
proteins to each wpi were 12 (1 wpi), 5 (3 wpi), 8 (6 wpi), 15 (8 
wpi), 23 (10 wpi), 22 (13 wpi), and 14 (16 wpi), respectively 
(Figure 3).

3.4. Analysis of consistently detected 
proteins in the infection group

Gene Ontology (GO) classification was used to investigate 
the biological function of the 87 proteins consistently identified 
in the infection group. They were clustered into the “biological 
process,” “cellular component,” and “molecular function” 
categories. Within the “biological process” category, proteins 
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clustered in the “cellular process” (25.8%), “metabolic process” 
(19.1%), “biological regulation” (11.5%), “developmental process” 
(9.6%), “response to stimulus” (7.7%), and “multicellular 

organismal process” (6.7%) subcategories. Within the “cellular 
component” category, the proteins clustered in the “cellular 
anatomical entity” (81.2%) and “protein-containing complex” 
(18.8%) subcategories. Within the “molecular function” category, 
the proteins mainly clustered in the “binding” (46.0%) and 
“catalytic activity” (41.6%) subcategories, with other subcategories 
accounting for much smaller proportions (Figure  4A; 
Supplementary Table S4).

Kyoto Encyclopedia of Genes and Genomes (KEGG) 
annotations suggested that the most abundant pathways 
represented by the 87 proteins were “global and overview 
maps,” “amino acid metabolism,” and “carbohydrate 
metabolism” in “metabolism,” followed by “cell growth and 
death” in “cellular processes” (Figure  4B; Table  3). 
Furthermore, 24 of the 87 proteins were annotated in more 
than one KEGG pathway (Supplementary Table S4). These 
included glycometabolism-related proteins, such as 
phosphoglucomutase, glutamate dehydrogenase, 
UTP-glucose-1-phosphate uridylyltransferase, fructose-
bisphosphate aldolase, and malate dehydrogenase, which were 
annotated in ≥5 KEGG pathways. In addition, 14–3-3 proteins 
(Chaithirayanon et  al., 2004; Tian et  al., 2018), ferritin 
(Caban-Hernandez et al., 2012), Fh5 (Rossjohn et al., 1997), 
and heat shock proteins (HSPs; Moxon et al., 2010) were also 
annotated in KEGG pathways.

The subcellular localizations of the 87 proteins were 
cytoplasmic (35.8%), cytoplasm and nucleus (21.9%), and 
mitochondrial (14.6%; Figure 4C; Supplementary Table S4).

FIGURE 1

SDS-PAGE analysis of buffalo serum cocultured with FgESPs during different infection periods. The numerical value above represents the serum’s 
wpi. The capital letter below represents the ID of buffaloes from the non-infection (A1, A2, and A3) and infection (B1, B2, and B3) groups.

TABLE 1 The percent of shared number accounting number of specific week in the non-infection group buffaloes.

3&10&16 wpi 3 wpi 10 wpi 16 wpi

Shared 
number

Number (N3) Percent (%) 
shared / N3

Number 
(N10)

Percent (%) 
shared / 

N10

Number 
(N16)

Percent (%) 
shared / 

N16

A1 318 395 80.5 426 74.6 416 76.4

A2 313 418 74.9 416 74.2 425 73.6

A3 299 355 84.2 413 72.4 409 73.1

FIGURE 2

A Venn diagram showing the number of overlapping proteins 
pulled down by non-infection group’s buffalo serum using the 
FgESPs.
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3.5. Specific proteins detected in the 
infection group

Partial proteins detected in FgESPs from the buffaloes’ sera 
single and multiple wpi are shown in Supplementary Table S5. 
Since this study has described or clustered these proteins into 
specific KEGG pathways, their functions, such as calcium 
binding, could be inferred. Complete lists of proteins identified 
at a single wpi or across multiple wpis are provided in 
Supplementary Tables S6, S7.

4. Discussion

This study used SDS-PAGE to confirm the co-IP assay. The 
non-infection control group showed that many identified proteins 
were shared across time points (3, 10, and 16 wpi), suggesting that 
the buffaloes’ surroundings did not affect their immune response 
during maintenance. While we identified numerous proteins in 
the infection group already reported with F. gigantica, 

we described some unique proteins associated with F. gigantica 
and used KEGG database and subcellular localization analyses to 
infer their potential functions.

KEGG analysis of the 87 proteins continuously identified in the 
infection group showed that some are associated with various 
signaling pathways (Table 3), including cytochrome-P450-related 
drug metabolism (Fh51, prostaglandin-H2 D-isomerase, and 
glutathione transferase), hippo signaling (cardiac muscle alpha-
actin), estrogen signaling (HSP90 alpha [HSP90α]), interleukin 
(IL)-17 signaling (HSP90α), Th17 cell differentiation (HSP90α), 
phosphoinositide 3-kinase (PI3K)-protein kinase B (AKT) signaling 
(HSP90α), nucleotide-binding oligomeric domain (NOD)-like 
receptor (NLR) signaling (HSP90α), forkhead box O (FOXO) 
signaling (phosphoenolpyruvate carboxykinase), Wnt signaling 
(cAMP-dependent protein kinase catalytic subunit alpha), and 
longevity regulation (activation protein theta polypeptide).

Anthelmintics can be neutralized or bio-transformed jointly or 
independently by three protein-level defense systems, termed phases 
I to III (Cvilink et al., 2008). In vertebrates and most invertebrates, 
the phase I pathway is oxidative via the cytochrome P450 superfamily 

TABLE 2 The percent of shared number accounting the number of specific week and the number of specific weeks accounting the number of all 
periods in the non-infection group.

wpi Shared number Number of 
specific week 

(N1)

Percent (%) 
shared / N1

Number of three 
periods (N2)

Percent (%) N1 / 
N2

3 419 509 82.3 632 80.5

10 533 78.6 84.3

16 519 80.7 82.1

FIGURE 3

An UpSet diagram showing the number of unique and shared proteins in the infection group across 1, 3, 6, 8, 10, 13, and 16 wpi.
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(Brophy et al., 2012). However, parasitic helminths are much less able 
to neutralize external toxins (xenobiotics) than their mammalian 
hosts (Cvilink et  al., 2009), potentially reflecting their lack of 
important phase I  cytochrome P-450-dependent detoxification 
components. Studies have shown that Glutathione-S-transferase 
(GST), ATP-binding cassette (ABC), fatty acid-binding protein and 
adenosine deaminase (ADA) in the excretory products of fluke 
functions in detoxification during the parasitic process (Morphew 

et al., 2007; Kumkate et al., 2008; Kalita et al., 2017; Rehman et al., 
2020), and the alteration of ADA activity could induce the host 
immune responses switch to Th-2 type and facilitate the 
establishment of flukes within their host (Rehman et al., 2021). In 
addition to the above proteins, KEGG analysis in the present study 
showing that Fh51, prostaglandin-H2 D-isomerase, and glutathione 
transferase has been identified and clustered to cytochrome-P450-
related xenobiotic (drug) metabolism, indicating these three proteins 

A

B C

FIGURE 4

Analysis of the 87 proteins consistently identified in the infection group. (A) GO annotation clustered the proteins into three categories: molecular 
function, cellular component, and biological process. GO annotation and classifications are shown based on secondary names. While the 
horizontal axis represents protein numbers, the vertical axis represents GO secondary names. (B) KEGG pathway protein annotation and its 
corresponding category in the KEGG database are shown in different colors. While the horizontal axis represents protein numbers, the vertical axis 
represents the KEGG class names. (C) Protein subcellular localization. While the horizontal axis represents subcellular classification, the vertical 
axis represents protein numbers.
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may also involve in detoxification during F. gigantica parasitism 
(Alirahmi et al., 2010; Kalita et al., 2019).

As a highly conserved molecular chaperone protein, HSP90 
involved in signal transduction, cell cycle control, stress management 
and folding, degradation, and transport of proteins (Johnson, 2012; 
Roy et al., 2012; Gillan and Devaney, 2014; Hoter et al., 2018; Zininga 
et al., 2018; Biebl and Buchner, 2019; Backe et al., 2020). HSP90 also 
has been thought involved in host immune system modulation via 
platyhelminth secretomes (Liu et al., 2009; Xu et al., 2020). There are 
two cellular subtypes of HSP90, while HSP90α isoforms been 
secreted from cells, HSP90β isoforms (HSP90β) primarily operate 
intracellularly (Jayaprakash et al., 2015). In this study, HSP90α has 
been identified and clustered to interleukin (IL)-17 signaling, Th17 
cell differentiation, phosphoinositide 3-kinase (PI3K)-protein kinase 
B (AKT) signaling, nucleotide-binding oligomeric domain (NOD)-
like receptor (NLR) signaling.

The IL-17 family is a cytokine subgroup that plays crucial 
roles in host defense against microbes and inflammatory disease 
development (Chen et  al., 2017). IL-17E (also called IL-25) is 
associated with type 2 T helper cell (Th2) response, promoting 
Th2-related cytokine production for eosinophil recruitment and 
contributing to host defense against parasitic helminth infections 
(Pan et al., 2001; Ballantyne et al., 2007; Saenz et al., 2008; Kang 
et al., 2012). Recently, researchers found that peripheral blood 
lymphocytes (pBLs) significant upregulated Th2/Th17 type 
immune response at 3 and 42 dpi in buffaloes infected with 
F. gigantica (Hu et al., 2022), which was consistent with previous 

studies showing that the Th1-related response is inhibited early in 
F. gigantica infection, while the Th2-related response favoring 
parasitism is promoted (Molina, 2005; Rodriguez et al., 2017). 
HSP90α may regulates the IL-17 signaling pathway during early 
infection, enabling F. gigantica host parasitism. Therefore, it can 
infer that F. gigantica further participates in the Th2 / Th17 type 
immune response by secreting HSP90α in the IL-17 signaling 
pathway in the early stage of infection, thus regulating the host 
immune developed to a direction conducive to fluke survival.

Although HSP90α was identified in FgESP, it may also 
function in intracellular process. The PI3K-AKT signaling 
pathway regulates the number of neoblast/pluripotent cells in 
Schmidtea mediterranea (Peiris et al., 2016) and is essential for 
enhancing pluripotent cell survival (Hossini et al., 2016). Neoblast/
pluripotent cells were produced and proliferated throughout the 
F. hepatica life cycle (McCusker et  al., 2016; Cwiklinski et  al., 
2018), suggesting its key role in Fasciola growth and development. 
Studies have identified cell surface location-chaperone, and assign 
their functions to the recognition of infectious agents or their 
components and subsequent intracellular signaling (Henderson 
et al., 2006). Considering molecular chaperone characteristic of 
HSP90α, together with its clustering to PI3K-AKT signaling 
pathway, HSP90α was supposed to regulate the Neoblast/
pluripotent through the PI3K-AKT signaling pathway, which 
ultimately regulate the growth and development of F. gigantica. 
Cytoplasmic NLRs function as innate pattern recognition 
receptors, the first line of defense against microbial infection 

TABLE 3 Partial proteins consistently identified in the infection group.

Acc Protein 
description

Peptide Unique 
peptide

Coverage (%) Length Mass

tr|A0A504Z0W5|A0A504Z0W5_

FASGI

Fh51 1 1 15.89 107 1,2544.3

tr|A0A504Z3A0|A0A504Z3A0_

FASGI

Prostaglandin-H2 

D-isomerase

14 14 66.82 211 2,4568.3

tr|A0A504YW63|A0A504YW63_

FASGI

Glutathione transferase 10 10 29.07 313 3,5968.5

tr|A0A504YYH3|A0A504YYH3_

FASGI

Cardiac muscle alpha 

actin

15 1 41.07 375 4,1696.3

tr|A0A504YG42|A0A504YG42_

FASGI

Heat shock protein heat 

shock protein 90 alpha

27 25 40.3 722 8,2427.7

tr|A0A504YUP2|A0A504YUP2_

FASGI

Phosphoenolpyruvate 

carboxykinase (GTP)

36 36 70 550 6,1415.2

tr|A0A504YN48|A0A504YN48_

FASGI

cAMP-dependent protein 

kinase catalytic subunit 

alpha

3 3 14.02 321 37,344

tr|A0A504YX93|A0A504YX93_

FASGI

Tyrosine 

3-monooxygenase/

tryptophan 

5-monooxygenase 

activation protein theta 

polypeptide

15 13 66.27 252 2,8661.1
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(Zhang et  al., 2018) that recognize pathogens, recruit innate 
immune cells, and activate adaptive immune responses (Fukata 
et al., 2009; Cooney et al., 2010). NOD1 and NOD2 proteins can 
be recruited to the plasma membrane and regulate nuclear factor 
kappa-light chain enhancers of activated B-cell signaling and 
mitogen-activated protein kinase (MAPK) pathway (Philpott 
et al., 2014). We hypothesize that HSP90α suppresses host innate 
and adaptive immune responses through the NLR signaling 
pathway, enhancing F. gigantica survival.

Wnt signaling pathway including canonical Wnt β-catenin-
dependent and non-canonical Wnt/Ca2+ signaling pathways 
(Ovchinnikov et al., 2020), which can initiate and regulate various 
cellular activities (including cell proliferation and calcium 
homeostasis), regulate the establishment of the anterior–posterior 
axis (AP axis) and the medial-lateral axis (Petersen and Reddien, 
2009; De Robertis, 2010), also involved in the neural system 
formation (Adell et  al., 2009). While canonical pathway can 
be modulated to alter glucose concentrations in the blood and 
surrounding tissues (Zhou et al., 2014; Chen et al., 2018), the 
non-canonical pathway mediates inflammatory responses, 
leading to suppression of host inflammatory responses by 
inhibiting positive feedback mechanisms (De, 2011).

Some of the 87 proteins consistently identified in the 
infection group were not assigned a KEGG signaling pathway, 
including ferritin. A recent study showed that ferritin in FhESPs 
separated by 2D electrophoresis did not react with infected sheep 
serum, suggesting that ferritin was a non-immunogenic FhESP 
protein (Becerro-Recio et al., 2021). However, this study found 
that ferritin consistently reacted with serum from F. gigantica-
infected buffalo, indicating that ferritin in FgESPs is a complete 
antigen. Therefore, ferritin’s function in FgESPs needs to 
be explored further.

Five of the 19 proteins consistently identified during the invasive 
infection phase (1–3 wpi) were uncharacterized 
(Supplementary Tables S6, S7). The microtubule-associated protein 
Futsch was associated with biological processes in GO taxonomic 
annotation. Microtubulin is a benzimidazole (BZ) target extensively 
studied in parasitology (von Samson-Himmelstjerna et al., 2007). A 
study using triclabendazole (TCBZ), a BZ derivative used to treat 
fascioliasis, showed that F. hepatica’s microtubule-mediated functions 
were inhibited by TCBZ exposure, suggesting that microtubule 
proteins may be effective TCBZ targets (Hanna, 2015).

Polyubiquitin proteins and three histones (H2A, H2B, and 
H3) were identified at 1 wpi. After excystation, NEJs interact with 
intestinal epithelial cells and inhibit the immune cell signaling 
cascade by downregulating intracellular signaling and the 
downstream ubiquitination-associated proteins required to 
trigger the immune response (Lammas and Duffus, 1983; Dalton 
et al., 2009; Lalor et al., 2021). Molecules secreted or excreted 
during this stage (1–3 wpi) likely play vital roles in host invasion 
and have the potential to be candidate vaccine/drug targets to 
inhibit NEJ infestation and migration.

Four of the 26 proteins identified between 6 and 8 wpi were 
uncharacterized (Supplementary Tables S6, S7). Programmed cell 

death 6-interacting protein and Thimet oligopeptidase (M03 
family) were identified at both 6 and 8 wpi. GO analysis of 
T-complex protein 1 subunit γ, annexin, and dynein beta chain 
ciliary protein, which were only identified at 6 wpi, identified their 
localization and motility functions. Constitutive HSP70, HSP90 
chaperone protein kinase-targeting subunit, glycerol-3-phosphate 
dehydrogenase (nicotinamide adenine dinucleotide), succinate 
dehydrogenase (ubiquinone) iron–sulfur subunit, mitochondria 
(fragment), and puromycin-sensitive aminopeptidase were only 
identified at 8 wpi. KEGG analysis showed a functional focus on 
energy metabolism, including oxidative phosphorylation, the citric 
acid cycle, starch and sucrose metabolism, purine metabolism, 
pyrimidine metabolism, and nicotinic acid and nicotinamide 
metabolism. Between 6 and 8 wpi, Fasciola migrate to the host’s 
liver and induce high oxidative stress levels (Da Silva et al., 2017). 
HSP70 may function in protein folding and assembly, refolding 
misfolded and aggregated proteins, and transferring proteins to 
mediate the environmental stress and cellular homeostasis effects, 
which is critical for parasite survival (Polla, 1991; Mayer and 
Bukau, 2005; Smith et al., 2008). The active metabolic pathways 
provide the nutrients for F. hepatica growth and development 
between 6 to 8 wpi (Tanaka and Miyajima, 2016), and it may 
be similar in F. gigantica growth and development.

Long-term F. gigantica survival requires a balance between 
immuno-suppressive and-modulatory effects induced by 
F. gigantica and the host’s innate and adaptive immune responses. 
Twelve of the 78 proteins identified between 10 and 16 wpi were 
uncharacterized (Supplementary Tables S6, S7). Legumain-like 
calcium-binding protein 39 and transforming growth factor-β 
(TGF-β)-inducible protein ig-h3 (fragment) were consistently 
identified during this period. KEGG pathway analysis indicated 
that they primarily function in metabolic pathways. Studies have 
shown that recombinant legumain is specifically recognized by 
positive sera from F. hepatica-infected sheep, showing good 
reactogenicity (Zhang et al., 2021). Subsequent studies showed it 
differed biologically between Schistosoma haematobium and 
F. gigantica, indicating its vaccine potential against F. gigantica 
(Adisakwattana et al., 2007).

Tegumental calcium-binding EF-hand protein 4 (CABP4) was 
identified at both 10 and 13 wpi (Supplementary Table S6). The 
EF-hand is an important functional protein domain in F. gigantica 
calcium-binding protein (Santiago et al., 1998). The EF-hand-
containing protein CABP4 is an important FgESP component that 
shows an immunomodulatory effect during F. gigantica infection 
(Subpipattana et al., 2012; Huang et al., 2019b; Ehsan et al., 2021). 
Studies investigating FhCABP1, FhCABP2, and FhCaBP4 have 
been performed (Banford et al., 2013; Thomas and Timson, 2015; 
Cheung et al., 2016). However, relevant studies on F. gigantica 
calcium-binding proteins are lacking. Given the calcium-binding 
protein family’s ability to induce immunoglobulin E-mediated 
host immune responses (Santiago et al., 1998), there is a need to 
study their immunomodulatory functions in F. gigantica.

Fasciola migration in the liver triggers a wound-healing 
response that induces fibrosis to repair the damage (Dorey 
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et  al., 2021), culminating in liver fibrosis and granulomas. 
This progress may be related to forkhead box P3 (FOXP3)+ T 
regulatory cell (Treg) levels (Pacheco et al., 2018), regulatory 
cytokines (IL-10 and TGF-β), and proinflammatory cytokines 
(tumor necrosis factor-alpha and IL-1β; Valero et al., 2017). 
Here, the TGF-β-inducible protein ig-h3 (fragment) identified 
between 10 and 16 wpi may participate in the host tissue 
damage repair (Supplementary Table S5). The aldolase 
(fructose-bisphosphate) identified between 10 and 16 wpi is 
secreted by or attached to the epidermis of Fasciola (Morales 
and Espino, 2012). It mainly acts as a ligand for various host 
components contributing to fluke invasion (Zhang et  al., 
2019), host immune and hemostatic systems regulation, 
angiogenesis, and nutrient absorption (Gómez-Arreaza 
et al., 2014).

FgESPs are exposed to the host immune system and widely 
used as antigens in serological assays. Five of the 19 proteins 
identified between 1 and 3 wpi were uncharacterized 
(Supplementary Tables S6, S7). The specificity and sensibility of 
these proteins still need to be confirmed by Western blot and 
ELISA. Once some have been purified and shown to react well 
with positive serum, they can be  used to develop new early-
diagnosis antigen immunological diagnostic methods. However, 
this study did not identify well-performing early diagnosis 
antigens, such as cathepsin L and secreted aspartyl proteinase 2, 
indicating more accurate approaches may be  needed to 
understand the precise buffalo-F. gigantica interaction 
(Cornelissen et al., 2001; Sriveny et al., 2006; Kueakhai et al., 
2011; Mirzadeh et al., 2017).

During early infection stages, F. gigantica induces the 
Th2-related response and suppresses the Th1-related response 
in the host. Molecules functioning in this process are potential 
vaccine candidates (Donnelly et al., 2008; Walsh et al., 2009). 
Fifteen of the 96 proteins identified between 6 and 10 wpi were 
uncharacterized (Supplementary Tables S6, S7), including 
cathepsin L. Cathepsin-L peptidases have been extensively 
studied since they are internalized by host immune cells and 
degrade the pathogen recognition receptor Toll-like receptor 
3, preventing Toll/IL-1R domain-containing adaptor-inducing 
interferon-β-containing adaptor protein-dependent signaling 
that is essential for the Th1 inflammatory response (Falcón 
et al., 2014). The mammalian target of rapamycin (mTOR), 
MAPK, and FOXO signaling pathways act synergistically to 
promote FOXP3 expression and differentiation into Treg cells 
(Delgoffe et  al., 2009). Treg cells secrete the regulatory 
cytokines TGF-β and IL-10, regulating the Th1-and 
Th2-related responses (Hill et  al., 2007). This process may 
be  related to immunomodulation and long-term host 
colonization (Maizels and Lawrence, 1991; King et al., 1992). 
Since calcium-binding protein 39, F-actin-capping protein 
subunit beta, and V-type proton ATPase subunit H clustered 
with the mTOR signaling pathway; constitutive HSP70 
clustered with the MAPK signaling pathway; and the glucose 
transporter clustered with the FOXO signaling pathway, these 

proteins may regulate the Th1-and Th2-related responses. 
Studying their immunomodulatory functions may contribute 
to vaccine candidate identification.

5. Conclusion

This study performed a detailed screening of antigenic FgESP 
targets, as 490 proteins were identified in the infection group, of 
which 87 were consistently identified at 7 time points, the 
numbers of specific interactors identified for each week were 1 
(n = 12), 3 (n = 5), 6 (n = 8), 8 (n = 15), 10 (n = 23), 13 (n = 22), and 
16 (n = 14) wpi. These findings will lay the foundation for further 
studies on F. gigantica-host interactions and fascioliasis diagnosis 
and prevention.
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