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Introduction: Arbuscular mycorrhizal (AM) fungi are important for the resistance 

of plants to insect infestation and diseases. However, the effect of AM fungal 

colonization of plants response to pathogen infection activated by pea aphid 

infestation is unknown. Pea aphid (Acyrthosiphon pisum) and the fungal pathogen 

Phoma medicaginis severely limit alfalfa production worldwide.

Methods: This study established an alfalfa (Medicago sativa)–AM fungus 

(Rhizophagus intraradices)–pea aphid–P. medicaginis experimental system 

to clarify the effects of an AM fungus on the host plant response to insect 

infestation and subsequent fungal pathogen infection.

Results: Pea aphid increased the disease incidence of P. medicaginis by 24.94%. 

The AM fungus decreased the disease index by 22.37% and enhanced alfalfa 

growth by increasing the uptake of total nitrogen and total phosphorus. The aphid 

induced polyphenol oxidase activity of alfalfa, and the AM fungus enhanced plant-

defense enzyme activity against aphid infestation and subsequent P. medicaginis 

infection. In addition, the AM fungus increased the contents of jasmonic acid and 

abscisic acid in plants exposed to aphid infestation or pathogen infection. Abscisic 

acid and genes associated with the gene ontology term “hormone binding” were 

upregulated in aphid-infested or pathogen-infected alfalfa.

Discussion: The results demonstrate that an AM fungus enhances plant 

defense and signaling components induced by aphid infestation, which may 

contribute to improved defense against subsequent pathogen infection.
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1. Introduction

The interactions of plants with pathogens and herbivorous insects are among the most 
extensive ecological relationships (Raffa et al., 2020). The incidence of plant disease is 
often accompanied by insect infestation. Moreover, insects often spread plant diseases by 
acting as vectors for pathogens (Roumagnac et al., 2015; Davoodi et al., 2018). For some 
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pathogens, such as viruses and fungi, dispersal is largely 
dependent on the interactions among pathogens, hosts, and 
vectors (Hohn, 2007; Sugio et al., 2014). Insects can increase, 
decrease, or have no effect on pathogen infection of plants 
(Rostás and Hilker, 2002; Simon and Hilker, 2003; Eyles et al., 
2007). Thus, plant pathogens and herbivorous insects can cause 
synergistic effects on the host plant (Sugio et al., 2011).

Arbuscular mycorrhizal (AM) fungi are important 
components of agroecosystems with important roles in plant 
resistance to biotic stress, such as that caused by insects or 
diseases, and abiotic stress tolerance (Babikova et al., 2014; Dreher 
et al., 2019). In addition, insects can affect AM fungi under host 
plant mediation in the AM  fungi–plant–insect system. Insect 
feeding reduces plant biomass, plant photosynthesis, and 
photosynthate transport to the roots. Thus, it affects the acquisition 
of lipids by AM fungi from the host plant, limiting the colonization 
of host plants by AM fungi (He et al., 2017; Charters et al., 2020).

In the AM fungus–plant–pathogen interaction system, the 
AM fungus and pathogen obtain lipids from the host plant to 
maintain their survival (Jiang et al., 2017). Therefore, pathogens 
and mycorrhizal fungi potentially compete for host nutrition, 
parasitic sites, and immunity signal receptors (Zhang et al., 2021). 
The AM fungi reduce the rate of pathogen infection, thus reducing 
or delaying the harm to plants (Filion et al., 1999). In addition, 
AM fungi induce plant defense resistance responses, such as plant 
hormone signaling and antioxidant enzyme activities (Liu et al., 
2018), and regulate the contents of jasmonic acid (JA) and 
phenylpropanoids in the host (Kloppholz et al., 2011). Moreover, 
AM  fungi upregulate pathogenesis-related (PR) proteins, 
transcription factors, secondary metabolism, and genes associated 
with the salicylic acid (SA) pathway (Zhang and Franken, 2014; 
Gutjahr et al., 2015).

Aphids are major agricultural pests that typically reproduce 
parthenogenetically or viviparously to rapidly produce large 
offspring populations (Jaouannet et  al., 2015). Pea aphid 
(Acyrthosiphon pisum) causes severe global economic damage to 
pulse crops (Elbakidze et al., 2010) by feeding directly on phloem 
sap, damaging the phloem, and is a vector of several harmful 
viruses (Ng and Perry, 2004; Guo et al., 2012). Pea aphid infests 
leguminous crops from multiple genera, such as broad bean (Vicia 
faba), lupin (Lupinus albus), alfalfa (Medicago sativa), and pea 
(Pisum sativum) (Aznar-Fernández et al., 2019; Smith et al., 2021).

Alfalfa is an important forage crop with a high protein content 
(Mbarki et al., 2018) and comprises the largest area of legume 
forage cultivated worldwide (Sprent et al., 2017). However, the 
fungal pathogen Phoma medicaginis severely damages alfalfa by 
causing spring black stem and leaf spot disease. The disease has 
been reported in the United States (Akamatsu et al., 2008), Canada 
(Ginns, 1986; Hilton, 2000), India (Alaka and Rao, 1998), Italy 
(Balmas et al., 2005), Tunisia (Djebali, 2013), and China (Fan 
et al., 2018). Alfalfa spring black stem and leaf spot disease causes 
dry matter loss, reduced seed production, decreased forage quality, 
and poor winter survival (Rhodes and Myers, 1986; Castell-Miller 
et al., 2008; Sathoff et al., 2020).

Aphids and spring black stem and leaf spot disease usually 
simultaneously attack alfalfa, causing severe damage (Stout et al., 
2006). Few studies have focused on the plant responses to pea 
aphid infestation and P. medicaginis infection, particularly the 
influence of AM fungi on the plant response to aphid infestation 
and subsequent pathogen infection. However, the plant response 
is important for management of aphids and leaf spot disease in 
alfalfa. A previous study has shown that the AM  fungus 
Rhizophagus intraradices promotes alfalfa growth during pea 
aphid infestation by enhancing plant peroxidase (POD) activity, 
SA content, and the expression of resistance-related genes (Li 
et al., 2019). In addition, R. intraradices reduces the severity of 
disease caused by P. medicaginis by inducing defense pathways, 
increasing the JA content, and stimulating the expression of 
P. medicaginis resistance-related genes (Li Y. et al., 2021).

In the present study, a greenhouse experiment was established 
to determine the effect of AM fungus R. intraradices on the alfalfa 
response to the combination infection of pea aphid and 
P. medicaginis. We hypothesized that (1) plant defense profiles will 
differ with AM  fungal colonization, aphid infestation and 
pathogen infection, and (2) AM fungi will enhance pea aphid-
induced plant defense response against subsequent 
pathogen infection.

2. Materials and methods

2.1. Plant growth and AM fungus 
inoculation

Seeds of alfalfa “Longdong,” a popular cultivar grown in 
China, were obtained from the Forage Seed Testing Centre, 
Lanzhou, Ministry of Agriculture, and the Rural Ministry of 
China. The AM fungus R. intraradices was purchased from the 
Bank of Glomeromycota in China (Beijing, China). The inoculum 
consisted of dry soil that contained AM  fungal spores (>100 
spores per gram) and mycelia, and white clover (Trifolium 
subterraneum) root fragments. The AM fungus was grown on 
white clover in a greenhouse (Li Y. et al., 2021).

The alfalfa growth medium was mixed with pre-sieved sand 
and soil (1:3, w/w) and sieved through a 2 mm mesh. The sand and 
soil were purchased from a flower market in Lanzhou, China. The 
growth medium components were sterilized by autoclaving at 
121°C for 1 h twice in 3 days (Li Y. et al., 2021).

A three-stage experiment to examine alfalfa, AM  fungus, 
aphid, and pathogen interactions was established in a greenhouse 
(Figure 1). Alfalfa seeds were surface sterilized with 10% hydrogen 
peroxide for 10 min and rinsed three times with reverse osmosis 
water. The sterilized seeds were placed on wet filter paper and 
incubated in the dark at 25°C for 48 h. Five germinated seeds were 
planted in growth medium inoculated with R. intraradices (AM) 
or non-inoculated medium (NM) and thinned to four seedlings 
after 1 week. Before transplanting the seedlings, inoculum (50 g) 
from the AM  fungus pot cultures was added to the growth 
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medium at a depth of 2–3 cm in 16 pots (arbuscular mycorrhizal 
treatment, AM). For the non-AM control treatment 
(non-mycorrhizal, NM), 50 g of the growth medium was added to 
growth medium in 16 pots (12 cm height × 10 cm diameter at the 
top × 8 cm diameter at the base; Gao et al., 2018).

2.2. Insect and disease treatment

Pea aphid individuals were captured at an alfalfa field on the 
Yuzhong campus of Lanzhou University (Lanzhou, China). A 
single adult aphid was transferred to broad bean plants for culture, 
and the aphid offspring were selected for morphological and 
molecular identification (Zhang et  al., 2018). The pathogen 
P. medicaginis was isolated from field-grown diseased alfalfa 
plants, and identified by morphological and molecular 
characterization (Gao et al., 2018). The pathogen was grown on 

potato dextrose agar and conidia were harvested to generate an 
inoculum of 6 × 106 conidia/mL (Gao et al., 2018).

At 51 days after planting (dap), alfalfa plants grown in AM- or 
NM-inoculated medium were infested with five similarly sized 
pea aphid adults (A+) or not infested (A−). At 60 dap, half of the 
mycorrhizal and aphid-infested alfalfa plants were sprayed with 
20 ml of P. medicaginis inoculum (6 × 106 conidia/mL; P+). The 
remaining half were sprayed with 20 ml sterilized water (P−). The 
plants were covered with black plastic bags for 48 h to maintain 
high levels of moisture on the plants to facilitate pathogen 
infection. After removal of the black plastic bags, adult pea aphids 
were selected to replenish the alfalfa plants with up to five adults.

There were eight treatments with four pots each as replicates 
for a total of 32 pots. The plants were harvested 12 days after 
inoculation with the pathogen. Before harvest, all leaves of each 
pot were observed to assess disease incidence and calculate the 
disease index for leaf spot caused by P. medicaginis. Disease 

FIGURE 1

Flow chart showing the experimental design of the study.
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severity was estimated using a five-class visual scale based on the 
percentage of the leaf surface covered by pustules as follows: 0, no 
symptom of infection; 1, 0.1–5% of the leaf area covered with leaf 
spots; 2, >5–20%; 3, >20–50%; 4, >50–75%; and 5, >75%. The 
disease index was calculated using the following equation: 

DI = ×
×( )
×

=∑
100

5

n i
i n Ln

Ln
, where i is the disease severity scale (0 

to 5), Ln is the number of leaves with each disease severity, and n 
is the total number of leaves (Li Y. et al., 2021).

The experiment was conducted in a glasshouse with irradiance 
in the range of 200–900 μmol m−2 s−1 during the growth period. 
The average temperatures were 22–29°C (day) and 14–25 (night).

2.3. Plant harvest and measurement of 
samples

At harvest, 0.1 g fresh shoots from each pot were randomly 
sampled for total RNA extraction, flash-frozen immediately in 
liquid nitrogen, and stored at −80°C. In addition, 0.5 g fresh 
shoots from each pot were sampled for measurement of enzyme 
activities, comprising POD, catalase (CAT), and polyphenol 
oxidase (PPO), as previously described (Gao et  al., 2018). 
Approximately 0.4 g fresh shoots from each pot were sampled to 
measure the contents of JA, SA, nitric oxide (NO), trypsin 
inhibitor, and abscisic acid (ABA) using ELISA kits (mlbio; 
Shanghai Enzyme-linked Biotechnology, Shanghai, China; Li 
Y. et  al., 2021). Fresh shoots (0.5 g) were used to reisolate the 
pathogen. The remaining fresh shoot tissues were used to measure 
the dry weight. Thus, the total plant-shoot dry weight was 
calculated from the fresh and dry weight ratio. Subsequently, 0.2 g 
dry shoots were digested in 5 ml H2SO4. The nitrogen and 
phosphorus contents in shoots were determined using a flow 
injection analyzer (FIAstar 5,000 Analyzer; FOSS, Höganäs, 
Sweden). As previously described, approximately 0.15 g fresh roots 
from each AM treatment pot were used for AM colonization tests 
(Supplementary Figure S1). Roots were cut into 1-cm-long 
segments and cleared in 10% KOH for 40 min at 60°C. The 
samples were treated with 1 M HCl for 30 s, washed three times 
with distilled water, and stained in trypan blue overnight at room 
temperature. The stained roots were washed three times with 
distilled water and maintained in a solution of 5% lactic 
acid:glycerin:water (1:1:1, v/v/v). The root samples were observed 
to determine the degree of mycorrhizal colonization with a 
compound microscope (SOFTOP BH200M-R, Zhejiang, China; 
Phillips and Hayman, 1970; Giovannetti and Mosse, 1980).

2.4. Transcriptome analysis of plant 
leaves

Total RNA was isolated from leaf tissues of three biological 
replicates per treatment (NMA−P−, NMA+P−, NMA−P+, 
NMA+P+, AMA−P−, AMA+P−, AMA−P+, and AMA+P+) using 

TRIzol® (Thermo Fisher Scientific, Waltham, MA, United States) 
following the manufacturer’s instructions. Residual genomic DNA 
was removed from the RNA samples using DNase I (Takara Bio, 
Kusatsu-Shiga, Japan). The RNA quality and quantity were 
determined using a 2,100 Bioanalyzer (Agilent Technologies, Santa 
Clara, CA, USA) and a NanoDrop ND-2000 spectrophotometer 
(Thermo Fisher Scientific). Only high-quality RNA samples 
(OD260/280 = 1.8–2.2, OD260/230 ≥ 2.0, RIN ≥ 6.5, 28S:18S ≥ 1.0, >2 μg) 
were used to construct the RNA-sequencing (RNA-Seq) libraries.

Accordingly, 1 μg total RNA was used to create RNA-Seq 
transcriptome libraries using the TruSeq™ RNA Sample 
Preparation Kit (Illumina, San Diego, CA, USA) following the 
manufacturer’s instructions. Total mRNA was isolated by the 
polyA selection method using oligo(dT) beads and fragmented 
using fragmentation buffer. The SuperScript™ Double-Stranded 
cDNA Synthesis Kit (Invitrogen, Carlsbad, CA, USA) was used to 
synthesize double-stranded cDNA with random hexamer primers 
(Illumina). The synthesized cDNA was end-repaired, 
phosphorylated, and “A” base enriched following the manufacturer’s 
instructions. After cDNA quantification, 200–300 bp target 
fragments were amplified by PCR using Phusion DNA polymerase 
(New England Biolabs, Ipswich, MA, USA) for 15 PCR cycles. The 
libraries were paired-end sequenced with an Illumina HiSeq X/
NovaSeq 6,000 sequencer (2 × 150 bp read length).

The raw paired-end reads were trimmed by SeqPrep1 and 
subjected to quality control with Sickle2 using the default 
parameters. The clean reads were mapped to the M. sativa 
reference genome3 using TopHat (http://tophat.cbcb.umd.edu/, 
version 2.0.0) software (Trapnell and Pachter, 2009). The generated 
raw sequence dataset was submitted to the National Center for 
Biotechnology Information Short Read Archive (SRA) database 
under accession number PRJNA859548.

2.5. Differential expression analysis and 
functional enrichment

The RSEM software package4 was used to normalize the gene 
expression level as fragments per kilobase of exon per million 
mapped reads (FPKM). Applying the Padjust < 0.05 and |log2 fold 
change| ≥ 2 criteria (O'Connell et al., 2012), analyses of differentially 
expressed genes (DEGs) between two samples (NMA − P− vs. 
AMA−P−, NMA−P− vs. NMA+P−, NMA−P− vs. NMA+P−, 
NMA−P− vs. NMA+P+, AMA−P− vs. AMA+P−, AMA−P− vs. 
AMA+P−, AMA−P− vs. AMA+P+, NMA+P− vs. AMA+P−, 
NMA−P+ vs. AMA−P+, and NMA+P+ vs. AMA+P+) were 
performed using the “DESeq2” R package with raw counts in the R 

1 https://github.com/jstjohn/SeqPrep

2 https://github.com/najoshi/sickle

3 https://figshare.com/projects/

whole_genome_sequencing_and_assembly_of_Medicago_sativa/66380

4 http://deweylab.biostat.wisc.edu/rsem/
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statistical environment (Zhuang et al., 2018; Supplementary Table S1). 
Gene ontology enrichment analysis was conducted with Fisher 
exact tests (Padjust < 0.05). The DEGs with Bonferroni-corrected 
p-value ≤ 0.05 were considered to be significantly enriched in the 
functional-enrichment analysis of gene ontology (GO) terms and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. 
Goatools5 and KOBAS (http://kobas.cbi.pku.edu.cn/home.do; Xie 
et al., 2011) were used to determine GO and KEGG enrichment.

2.6. Real-time quantitative 
reverse-transcription PCR validation

Ten genes were randomly selected for measurement by real-
time quantitative reverse-transcription PCR (qRT-PCR) with 
three independent biological replicates for each treatment. The 
cDNA was synthesized from the total RNA used for RNA-Seq 
using the FastKing gDNA Dispelling RT SuperMix (TianGen, 
Beijing, China) following the manufacturer’s instructions. The 
primers were designed with Beacon Designer 7.9 and are listed in 
Supplementary Table S2. The qRT-PCR reactions used SuperReal 
PreMix Plus (SYBR Green; TianGen).

2.7. Statistical analysis

Data for AM colonization, shoot fresh and dry weights, and 
contents of JA, SA, NO, ABA, and trypsin inhibitor are presented 
as the mean ± standard error of the mean (SEM) of four pots (i.e., 
four biological replicates). The shoot total nitrogen and shoot total 
phosphorus contents, disease incidence, disease index, and the 
activities of CAT, POD, and PPO are presented as the mean ± SEM 
of three biological replicates. All data were subjected to analysis of 
variance (ANOVA) using R statistical program (version 4.2.0). 
Comparison between the individual means was conducted with 
Tukey’s honestly significant difference (HSD) test (p < 0.05). The 
percentage AM colonization was arcsine-transformed to achieve 
normality. The RNA-Seq data were analyzed using the free online 
platform Majorbio Cloud.6

3. Results

3.1. AM fungal colonization, plant 
growth, and nitrogen and phosphorus 
uptake

The percentage AM fungal colonization ranged from 41.67 to 
46.67% of the inoculated alfalfa plants, whereas the non-inoculated 
plants had no observable mycorrhizal structures in their roots. Pea 

5 https://github.com/tanghaibao/Goatools

6 www.majorbio.com

aphid and P. medicaginis did not significantly affect percentage 
AM  fungal colonization (Table  1; Supplementary Table S3). 
Moreover, AM fungal colonization increased the fresh and dry 
shoot weights of alfalfa by 76.34 and 31.73%, respectively. The 
pathogen P. medicaginis decreased the fresh shoot weight of 
non-mycorrhizal and mycorrhizal alfalfa by 42.73 and 58.32%, 
respectively (Table 1; Supplementary Table S3).

The AM fungal colonization increased the shoot total nitrogen 
content of alfalfa by 31.74% (p = 0.0475). Aphid infestation 
significantly increased the total phosphorus content of mycorrhizal 
alfalfa shoots (p = 0.0147; Table 1; Supplementary Table S3).

3.2. Disease severity

One week after pathogen inoculation, alfalfa infected by 
P. medicaginis showed typical disease symptoms, whereas 
non-inoculated plants showed no observable symptoms. The 
disease incidence was 24.94% higher in aphid-infested than 
non-infested plants (p = 0.0097; Figure 2A). The disease incidence 
of non-mycorrhizal alfalfa was 19.05% higher than that of 
mycorrhizal alfalfa (p =  0.0294; Figure  2A). In addition, the 
disease index of mycorrhizal plants was 24.97% lower than that of 
non-mycorrhizal alfalfa (p = 0.002; Figure 2B). The disease index 
of alfalfa was 24.52% higher in aphid-infested alfalfa than 
non-infested plants (p = 0.0166; Figure 2B).

3.3. Activities of plant defense enzymes

Aphid infestation increased the activity of PPO by 143.51% 
compared with that in non-infested alfalfa (p = 0.0017). Infection 
with P. medicaginis increased the activity of PPO by 74.13% 
(p = 0.0446; Figure 3A). Similarly, infection with P. medicaginis 
increased the activities of CAT (p = 0.0047; Figure 3B) and POD 
(p = 0.042; Figure 3C) in alfalfa by 273.8 and 59.65%, respectively 
(Supplementary Table S3). AM fungus colonization had no effect 
on activities of plant defense enzymes.

3.4. Contents of SA, JA, ABA, NO, and 
trypsin inhibitor in alfalfa plants

The SA content was significantly higher in alfalfa infested with 
pea aphid and infected with P. medicaginis than in alfalfa that were 
not infested with pea aphids or infected with the pathogen 
(p = 0.0038). Colonization by AM fungi did not significantly affect 
the SA content of alfalfa plants (Figure 4A). Aphid infestation had 
no effect on JA content, whereas AM colonization alone or in 
combination with pathogen infection increased the JA content 
(p = 0.0491; Figure 4B). Aphid infestation had no influence on 
ABA content, whereas AM colonization and pathogen infection 
together increased the ABA content (p = 0.0063; Figure 4C). The 
NO content (p < 0.0001; Figure 4D) and trypsin inhibitor content 
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(p = 0.0047; Figure 4E) were only affected by pathogen infection, 
which increased their levels (Supplementary Table S3).

3.5. RNA-Seq and mapping

RNA-sequencing of the leaf transcriptome with an Illumina 
HiSeq X platform generated 47,309,123 raw reads (maximum 
58,300,788, minimum 41,604,716). After removing low-quality 
and adapter sequences (bases with <20 mass value), 48,677,795, 
45,600,933, 49,066,624, 46,863,595, 45,203,664, 44,447,226, 
49,016,621, and 45,697,048 average clean reads were obtained 
from the NMA−P−, NMA+P−, NMA−P+, NMA+P+, AMA−
P−, AMA+P−, AMA−P+, and AMA+P+ treatments, 

respectively. The Q20 and Q30 percentages were >97.88 and 
>93.82%, respectively. The average GC contents in the eight 
treatments were similar (approximately 42%). The clean reads 
were mapped to the M. sativa reference genome, resulting in a 
43.03–92.65% mapping rate and the low mapping rate samples 
were pathogen-infected treatments (Supplementary Table S4). A 
total of 24 samples were obtained 166.4 Gb clean data, the clean 
data of all samples are reached 6.05 Gb.

3.6. Analysis of DEGs

There were 13,627 DEGs were identified across all 
treatments, of which 344 DEGs to 3,628 DEGs in the 

TABLE 1 AM colonization, shoot fresh weight, shoot dry weight, shoot total N and shoot total P of Medicago sativa inoculated with Rhizophagus 
intraradices (AM), infested with Acyrthosiphon pisum (A+) and infected with Phoma medicaginis (P+) or un-inoculated with R. intraradices (NM), 
un-infested with A. pisum (A−) and un-infected with P. medicaginis (P−).

Treatments Mycorrhizal 
colonization (%)

Shoot fresh 
weight (g)

Shoot dry 
weight (g)

Shoot total N 
(mg·pot−1)

Shoot total P 
(mg·pot−1)

NMA−P− 0.00 ± 0.00 4.22 ± 0.58 b 0.69 ± 0.07 b 23.28 ± 3.67 b 3.04 ± 1.12 b

NMA+P− 0.00 ± 0.00 4.62 ± 0.57 b 0.78 ± 0.14 b 28.88 ± 7.35 b 3.28 ± 0.29 b

NMA−P+ 0.00 ± 0.00 3.16 ± 0.85 c 0.77 ± 0.16 b 34.31 ± 5.70 b 4.41 ± 1.36 b

NMA+P+ 0.00 ± 0.00 1.90 ± 0.30 c 0.78 ± 0.09 b 29.91 ± 4.99 b 2.62 ± 0.46 b

AMA−P− 41.67 ± 1.67 a 7.31 ± 1.31 a 1.09 ± 0.18 a 35.56 ± 1.94 a 3.17 ± 0.19 b

AMA+P− 45.00 ± 1.67 a 8.27 ± 1.49 a 1.23 ± 0.24 a 45.34 ± 2.83 a 6.55 ± 1.43 a

AMA−P+ 46.67 ± 2.72 a 3.74 ± 0.88 bc 0.91 ± 0.16 a 32.24 ± 11.19 a 3.36 ± 1.08 b

AMA+P+ 46.67 ± 3.85 a 2.75 ± 0.66 bc 0.98 ± 0.13 a 40.17 ± 5.87 a 7.19 ± 1.90 a

Different letters represent significant difference at p < 0.05, respectively, as determined by Tukey’s HSD test.

A B

FIGURE 2

(A) Disease incidence and (B) disease index of Medicago sativa inoculated with Rhizophagus intraradices (AM) and infested with Acyrthosiphon 
pisum (A+) or non-inoculated with R. intraradices (NM) and non-infested with A. pisum (A−). All values are the mean ± SEM of three biological 
replicates. Different letters above pairs of bars indicate a significant difference in the comparison at p < 0.05. Asterisks indicate a significant 
difference between P + A+ and P + A− as determined by Tukey’s HSD test. SEM, standard error of the mean.
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comparison between each treatments. Of these DEGs, 234, 486, 
309, and 114 were upregulated, whereas 397, 182, 493, and 230 
were downregulated, respectively in the comparisons 
AM fungus, aphid, pathogen and the combination of the three 
treatments (NMA−P− vs. AMA−P−, NMA+P− vs. AMA+P−, 
NMA−P+ vs. AMA−P+, and NMA+P+ vs. AMA+P+), 
respectively (Figure 5; Table 2). A Venn diagram identified 5 to 
76 common DEGs in the comparisons between each treatment 
(Figure 6).

3.7. Gene ontology enrichment analysis

Aphid infestation enriched 8 GO terms in NM treatment 
(NMA−P− vs. NMA+P− comparison), including seven 
molecular functions and one biological process. Interestingly, 
three groups of six upregulated genes were enriched for 
response to abscisic acid binding (GO:0010427), hormone 
binding (GO:0042562), and protein phosphatase inhibitor 
activity (GO:0004864; Figure  7A). Pathogen infection 

A B C

FIGURE 3

(A) PPO activity, (B) CAT activity, and (C) POD activity of Medicago sativa inoculated with Rhizophagus intraradices (AM), infected with Phoma 
medicaginis (P+), and infested with Acyrthosiphon pisum (A+), or non-inoculated with R. intraradices (NM), non-infected with P. medicaginis (P−), 
and non-infested with A. pisum (A−). All values are the mean ± SEM of three biological replicates. Different letters above pairs of bars indicate a 
significant difference in the comparison at p < 0.05. In (A) asterisks indicate a significant difference between P−A− and P− +, or P+A− and P+A+, as 
determined by Tukey’s HSD test. SEM, standard error of the mean; PPO, polyphenol oxidase; CAT, catalase; POD, peroxidase.

A

D E

B C

FIGURE 4

(A) SA, (B) JA, (C) ABA, (D) NO, and (E) trypsin inhibitor contents of Medicago sativa inoculated with Rhizophagus intraradices (AM), infected with 
Phoma medicaginis (P+), and infested with Acyrthosiphon pisum (A+), or non-inoculated with R. intraradices (NM), non-infected with P. 
medicaginis (P−), and non-infested with A. pisum (A−). All values are the mean ± SEM of four biological replicates. Different letters above bars (A) or 
pairs of bars (B–E) indicate a significant difference in the comparison at p < 0.05, as determined by Tukey’s HSD test. SEM, standard error of the 
mean; SA, salicylic acid; JA, jasmonic acid; ABA, abscisic acid; NO, nitrous oxide.
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TABLE 2 Counts of differentially expressed genes in alfalfa with AM fungus, aphids and pathogen treatments.

Groups Control 
group

Treat group Differentially 
Expressed genes 

number

Up-regulated 
gene number

Down-regulated 
gene number

NMA−P− vs. AMA−P− NMA−P− AMA−P− 631 234 397

NMA−P− vs. NMA+P− NMA−P− NMA+P− 398 176 222

NMA−P− vs. NMA−P+ NMA−P− NMA−P+ 1,683 1,267 416

NMA−P− vs. NMA+P+ NMA−P− NMA+P+ 3,628 2,954 674

AMA−P− vs. AMA+P− AMA−P− AMA+P− 396 257 139

AMA−P− vs. AMA-P+ AMA−P− AMA−P+ 3,019 2,217 802

AMA−P− vs. AMA+P+ AMA−P− AMA+P+ 2058 1,545 513

NMA+P− vs. AMA+P− NMA+P- AMA+P− 668 486 182

NMA−P+ vs. AMA-P+ NMA−P+ AMA−P+ 802 309 493

NMA+P+ vs. AMA+P+ NMA+P+ AMA+P+ 344 114 230

(NMA−P− vs. NMA−P+ comparison) enriched 5 groups of 
upregulated 22, 22, 22, 9, and 9 genes for response to abscisic 
acid binding (GO:0010427), isoprenoid binding (GO:0019840), 
hormone binding (GO:0042562), chitin metabolic process 
(GO:0006030), and chitin catabolic process (GO:0006032), 
respectively (Figure  7B). Aphid and pathogen infection 
together (NMA − P− vs. NMA + P+ comparison) significantly 
enriched with 192 GO terms, including 91 biological 
processes, 97 molecular functions, and four cellular 
components (Padjust < 0.05). The aphid and pathogen together 
also enriched 11 and 12 upregulated genes for cinnamic acid 
(GO:0009800) and JA biosynthetic processes (GO:0009695; 
Figure 7C).

Pathogen infection in AM  plant (AMA−P− vs. AMA−P+ 
comparison) significantly enriched for 126 GO terms, including 55 
biological processes, 68 molecular functions, and three cellular 
components (Padjust < 0.05). The enriched GO terms included 
isoprenoid binding (GO:0019840), hormone binding (GO:0042562), 
secondary metabolite biosynthetic process (GO:0044550), and 
oxidoreductase activity, acting on diphenols and related substances 
as donors, oxygen as acceptor (GO:0016682), and cell wall 
macromolecule catabolic process (GO:0016998; Figure 7D). Aphid 
and pathogen infection in AM  plant (AMA−P− vs. AMA+P+ 
comparison) significantly enriched in 121 GO terms, including 50 
biological processes, 68 molecular functions, and three cellular 
components (Padjust < 0.05). The AMA−P− vs. AMA+P+ comparison 

FIGURE 5

Analysis of DEGs in alfalfa in the comparisons NMA−P− vs. AMA−P−, NMA−P− vs. NMA+P−, NMA−P− vs. NMA−P+, NMA−P− vs. NMA+P+, AMA−
P− vs. AMA+P−, AMA−P− vs. AMA−P+, AMA−P− vs. AMA+P+, NMA+P− vs. AMA+P−, NMA−P+ vs. AMA−P+, and NMA+P+ vs. AMA+P+. The x-axis 
represents the gene expression fold changes between any two groups. The y-axis represents the statistical test value for the difference in gene 
expression [−log10(Padjust)]. The scattered points represent each gene. No significant difference is indicated by gray, whereas significant upregulation 
and downregulation are indicated by red and blue, respectively. DEGs, differentially expressed genes.
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enriched 27, 16, 16, and 12 upregulated genes for isoprenoid binding 
(GO:0019840), chitin metabolic process (GO:0006030), chitin 
catabolic process (GO:0006032), and transmitter-gated ion channel 
activity (GO:0022824), respectively (Figure 7E).

The inoculation of AM  fungus with aphid infestation 
(NMA + P− vs. AMA+P− comparison) enriched in 8 GO terms, 
including seven biological processes and one cellular component 
(Padjust < 0.05). The 8 GO terms enriched eight, seven, and four 
DEGs for regulation of jasmonic acid-mediated signaling pathway 
(GO:2000022), response to blue light (GO:0009637), and organic 
cation transport (GO:0015695), respectively (Figure  7F). The 
inoculation of AM fungus with pathogen infection (NMA−P+ vs. 
AMA−P+ comparison) had nine GO terms significantly enriched 
DEGs consisted of five molecular functions and four cellular 
components (Padjust < 0.05). The Cdc73/Paf1 complex 
(GO:0016593), phosphoserine residue binding (GO:0050815), 
and phosphoprotein binding (GO:0051219) were significantly 
enriched by six, five, and five downregulated genes, respectively, 
in the NMA−P+ vs. AMA−P+ comparison (Figure  7G). The 

DEGs in AM fungus alone (NMA−P− vs. AMA−P−), AM fungus 
with aphid and pathogen (NMA+P+ vs. AMA+P+) were not 
significantly enriched for any GO term (Supplementary Table S5).

Aphid infestation in NM (NMA−P− vs. NMA+P− 
comparison), pathogen infection in NM (NMA−P− vs. NMA−
P+ comparison), pathogen in AM  (AMA−P− vs. AMA−P+ 
comparison) enriched 6, 22 and 25 upregulated DEG response to 
hormone binding (GO:0042562; Supplementary Figure S2A). 22 
upregulated and five downregulated DEGs were enriched in the 
pathogen of AM (AMA−P− vs. AMA−P+) comparison enriched 
DEGs response to secondary metabolite biosynthetic process 
(GO:0044550; Supplementary Figure S2B).

3.8. KEGG pathway enrichment analysis

AM fungus alone (NMA−P− vs. AMA−P− comparison) 
and aphid in NM (NMA−P− vs. NMA+P− comparison) were 
not significantly enriched for any KEGG pathway, whereas the 

A

C

B

FIGURE 6

Venn diagram of (A) the three gene sets NMA−P− vs. NMA+P−, NMA−P− vs. NMA−P+, and NMA−P− vs. NMA+P+, (B) the three gene sets AMA−
P− vs. AMA+P−, AMA−P− vs. AMA−P+, and AMA−P− vs. AMA+P+, and (C) the four gene sets NMA−P− vs. AMA−P−, NMA+P− vs. AMA+P−, NMA−
P+ vs. AMA−P+, and NMA+P+ vs. AMA+P+.
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FIGURE 7

GO enrichment analysis in the comparisons (A) NMA−P− vs. NMA+P−, (B) NMA−P− vs. NMA−P+, (C) NMA−P− vs. NMA+P+, (D) AMA−P− vs. 
AMA−P+, (E) AMA−P− vs. AMA+P+, (F) NMA+P− vs. AMA+P−, and (G) NMA−P+ vs. AMA+P−. The top 20 GO terms are displayed based on 
differentially expressed genes (padjust < 0.05). The upper x-axis shows the significance level of enrichment [−log10(Padjust)]; the larger the value of −
log10(Padjust), the greater the enrichment. The lower x-axis shows the number of genes. The y-axis shows the GO term. GO, gene ontology.

DEGs in the pathogen infected NM plant (NMA−P− vs. NMA−
P+ comparison) and pathogen and aphid together infected NM 
(NMA−P− vs. NMA+P+ comparison) were significantly 
enriched with 10 and 18 KEGG pathways, respectively 
(Padjust < 0.05).

In the pathogen infected NM plant comparison, 73, 19, 37, 26, 
and 26 DEGs were enriched in flavonoid biosynthesis (map00941), 
flavone and flavonol biosynthesis (map00944), starch and sucrose 
metabolism (map00500), glutathione metabolism (map00480), 
and MAPK signaling pathway – plant (map04016), respectively 
(Figure 8A). Moreover, 71, 48, and 17 DEGs from the pathogen 
and aphid together infected NM comparison were enriched in 
KEGG pathways for plant–pathogen interaction (map04626), 
MAPK signaling pathway – plant (map04016), and ubiquinone 
and other terpenoid-quinone biosynthesis (map00130), 
respectively (Figure 8B).

Interestingly, one upregulated gene from the aphid infested 
AM  treatment (AMA−P− vs. AMA+P− comparison) was 
enriched for the genetic information processing pathway 
(map03050; Padjust < 0.05), and 6 genes were enriched for the 
proteasome pathway (Figure 8C). The 100, 59, and 44 genes that 
were upregulated in the pathogen infected AM  treatments 
(AMA−P− vs. AMA−P+ comparison; Padjust < 0.05) were 
significantly enriched in phenylpropanoid biosynthesis 
(map00940), plant hormone signal transduction (map04075), and 
MAPK signaling pathway – plant (map04016), respectively 
(Figure  8D). Nine downregulated genes from the aphid and 
pathogen together infected AM  treatment (AMA−P− vs. 
AMA+P+ comparison) group were enriched in photosynthesis – 
antenna proteins (map00196). In contrast, 29 genes from the same 

group were enriched for MAPK signaling pathway – plant 
(map04016; Padjust < 0.05; Figure 8E).

Ten DEGs from the AM  fungus and aphid treatment 
(NMA+P− vs. AMA+P− comparison) were enriched in the 
circadian rhythm–plant pathways (map04712). An additional 21 
and 9 genes (Padjust < 0.05) were enriched in pathways for plant 
hormone signal transduction (map04075) and carbon fixation 
in photosynthetic organisms (map00710), respectively 
(Figure  8F). The DEGs from the AM  fungus and pathogen 
treatment (NMA−P+ vs. AMA−P+ comparison) and 
AM fungus, aphid treatment and pathogen treatment (NMA+P+ 
vs. AMA+P+ comparison; Padjust < 0.05) were significantly 
enriched only in circadian rhythm – plant (map04712) and 
ribosome (map03010; Figures 8G,H; Supplementary Table S6).

3.9. qRT-PCR validation

Ten genes were randomly selected to validate the RNA-Seq 
results. Supplementary Table S2 contains the qRT-PCR primer 
information for the 10 genes. The relative expression levels of 
seven of the 10 genes were similar to those of the RNA-Seq results 
(Supplementary Figure S3).

4. Discussion

This study established an AM  fungus–alfalfa–pea aphid–
pathogen interaction system to clarify the effect of an AM fungus 
on alfalfa response to P. medicagonis infection activated by pea 
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aphid infestation. Although pea aphid feeding increased the 
activity of the plant defense enzyme PPO, aphids increased the 
severity of leaf spot disease caused by P. medicaginis. Sucking 
insects, such as aphids, damage plants directly and function as 
pathogen vectors (Hendry et al., 2018). Aphids pierce the leaves 
and stems of the host-plant phloem cells and extract the phloem 
sap using stylets (Cook et al., 2015). Pea aphids cause wounds on 
alfalfa, which provide potential entry points for pathogen invasion. 
As expected, the AM fungus enhanced nitrogen and phosphorus 
uptake by the plant, promoted plant growth, increased the alfalfa 
JA and ABA contents in response to aphid attack and pathogen 
infection, and reduced the disease severity of alfalfa infested or not 
infested with aphids. In addition, the KEGG ribosome pathway 
was significantly enriched between mycorrhizal and 
non-mycorrhizal alfalfa infested by aphids or infected by 
P. medicaginis alone and the combination of aphid and pathogen, 
which indicated that the AM fungus R. intraradices may affect the 
plant responses to insect and pathogen attack by regulating the 
ribosome pathway.

Previous studies have shown that biotic factors either 
increase (Brito et al., 2019), have no influence (Li et al., 2019), 
or decrease (Khan et al., 2010) AM colonization. This difference 
is related with the combination of plant, AM  fungi and the 
biotic stresses. E.g., Mycorrhizal colonization of 8 preceding 
crop was significantly suppressed by Fusarium oxysporum 

inoculation with field soil contained Glomus mosseae and 
G. fasciculatum (Khan et al., 2010). While aphid infestation does 
not affect AM  colonization of alfalfa inoculated with 
R. intraradices (Li et al., 2019). Interestingly, neither pea aphid 
infestation nor P. medicaginis infection affected colonization by 
the AM fungus (~45%). This observation is in agreement with 
previous findings that an AM  fungus (Claroideoglomus 
etunicatum) remains stable in its colonization of perennial 
ryegrass (Lolium perenne) under simultaneous stress from the 
fungal pathogen Bipolaris sorokiniana and a grass endophyte 
(Epichloë; Li et al., 2018).

Infestation by pea aphids and infection by P. medicaginis 
stimulated increased enzyme activities in the host plant as a 
defense response. Aphid infestation induced PPO activity, whereas 
pathogen infection increased the activities of CAT and POD in the 
plant. Each of these enzymes is important for the defense of the 
host plant to aphids and P. medicaginis (Li et al., 2019; Li Y. et al., 
2021). The GO analysis also shows that infestation of pea aphid 
and pathogen enriched different numbers of GO terms response 
for DEGs including plant defence and signal materials such as 
chitinase and ABA. ABA is an important plant hormone in abiotic 
stress, exerts a positive role in activating the plants’ own defense 
mechanisms (Liu et al., 2017). And chitinase is key player in the 
plant immune system that offers successful protection to fungal 
infections over a broad spectrum of diseases (Mir et al., 2021). 
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FIGURE 8

KEGG pathway enrichment analysis in the comparisons (A) NMA−P− vs. NMA−P+, (B) NMA−P− vs. NMA+P+, (C) AMA−P− vs. AMA+P−, (D) AMA−
P− vs. AMA−P+, (E) AMA−P− vs. AMA+P+, (F) NMA−P− vs. AMA+P−, (G) NMA−P+ vs. AMA−P+, and (H) NMA+P+ vs. AMA+P+. The top 20 KEGG 
pathways are displayed based on differentially expressed genes (padjust < 0.05). The x-axis displays the rich factor, which is the ratio of enriched 
genes to annotated genes; the larger the rich factor, the more strongly significant the enrichment. The y-axis shows the KEGG pathway. The point 
size represents the number of genes and the point color indicates the Padjust value. KEGG, Kyoto Encyclopedia of Genes and Genomes.
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Aphid-infested plants developed severe spring black stem and leaf 
spot disease, indicating that the positive effects of the aphid-
induced defense enzyme PPO were overridden by the adverse 
effects, which included the provision of wounds that enabled 
pathogen infection. The severe disease incidence in aphid 
treatment and the higher value of GO terms (192) response for 
more DEGs in the combination of aphid and pathogen treatment 
also indicates plant was under severe stress and more of plant 
defence related materials were activated when exposed to the 
combination of aphid and pathogen (Li Y. D. et al., 2021).

AM fungus mostly benefit host plant under biotic and abiotic 
stress (Smith and Read, 2008). The AM fungus enhanced the JA 
content and improved plant resistance against subsequent 
P. medicaginis infection, as shown by the lower disease severity in 
mycorrhizal alfalfa. The AM  fungus also increased the ABA 
content in plants exposed to pathogen infection, possibly 
enhancing the resistance of the plant to the simultaneous stresses 
of aphid infestation and pathogen infection (Li et al., 2019; Li Y.  
et al., 2021). The inoculation of AM fungus enriched 8 GO terms 
with three upregulated DEGs of JA-mediated signaling pathway 
(GO:2000022). Thus, our first hypothesis that plant defense 
profiles will differ with AM colonization, aphid infestation and 
pathogen infection was supported. Both JA and ABA are 
hormones important for induction of systemic disease resistance 
(Yang et al., 2015). After successful establishment of a pathogen 
within plant tissues, ABA acts synergistically with other hormonal 
pathways to enhance plant defense (Anderson et  al., 2005). 
Therefore, ABA cooperates with JA as a strong modulator to 
induce JA-mediated defense (Proietti et al., 2018). Our second 
hypothesis, that an AM fungus will enhance pea aphid-induced 
plant defense response against subsequent pathogen infection, was 
also upheld from the perspective of plant defense enzyme activities 
and JA, even for an aphid-infested plant that showed higher 
disease severity.

Salicylic acid is important for plant resistance to aphid 
infestation and pathogen infection. The results of the present 
transcriptomic analysis were consistent with the significant 
increase in SA content in plants either infested with pea aphids or 
infected by P. medicaginis, and in plants under dual attack from 
aphids and P. medicaginis. The SA signals result in acquisition of 
plant resistance to aphids and pathogens (Chaman et al., 2003), 
and are crucial signaling components for active plant defense 
(Durner et  al., 1997). Previous research involving the 
SA-metabolizing NahG transgene expressed in the Mi-1 
background demonstrated that SA regulates resistance to aphids 
(Li et al., 2006). Moreover, early and strong induction of specific 
genes responsive to SA may initiate resistance against aphid 
infestation in M. truncatula (Gao et al., 2008). Accumulation of 
SA and pathogenesis-related (PR) gene expression can induce 
systemic acquired resistance (Dempsey and Klessig, 2012; Fu and 
Dong, 2013). In the present study, the increase in SA content 
induced by aphid infestation remained stable before and after 
pathogen infection. Therefore, we  assume that the enhanced 

accumulation of SA improved the plant resistance to subsequent 
pathogen infection.

The GO terms analysis shows AM  fungus changed plant 
responses to pea aphid and pathogen infection. Mycorrhizal 
alfalfa enriched more GO terms than non-mycorrhizal alfalfa 
under pathogen infestation. The enriched GO terms and KEGG 
pathway of pea aphid and pathogen were completely different in 
AM plant and NM plants. Colonization by the AM fungus affected 
hormone binding (GO:0042562), secondary metabolite 
biosynthetic process (GO:0044550), and isoprenoid binding 
(GO:0019840) in alfalfa, thus influencing the plant response to 
aphid infestation and pathogen infection.

The RNA-Seq results showed that genes associated with the 
GO terms abscisic acid binding (GO:0010427) and hormone 
binding (GO:0042562) were upregulated in alfalfa plants infested 
with aphids or infected by P. medicaginis. These results were 
consistent with the higher contents of ABA and SA, and increased 
activities of plant defense enzymes, such as CAT and PPO, in 
alfalfa plants either infested with aphids or infected by 
P. medicaginis, and in plants exposed to both aphid infestation and 
pathogen infection.

The RNA-Seq results also revealed that genes associated 
with the mitogen-activated protein kinase (MAPK) signaling 
pathway – plant (map04016) were upregulated in alfalfa infested 
with aphids and infected with P. medicaginis. The MAPK 
cascades play a role in activating multiple aspects of the plant 
immune system in response to pathogen infection (Zipfel et al., 
2006; Miya et al., 2007). In alfalfa, genes associated with the 
chitin metabolic process (GO:0006030) and chitin catabolic 
process (GO:0006032) were upregulated in response to 
P. medicaginis infection. Chitinases are typically enhanced in 
plants challenged by aphids (Ye et  al., 2019) and fungal 
pathogens (Mauch et al., 1988). Chitinase hydrolyze fungal cell 
walls that are composed of chitin, thus preventing fungal 
growth and aphid feeding (Theis and Stahl, 2004; Rajendran 
et al., 2011). Therefore, the induction of genes associated with 
the chitin metabolic process by aphids may also improve plant 
resistance to pathogens.

In conclusion, in the alfalfa–AM fungus–insect–pathogen 
system, aphid infestation led to severe disease incidence 
resulting from P. medicaginis infection. Enzymes associated 
with plant defense and the MAPK signaling pathway induced 
by aphid infestation did not offset the negative impact of aphid 
feeding on the diseased portions of the plants. The AM fungus 
altered the response of plants to pathogen infection facilitated 
by pea aphid infestation through promoting the uptake of 
nitrogen and phosphorus by the plant, enhancing the activities 
of defense-related enzymes and signaling substances, such as JA 
and ABA, as well as the expression of genes associated with 
plant defense and physiological and chemical metabolic 
pathways. This study affords knowledge of AM fungus-mediated 
plant responses to insect infestation and the subsequent 
pathogen infection.
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SUPPLEMENTARY FIGURE S1

The measurement of samples of the study.

SUPPLEMENTARY FIGURE S2

Heatmap analysis of the (A) Homone binding, (B) Secondary metabolite 
biosynthetic process in the NMA−P−, NMA+P−, NMA−P+, NMA+P+, 
AMA−P−, AMA+P−, AMA−P+ and AMA−P+.

SUPPLEMENTARY FIGURE S3

Gene expression levels obtained from RNA-Seq (blue) and qRT-PCR data 
(red) of seven genes in all treatments. The left y-axis shows the qRT-PCR 
data (2−∆∆Cq). The right y-axis shows the RNA-Seq data (FPKM). FPKM, 
fragments per kilobase of exon per million mapped reads; qRT-PCR, 
real-time quantitative reverse-transcription PCR.
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