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In a previous study, Multiplex-nanopore-sequencing based whole genome 

sequencing (WGS) allowed for accurate in silico serotype prediction of 

Salmonella within one day for five multiplexed isolates, using both SISTR 

and SeqSero2. Since only ten serotypes were tested in our previous study, 

the conclusions above were yet to be evaluated in a larger scale test. In the 

current study we evaluated this workflow with 69 Salmonella serotypes and 

also explored the feasibility of using multiplex-nanopore-sequencing based 

WGS for antimicrobial resistance gene (AMR) and virulence gene detection. 

We  found that accurate in silico serotype prediction with nanopore-WGS 

data was achieved within about five hours of sequencing at a minimum of 

30× Salmonella genome coverage, with SeqSero2 as the serotype prediction 

tool. For each tested isolate, small variations were observed between the 

AMR/virulence gene profiles from the Illumina and Nanopore sequencing 

platforms. Taking results generated using Illumina data as the benchmark, the 

average precision value per isolate was 0.99 for both AMR and virulence gene 

detection. We found that the resistance gene identifier – RGI identified AMR 

genes with nanopore data at a much lower accuracy compared to Abricate, 

possibly due to RGI’s less stringent minimum similarity and coverage by default 

for database matching. This study is an evaluation of multiplex-nanopore-

sequencing based WGS as a cost-efficient and rapid Salmonella classification 

method, and a starting point for future validation and verification of using it as 

a AMR/virulence gene profiling tool for the food industry. This study paves the 

way for the application of nanopore sequencing in surveillance, tracking, and 

risk assessment of Salmonella across the food supply chain.
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1. Introduction

Using the historical data from 1998 to 2019, the recent 
published report from U.S. CDC has revealed that non-typhoidal 
Salmonella spp. caused most foodborne disease outbreaks and 
illnesses in the U.S. among four major pathogens including Listeria 
monocytogenes, E. coli O157, and Campylobacter (Batz et al., 2021; 
CDC, 2021). Similarly in the report from EFSA, Salmonella is the 
most detected agent and the second-most important cause of 
foodborne disease cases in the E.U. (EFSA and ECDC, 2021). In 
addition to the public health risk associated with Salmonella, it 
also imposes significant economic burden on governments and 
the food industry. To mitigate the risk of Salmonella contamination 
in the supply chain and food production, it is important to have 
an efficient surveillance and source attribution system. Although 
more than 2,600 serotypes of Salmonella have been identified 
(Grimont and Weill, 2007), only a small proportion of these 
serotypes is responsible for the majority of human salmonellosis 
(CDC, 2013; Jackson et al., 2013; Yin et al., 2020). To overcome the 
disadvantages of traditional serotyping, such as the substantial 
time and labor requirements and the need for large number of 
specific antisera (Wattiau et  al., 2011; Shi et  al., 2015), the 
application of whole-genome sequencing (WGS) for Salmonella 
serotype identification and source tracking is attractive and has 
been shown to provide accurate results (Allard et al., 2016; Ashton 
et al., 2016). Two WGS platforms have been used in most previous 
genomic studies of Salmonella, including (1) Illumina (URL: 
https://www.illumina.com/systems/sequencing-platforms.html), 
which has been widely used for Salmonella identification, source 
tracking, and surveillance (Allard et al., 2016; Ashton et al., 2016); 
(2) Oxford Nanopore Technologies (ONT), which provides a 
solution to sequence long-read nucleic acid fragments in a rapid, 
real-time manner (URL: https://nanoporetech.com/products). 
Illumina sequencing generally has a higher data quality than ONT 
(Fox et al., 2014; Rang et al., 2018), although several studies have 
demonstrated that ONT sequencing can provide for reliable 
serotype prediction (Diep et al., 2019; Banerji et al., 2020; Cooper 
et al., 2020; Xu et al., 2020; Wu et al., 2021). There are reports of 
completing several Salmonella closed genomes using ONT data 
(González-Escalona et al., 2018; Gao et al., 2020; Haendiges et al., 
2021) as well as differentiation of highly similar variants (Xu et al., 
2021). These studies used one or two well recognized bioinformatic 
tools, SISTR (Yoshida et al., 2016) and SeqSero2 (Zhang et al., 
2019), for Salmonella serotype prediction. Regardless of the data 
quality, both tools could successfully identify the target 
Salmonella serotype.

WGS data can also be used for the identification of virulence 
and antimicrobial resistance (AMR) genes. These genes can play 
critical roles in predicting appropriate treatments and strategies for 
outbreak control. Initiatives and plans have been formed for 
proactive monitoring and containment of AMR (USDA, 2014; Smith 
et al., 2016; WHO, 2016), and these actions would consequently 
impact food related industries. WGS is currently being used as an 
effective tool for prediction, surveillance, and further analysis of 
AMR in different microorganisms (Köser et al., 2014; Oniciuc et al., 

2018), such as Campylobacter jejuni (Hodges et al., 2021) and E.coli 
(Päivärinta et al., 2020). Compared with a phenotypic antimicrobial 
susceptibility test, which by definition cannot provide genetic 
information on the AMR determinants (Kahlmeter et al., 2003), 
WGS identifies genetic AMR determinants, which has a number of 
advantages, including more detailed information on AMR 
emergence. Multiple studies used WGS for genomic analysis and 
discovered that, as one of the most common food-borne disease-
causing bacteria, Salmonella isolates from different origins have 
acquired a large number of AMR and disinfectant resistance genes, 
with a number of isolates and strains having developed multi-drug 
resistance (Davidson et al., 2018; Jajere, 2019; Marchello et al., 2020; 
Zhao et al., 2020; Chen et al., 2020a). As for data acquisition, Chen 
et al. (2020a) reported that ONT sequencing can provide data for the 
analysis of AMR genes as well as virulence factors, while a hybrid of 
ONT and Illumina sequencing data was believed to be a better 
solution for higher accuracy (Wick et al., 2017; Chen et al., 2020a,b; 
Neal-McKinney et  al., 2021), since it leverages both the high 
sequencing quality of Illumina data, and the continuity of long-read 
ONT data. The hybrid method for assembling high quality genomes 
was introduced as the R9 flow cells have been showing generally 
lower raw read accuracy compared to Illumina sequencing (Liu 
et  al., 2019). However, with the continuous development of the 
nanopore sequencing technology, the latest version of the R10 flow 
cells appears to have improved performance in obtaining high 
quality raw reads, therefore making it possible to generate near-
finished bacterial genomes without Illumina sequencing data for a 
hybrid assembly (Sereika et al., 2022).

In our previous study, ONT sequencing with multiplexing of 
five Salmonella isolates was evaluated and both SISTR and 
SeqSero2 results indicated that accurate serotype prediction can 
be achieved when each multiplexed isolate reached a minimum of 
50× genome coverage (Wu et al., 2021). Cross-contamination of 
barcodes was observed in both our study as well as by Xu et al. 
(2018), and we  suspected the root cause of such cross-
contamination was the remaining free adaptors during library 
preparation and pooling. Removal of the dissociative adaptors 
would solve the problem. Since only 10 isolates were selected in 
our previous study, the conclusions above are yet to be evaluated 
in a larger scale test. Moreover, our previous study only focused on 
the identification of serotype antigenic formula, neither AMR gene 
nor virulence gene identification was examined. Consequently, in 
this study, we aimed to: (1) further evaluate the feasibility and 
reliability of the five isolate multiplex strategy we proposed before 
(Wu et al., 2021) using a larger number of isolates; and (2) compare 
the ability of the ONT and Illumina platforms to identify AMR as 
well as virulence genes within the genomic data generated.

2. Materials and methods

2.1. Bacterial strains

Sixty-nine Salmonella isolates each representing a different 
serotype were assessed in the current study (Supplementary 
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Table  1). Thirty-nine of these isolates represented the most 
common serotypes, which were selected from (i) the most 
common serotypes reported by the U.S. national Salmonella 
surveillance system in 2016 from all sources (CDC, 2016), (ii) the 
20 most frequent serotypes in 2019  in the European Union/
European Economic Area (EFSA and ECDC, 2021), and (iii) the 
most frequently serotyped human Salmonella isolates from 
American, Asian, European, North American, or Oceania 
countries, based on data extracted from the World Health 
Organization Global Foodborne Infections Network Country 
Data Bank (Hendriksen et al., 2011). Five isolates represented rare 
serotypes found in the food industry (information obtained by 
personal communication) including serotypes Minnesota, 
Johannesburg, Cubana, Havana, and Liverpool. Eight isolates 
represented difficult-to-identify or differentiate serotypes with 
molecular-level serotyping methods, as described in our previous 
study (Xu et al., 2020) including serotype Typhimurium, its O5- 
variant, and serotype 4,[5],12:i:-, Paratyphi B var. Java, 
Choleraesuis, Virchow, Orion var. 15+, 34+ and Give. Two isolates 
represented serotypes with issues associated with detection from 
the food supply chain (information obtained by personal 
communication), including serotype Poona and 66:z41:- 
(S. bongori subspecies V). The other serotypes not within the 
above-mentioned categories were randomly selected from the 
Cornell Food Safety Lab Salmonella isolate storage to represent 
serotypes with relatively moderate prevalence from various 
sources. Detailed isolate information can be  found at www.
foodmicrobetracker.com under the isolate ID (e.g., FSL R8-1295).

2.2. Genomic DNA extraction

Salmonella genomic DNA of all isolates was extracted as 
previously described (Wu et al., 2021). Briefly, QIAamp DNA mini 
kit (Qiagen, Hilden, Germany) was applied to extract genomic 
DNA from single colonies on Trypticase Soy Agar, which were 
cultured at 37°C for 20 ~ 22 h. Quality of the genomic DNA was 
assessed with the NanoDrop  2000 (Thermo Fisher Scientific, 
Delaware, United States) for absorbance value (A value), and the 
double stranded DNA quantity was assessed with the Qubit 3.0 
fluorimeter (Life Technologies, Paisley, United Kingdom). The 
genomic DNA samples that met the criteria from ONT’s guidance 
for qualification requirements for successful sequencing were used 
for library construction: (i) A 260/280 between 1.8 and 1.9; (ii) A 
260/230 between 2.0 and 2.2. for each flow cell (FC). For each of 
the FCs, all multiplexed DNA samples were normalized to the 
same concentration before input, ranging from 400 to 600 ng. FCs 
with 1,000–1,500 active pores were used for sequencing.

2.3. Oxford nanopore library preparation 
and sequencing

The 69 isolates were divided into 14 groups; each group 
included five different isolates (isolate Salmonella Typhi FSL 

R6-0540 was used in two groups; see Table 1). We multiplexed five 
DNA libraries from each group into one DNA sample with the rapid 
Barcoding Sequencing kit (SQK-RBK004) according to the 
manufacturer’s instructions and sequenced it with qualified 
FLO-MIN106D FCs (R9.4.1, active pore number ≥ 800) for 24 h on 
a GridION (Oxford Nanopore Technologies, Oxford, UK; Figure 1). 
Five barcodes (Barcode 01 ~ 05) were assigned to five isolates in 
each group and on each FC (Table 1). To assess the capability of this 
method for differentiating closely related Salmonella serotypes, 
we arranged the serotypes with similar antigenic formulae in the 
same group. For instance, Group No.1 includes Salmonella serotype 
Typhi (9,12[Vi]:d:-), Barranquilla (16:d:e,n,x), Minnesota 
(21:b:e,n,x), Gaminara (16:d:1,7), and Johannesburg (1,40:b:e,n,x); 
two of them hold the same O antigen – “16,” three of them hold the 
same H1 antigen – “d,” two hold the same H1 antigen – “b,” and 
three of them hold the same H2 antigen – “e, n, x.” Serotype Typhi 
does not have an H2 antigen, we thus added it to this group in order 
to investigate if multiplexed ONT sequencing would lead to a false 
positive H2 antigen of the serotype Typhi due to possible in vitro or 
in silico cross-contamination. We  performed basecalling with 
Guppy’s basecalling model (v5.1.13) integrated in the MinKNOW 
software v21.11.17 installed on GridION. This model was modified 
for 6 mA dam/5mC dcm and CpG.

2.4. Genomic and serotype prediction 
analysis

Raw data (demultiplexed, unfiltered and untrimmed reads) 
obtained after basecalling were processed through essentially the 
same demultiplexing (qcat v1.1.0, https://github.com/
nanoporetech/qcat) and genome assembling workflow described 
by Wu et al. (2021); Figure 1. We used NanoPlot (version 1.18.1) 
to analyze the quality of ONT raw sequencing data.

Original serotype information for isolates was received by 
the source that provided isolates; our understanding is that all 
serotype data for the isolates used here was based on classical, 
antibody-based, serotyping (and not based on serotype 
prediction based on molecular data, e.g., WGS data). A large 
proportion of the isolates was obtained from animals and 
humans; these isolates had typically been characterized by 
traditional serotyping performed by agglutination (as described 
by Edwards and Ewing, 1986) at either the New  York State 
Department of Health (for human isolates) or the National 
Veterinary Services Laboratories (NVSL), a division of the 
United State Department of Agriculture (USDA) Animal and 
Plant Health Inspection Service (APHIS, Ames, Iowa; for animal 
isolates; Alcaine et al., 2006; Rodriguez-Rivera et al., 2014). Both 
SeqSero2 v1.1.21 and SISTR_cmd (The Salmonella in silico 
Typing Resource Command-line Tool) v1.1.0 (Yoshida et al., 
2016) were used for serotype prediction with the sequence data 
generated in this study. As previously described (Wu et  al., 

1 https://github.com/denglab/SeqSero2
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TABLE 1 Salmonella isolates tested.

Group ID Barcode ID Serotype1 Isolate ID (Cornell 
Food Safety Lab ID)

Antigenic Formula2

1 No. 01 Typhi FSL R6-0540 9,12[Vi]:d:-

1 No. 02 Barranquilla FSL R8-1295 16:d:e,n,x

1 No. 03 Minnesota FSL R8-2410 21:b:e,n,x

1 No. 04 Gaminara FSL R8-5569 16:d:1,7

1 No. 05 Johannesburg FSL S5-0703 1,40:b:e,n,x

2 No. 01 Mississippi FSL A4-0633 1,13,23:b:1,5

2 No. 02 Poona FSL R8-0115 1,13,22:z:1,6

2 No. 03 Cubana FSL R8-3581 1,13,23:z29:-

2 No. 04 Roodepoort FSL R8-7983 1,13,22:z10:1,5

2 No. 05 Worthington FSL S5-0490 1,13,23:z:l,w

3 No. 01 Derby FSL R8-2630 1,4,[5],12:f,g:[1,2]

3 No. 02 Typhimurium o5- FSL R8-3714 1,4,[5],12:i:1,2

3 No. 03 Agona FSL S5-0517 1,4,[5],12:f,g,s:[1,2]

3 No. 04 Typhimurium FSL S5-0536 1,4,[5],12:i:1,2

3 No. 05 4,[5],12:i:- FSL S5-0580 4,[5],12:i:-

4 No. 01 Sandiego FSL R8-4447 1,4,[5],12:e,h:e,n,z15

4 No. 02 Enteritidis FSL S5-0415 1,9,12:g,m:-

4 No. 03 Paratyphi B var. Java FSL S5-0447 1,4,[5],12:b:1,2

4 No. 04 Heidelberg FSL S5-0448 1,4,[5],12:r:1,2

4 No. 05 Saintpaul FSL S5-0649 1,4,[5],12:e,h:1,2

5 No. 01 Bredeney FSL R8-2629 1,4,12,27:l,v:1,7

5 No. 02 Kiambu FSL R8-9562 1,4,12:z:1,5

5 No. 03 Wien FSL R9-0007 1,4,12,[27]:b:l,w

5 No. 04 S. enterica subspecies IIIa -:z4,z23:- FSL R9-0515 -:z4,z23:-

5 No. 05 Schwarzengrund FSL S5-0458 1,4,12,27:d:1,7

6 No. 01 Give FSL S5-0487 3,{10}{15}{15,34}:l,v:1,7

6 No. 02 Orion var. 15+, 34+ FSL R8-3858 3,{10}{15}{15,34}:y:1,5

6 No. 03 Alachua FSL R8-2924 35:z4,z23:-

6 No. 04 Anatum FSL R8-7981 3,{10}{15}{15,34}:e,h:1,6

6 No. 05 Muenster FSL S5-0432 3,{10}{15}{15,34}:e,h:1,5

7 No. 01 S. bongori subspecies V 66:z41:- FSL R9-0518 66:z41:-

7 No. 02 Meleagridis FSL R8-6670 3,{10}{15}{15,34}:e,h:l,w

7 No. 03 Stockholm FSL R8-4727 3,{10}{15}:y:z6

7 No. 04 Uganda FSL R8-3404 3,{10}{15}:l,z13:1,5

7 No. 05 Weltevreden FSL S5-0438 3,{10}{15}:r:z6

8 No. 01 Choleraesuis FSL R9-0095 6,7:c:1,5

8 No. 02 Bareilly FSL R8-7922 6,7,14:y:1,5

8 No. 03 Infantis FSL S5-0734 6,7,14:r:1,5

8 No. 04 Rissen FSL R9-0152 6,7,14:f,g:-

8 No. 05 Thompson FSL S5-0523 6,7,14:k:1,5

9 No. 01 Braenderup FSL R8-7984 6,7,14:e,h:e,n,z15

9 No. 02 S. enterica subspecies IV 45:g,z51:- FSL R9-0517 45:g,z51:-

(Continued)
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2021), both ONT raw reads and assembled contigs were used as 
input data for SeqSero2, while only assembled contigs were used 
as input data for SISTR. Default parameters were used according 
to the developer’s manual. We  collected different sizes of 
sequencing data from ONT to assess the influence of sequencing 
depth and sequencing time on the accuracy of serotype 
prediction. We defined the lowest depth of genome coverage that 
one multiplexed isolate could achieve among all the multiplexed 
isolates on one FC at a given sequencing time as Depthmin of this 
FC. A one-way analysis of variance (ANOVA) followed by a 
Tukey HSD test was carried out to compare the difference of data 
yield between combined isolates in each FC.

2.5. AMR and virulence gene 
identification and precision-recall 
analysis

Assembled contigs generated from our serotype prediction 
workflow were used for AMR and virulence gene identification. RGI 
(resistant gene identifier) 5.1.1 (Alcock et al., 2020) and Abricate 
1.0.12 were both loaded with the CARD database (ver. 2020-Apr-19; 
Alcock et al., 2020) and then launched for the identification of AMR 

2 https://github.com/tseemann/abricate

TABLE 1 (Continued)

Group ID Barcode ID Serotype1 Isolate ID (Cornell 
Food Safety Lab ID)

Antigenic Formula2

9 No. 03 Norwich FSL R8-6279 6,7:e,h:1,6

9 No. 04 Mbandaka FSL S5-0451 6,7,14:z10:e,n,z15

9 No. 05 Newport FSL R8-7979 6,8,20:e,h:1,2

10 No. 01 Havana FSL S5-0549 1,13,23:f,g,[s]:-

10 No. 02 Livingstone FSL R8-5215 6,7,14:d:l,w

10 No. 03 Ohio FSL R8-4333 6,7,14:b:l,w

10 No. 04 Putten FSL A4-0590 13,23:d:l,w

10 No. 05 Virchow FSL S5-0961 6,7,14:r:1,2

11 No. 01 Panama FSL R8-2996 1,9,12:l,v:1,5

11 No. 02 Dublin FSL S5-0439 1,9,12[Vi]:g,p:-

11 No. 03 Ibadan FSL R8-4726 13,22:b:1,5

11 No. 04 Javiana FSL S5-0395 1,9,12:l,z28:1,5

11 No. 05 Pomona FSL R8-0451 28:y:1,7

12 No. 01 S. enterica subspecies VI 

[1],6,14,[25]:a:e,n,x

FSL R9-8566 [1],6,14,[25]:a:e,n,x

12 No. 02 Cerro FSL R8-0370 6,14,18:z4,z23:[1,5]

12 No. 03 Senftenberg FSL R8-5370 1,3,19:g,[s],t:-

12 No. 04 Hartford FSL R8-5223 6,7:y:e,n,x

12 No. 05 S. enterica subspecies IIIb 6,7:l,v:z53 FSL R9-0516 6,7:l,v:z53

13 No. 01 Kentucky FSL S5-0273 8,20:i:z6

13 No. 02 Typhi3 FSL R6-0540 9,12[Vi]:d:-

13 No. 03 Blockley FSL S5-0648 6,8:k:1,5

13 No. 04 Muenchen FSL R8-7982 6,8:d:1,2

13 No. 05 Apapa FSL R8-5222 45:m,t:-

14 No. 01 Liverpool FSL R9-1184 1,3,19:d:e,n,z15

14 No. 02 Oranienburg FSL R8-7977 6,7,14:m,t:[z57]

14 No. 03 Ealing FSL R8-2454 35:g,m,s:-

14 No. 04 Montevideo FSL S5-0630 6,7,14,[54]:g,m,[p],s:[1,2,7]

14 No. 05 Tennessee FSL R8-5221 6,7,14:z29:[1,2,7]

1Serotype information of each isolate was based on data from www.foodmicrobetracker.com under the isolate ID.
2Antigenic formula was extracted from Grimont and Weill (2007). Antigenic formulae of the Salmonella serovars, (9th ed.) Paris: WHO Collaborating Centre for Reference and Research 
on Salmonella, according to the serotype names.
3Isolate FSL R6-0540 (Serotype Typhi) was used in two groups - Group 1 and Group 13.
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genes under default arguments. For virulence gene identification, 
only Abricate was used to search against the VFDB database (ver. 
2020-Apr-19; Liu et al., 2019), and arguments were defined as default.

A precision-recall analysis was performed to evaluate the 
differences between Illumina and ONT data regarding the AMR 
and virulence genes identified. AMR and virulence genes identified 
from Illumina data were assumed to be the benchmark. Therefore, 
for each isolate, genes identified in both Illumina and ONT data 
were true positive (TP) results, genes identified only in ONT data 
were false positive (FP) results, and genes identified only in 
Illumina data were false negative (FN) results. The following 
equations were used to obtain the values of “Precision,” “Recall,” 
“Accuracy,” and “False-negative probability”: False-positive 
probability was not calculated as we  did not pursue the true 
negative number of AMR or virulence genes detected in this study.

 
Precision TP TP FP= ∑ ∑ +( )/

 
Recall TP TP FN= ∑ ∑ +( )/

 
Accuracy TP TN TP TN FP FN= ∑ +( ) ∑ + + +( )/

 ( )
False negative /False negative

False negative True Positive probability
∑−

=
∑ +

To investigate the impact of depth of genome coverage on 
Precision and Recall, different depths (15×, 30×, 50×, and 75×) of 
genome coverage data for the serotype Typhimurium isolate were 
extracted to perform genome assembling, the obtained contigs 

were analyzed through AMR and virulence gene identification by 
RGI and Precision-Recall analysis.

2.6. Identification of possible 
cross-assigned reads and influence of 
cross-assigned reads on the accuracy of 
serotype prediction

We detected possible cross-assigned reads from each FC as 
described previously (Wu et al., 2021). Cross-assigned reads were 
identified from serotype prediction errors caused by single ONT 
reads. We used 50× depth of genome coverage demultiplexed raw 
sequencing reads as input of SeqSero2 to identify this type of 
prediction error and the corresponding error-causing antigen 
determinant loci. ONT raw reads that could match these error-
causing antigen determinant loci, by using BLAST3 with identity 
≥90% and coverage = 100%, would be classified as possible cross-
assigned reads.

3. Results and discussion

3.1. Overview of multiplexed and 
demultiplexed nanopore sequencing 
data and assembly of Salmonella 
genomes

An average of 6.58 Gbp of raw ONT sequencing data per FC 
(N = 14 FCs) was obtained after 24 h of ONT sequencing. Data 
outputs of FCs ranged from 4.51 to 8.34 Gbp with a mean read 

3 https://blast.ncbi.nlm.nih.gov/Blast.cgi

FIGURE 1

Workflow of the multiplex-ONT-sequencing-based WGS method for Salmonella serotype prediction and AMR/virulence gene detection.
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length of 9,248 bp and a mean N50 read length of 17,273 bp on 
average across all FCs (Table 2). Sequencing quality was shown to 
be highly consistent among FCs, with mean quality scores for a 
given FC ranging from 11.50 to 12.10. The average quality score 
across all FCs was 11.79.

Qcat failed to assign an average of 7.20% ± 0.52% 
(mean ± standard deviation, N = 14 FCs) reads per FC to any 
barcode; these reads were defined as Non-assigned reads. Qcat 
assigned an average of 0.03% reads per FC to barcodes that were 
not included in the FC, which was consistent with our previous 
study (Wu et al., 2021). These reads were defined as mis-assigned 
reads (Figure  2; Supplementary Table  2). The original 
demultiplexed ONT sequencing data were submitted to NCBI - 
SRA (Accession number: PRJNA694442).

Tukey HSD test indicated that Barcode 03 (BC03) showed 
significantly lower (p < 0.05, N = 14 FCs, overall ANOVA 
p-value = 0.0019, α = 0.05) sequence data yields compared to two 
of the other four barcodes used, which implied that the data-yield 
performance varied among the barcodes provided by the same 
ONT rapid barcoding kit product (Figure 3). This may lead to 
uneven distribution of sequence data among multiplexed isolates 
on the same FC, impacting the minimum total ONT sequencing 
time, because the final total sequencing time needs to be long 
enough to allow the barcoded isolate that obtained the least 
sequence data to receive sufficient data (e.g., 50× depth of genome 
coverage) for downstream analysis. Our previous study also 
identified that, when multiplexing more than four isolates, some 
of the barcodes showed significantly lower data yield than the 
others (Wu et al., 2021).

3.2. Influence of sequencing time and 
depth on accuracy of Salmonella 
serotype prediction using ONT 
assembled genomes

With five isolates multiplexed on each FC, we assessed three 
levels of Depthmin (15×, 30×, 50×) for the accuracy of Salmonella 
serotype prediction. Using assembled genomes as input to 
SeqSero2 and SISTR, when Depthmin was 30× and 50×, SeqSero2 
correctly predicted all 69 serotypes across 14 FCs, while the 
prediction accuracy of SISTR was 98.6% (68/69) at Depthmin 30× 
and 50× of the FC (Table 3). The error result generated by SISTR 
showed that the O antigen of serotype -:z4,z23:- (subspecies IIIa, 
FSL R9-0515) was miss-called as “41” across all the depths tested 
(Table 4). The O antigen of the other four isolates multiplexed with 
FSL R9-0515 are all “4” rather than “41,” and correctly predicted, 
indicating that this prediction error was not caused by cross-
assigned reads. Cross-assigned reads analysis by BLAST did not 
identify any cross-assigned read that could cause the miss-calling 
of O antigen as “41.”

With respect to the prediction errors at Depthmin 15× of 
SeqSero2 and SISTR, BLAST analysis showed that the low depth 
of genome coverage (15×) with the relatively low sequencing 
quality of ONT data (average Qscore = 12.24 at Depthmin of 15×, 
N = 14) led to failure in matching antigen determinant alleles of O 
antigen 1, 3, 6, 16, 19, 21, or 45, for five serotypes. For all the 
prediction errors of SeqSero2 at Depthmin of 15× (Table 4), the low 
depth of coverage did not allow SeqSero2 to determine any O 
antigen for four of the tested serotypes.

TABLE 2 Statistics of ONT multiplex sequencing data for each group of isolates tested from 24 h of sequencing.

Group No1. Total clean data 
yield in 24 h (Gbp)

Mean read length 
(bp)

Mean quality 
score

Number of 
reads

Mean read 
length N50

1 6.70 8,527 11.50 786,309 17,240

2 6.17 8,842 11.70 697,460 16,854

3 7.19 8,240 12.10 872,570 15,974

4 6.68 8,747 11.20 873,088 17,622

5 7.19 8,772 11.50 819,834 16,281

6 5.31 9,253 12.10 573,709 17,183

7 5.90 9,205 11.80 640,597 16,709

8 7.64 9,629 11.90 693,913 17,290

9 5.78 8,431 12.00 685,709 15,234

10 7.20 10,475 12.00 687,001 19,509

11 8.34 8,486 11.90 982,440 15,686

12 5.68 11,081 11.90 512,726 19,932

13 7.79 10,304 11.70 756,070 18,957

14 4.51 9,475 11.70 476,383 17,348

Average 6.58 9,248 11.79 718,415 17,273

1Each group contains five isolates, each group of isolates were multiplexed and sequenced on one ONT flow cell.
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FIGURE 3

The proportion of the total sequence data yield for each barcode (labeled as BC01-BC05) per flow cell is shown as a single dot. The 
maximum/minimum (excluding outliers), 75, 50, and 25% quantile data yield of a barcode of each flow cell are labeled with red lines. Based 
on Tukey HSD test, barcodes that does not share the same letters were significantly different (p-value < 0.05, overall ANOVA p-
value = 0.0019).

FIGURE 2

Multiplex sequencing data distribution within each flow cell (FC) for each barcode (BC) after 24 h of ONT sequencing. Each color 
represents one BC or none-assigned/miss-assigned reads. Within each FC, ONT reads that were not assigned to any BC were defined as 
non-assigned reads, reads assigned to a BC that was not used in the FC were defined as miss-assigned reads. As the bars for miss-
assigned reads were not easily visible, detailed proportions are listed here: the number of mis-assigned reads was 2% in FC02 and FC05, 
and 3% in all the other FCs.
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The ONT sequencing times for each Depthmin level are shown 
below (Table  5). Depthmin 15×, 30×, and 50× of one FC 
multiplexing five Salmonella isolates could be achieved within 
2.36 ± 0.43 h, 4.32 ± 0.87 h, and 7.01 ± 1.57 h (mean ± standard 
deviation, N = 14), respectively.

In summary, accurate serotype prediction with ONT WGS data 
was achieved within about 5 h of ONT sequencing at a minimum 
depth of Salmonella genome coverage at 30× (assuming the genome 
size of a given Salmonella strain is 4.8 Mbp) with Guppy’s basecalling 
model modified for 6 mA dam/5mC dcm and CpG, with SeqSero2 
as the prediction tool. This minimum depth of ONT WGS data for 
serotype prediction is also consistent the minimum depth (for 
≥10 kb reads) for bacterial assemblies recommended by ONT 
(URL: https://nanoporetech.com/sites/default/files/s3/literature/
microbial-genome-assembly-workflow.pdf).

As we  previously reported, multiplexing more than three 
isolates will inevitably cause uneven data allocation among 
multiplexed isolates. It is thus essential that the multiplexed isolate 
with the least data reaches a depth of 30× genome coverage for 
reliable serotype prediction, by extending overall sequencing 
duration to be  longer than simply using the sequencing time 
required for a single isolate for a multiplexed run.

When using raw reads rather than assembled genomes as 
input for SeqSero2, one serotype prediction error was found for 
isolate FSL R9-0518 (Salmonella Bongori; Serotype 66:z41:-) with 
FC Depthmin at 50×, where it was called as Salmonella Bongori 
Serotype 1,3,19:z41:l,w.. Cross-assigned reads analysis by BLAST 
indicated that the O and H2 antigen were mis-identified, possibly 
due to reads cross-assigned from the other isolates multiplexed in 

the same FC. These cross-assigned reads contained antigen 
determining alleles from the other isolates with O and H2 antigens 
different from serotype 66:z41:-. With a bead clean-up step added 
to the multiplexed library preparation process, we  found an 
occurrence rate of read cross-assignment of 7% (1/14) in the 
current study, compared to 8% (2/24) reported in our previous 
study (Wu et al., 2021). The errors caused by cross-assigned reads 
were corrected by using an assembled genome, and this finding is 
consistent with our previous study (Wu et al., 2021).

3.3. AMR and virulence gene 
identification

At the single isolate level, some variations in AMR and 
virulence gene profile were observed between Illumina and ONT 
data (Supplementary Table  3). For an individual Salmonella 
isolate, Abricate generated similar AMR and virulence 
identification results using either Illumina or ONT data, while 
RGI showed substantial discrepancies between these two 
sequencing platforms. Taking results from Illumina data as ground 
truth, the average number of true positive AMR genes per isolate 
identified from ONT data by Abricate and RGI was 26.19 and 
29.64, respectively (Table 6). With ONT data, Abricate and RGI (i) 
failed to identify an average of 0.36 and 11.81 AMR genes per 
isolate, respectively and (ii) identified an average of 0.19 and 5.91 
false positive AMR genes per isolate, with false negative 
probabilities of 1.37 and 27.62%, respectively. When using 
Abricate with the VFDB library to scan ONT data for virulence 
genes per isolate, 99.64 true positive virulence genes on average 
were identified, with 1.25 false negative genes and 1.07 false 
positive genes identified. In general, if RGI was used for AMR 
gene identification, ONT data of the 69 isolates yielded an average 
precision of 0.84 and an average recall of 0.72 compared to 
Illumina data. Abricate on the other hand yielded both precision 
and recall of 0.99 for either AMR gene or virulence 
gene identification.

Through the results generated by Abricate, we calculated the 
total number of false negatives (FNs) and false positives (FPs) for 
each detected gene as well as for each isolate. A total of 26 isolates 

TABLE 3 Accuracy of Salmonella serotype prediction using assembled 
genomes from ONT multiplex sequencing data.

Depthmin
1 SeqSero2 SISTR

15 x 95.7% (66/69) 97.1% (67/69)

30 x 100% (69/69) 98.6% (68/69)

50 x 100% (69/69) 98.6% (68/69)

1We defined the lowest depth of genome coverage that one multiplexed isolate could 
achieve among all the multiplexed isolates on one flow cell at a given sequencing time as 
Depthmin of this flow cell.

TABLE 4 Salmonella serotype prediction errors.

Isolate ID Serotype Antigenic 
Formula

Predicted 
Antigenic 
Formula

Serotype 
prediction tool

Actual depth 
of genome 
coverage

Depthmin of 
the flow cell

FSL R8-1295 Barranquilla 16:d:e,n,x I -:d:e,n,x SeqSero2 22× 15×

FSL R8-2410 Minnesota 21:b:e,n,x I -:b:e,n,x SeqSero2 16× 15×

FSL R9-0517 IV 45:g,z51:- 45:g,z51:- IV -:g,z51:- SeqSero2 17× 15×

FSL S5-0648 Blockley 6,8:k:1,5 I -:k:1,5 SeqSero2 17× 15×

FSL R8-5370 Senftenberg 1,3,19:g,[s],t:- 3,10:g,s,t:- SeqSero2 20× 15×

FSL R9-0515 subspecies:IIIa 

-:z4,z23:-

-:z4,z23:- IIIa 41:z4,z23:- SISTR 60×; 122×; 206× 15×; 30×; 50×
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TABLE 6 Accuracy of AMR/virulence gene identification using ONT multiplex sequencing data.

RGI (CARD) Abricate (CARD) Abricate (VFDB)

Average Value2 95% CI Average Value 95% CI Average Value 95% CI

True positive1 29.64 28.92, 30.36 26.19 25.64, 26.74 99.64 97.77, 101.51

False negative 11.81 10.49, 13.13 0.36 0.16, 0.56 1.25 0.56, 1.94

False positive 5.91 5.45, 6.37 0.19 0.06, 0.32 1.07 0.43, 1.71

Precision3 0.84 0.83, 0.85 0.99 0.99, 0.99 0.99 0.98, 1.00

Recall4 0.72 0.70, 0.74 0.99 0.98, 1.00 0.99 0.98, 1.00

False-negative 

probability5

27.62% 25.44, 29.80% 1.37% 0.61, 2.13% 1.18% 0.54, 1.82%

1The positive detections of AMR or virulence genes from Illumina sequence data were taken as true positives; any genes that were detected by Illumina sequence data, but not by ONT 
sequence data were taken as false negatives; any genes were detected by ONT sequence data, but not by Illumina sequence data were taken as false positives.
2N = 69 Salmonella isolates.
3Precision = ∑True positive/∑(True positive + False positive).
4Recall = ∑True positive/∑(True positive + False negative).
5False-negative probability = ∑False negative/ ∑(False negative + True Positive); False-positive probability was not calculated as we did not pursue the true negative number of AMR or 
virulence genes detected in this study.

were found as having FNs; these FNs were associated with a total 
of 13 AMR and 39 virulence genes (Figure 4), indicating these 
genes failed to be  detected in at least some of the genome 
assemblies generated from ONT sequencing data. The raw reads 
containing these FNs might have been excluded due to low quality 
caused by ONT sequencing errors, while Illumina sequencing data 
seemed to provide a more complete profile of the AMR and 

virulence genes. On the other hand, FPs were associated with nine 
AMR genes and 31 virulence genes; these FNs were contributed 
by 23 isolates. The total number of FNs was higher than FPs, 
although many of the isolates had both FNs and FPs. Among all 
FPs, one virulence gene shdA has an exceptionally high number 
of FP hits from nine different isolates (Figure  4; 
Supplementary Table 3), with a mean coverage >97.95% and a 
mean identity >94.33%. shdA encodes an AIDA (Adhesin Involved 
in Diffuse Adherence)-like protein, with a total nucleotide length 
of 6,105 bp (Kingsley et al., 2000); such length can be fully covered 
by ONT long-reads while several Illumina reads are needed for 
assembly. The FP hits for shdA may represent true positives as the 
true composition of AMR genes and virulence genes of the tested 
isolates was unknown, because only the Illumina sequencing data 
were used as the benchmark. It is possible that some genes were 
not fully recovered during the Illumina-based genome assembly 
process, consequently causing low coverage or identification when 
detecting AMR and virulence genes using Abricate.

We compared the precision and recall of AMR/virulence gene 
identification between five different sequencing depths of one test 
isolate (FSL S5-0536) representing serotype Typhimurium to 
further explore the impact of sequencing depth on accuracy of 
AMR/virulence gene identification with multiplex-ONT WGS 
data. As all the isolates were tested with the same workflow, 
we  speculated that the dynamics of the association between 
accuracy and sequencing depths for AMR/virulence gene 
identification with ONT data would be the same for these isolates. 
We  therefore picked only serotype Typhimurium as the 
representative and assembled the genome of this isolate at 
sequencing depth 15×, 30×, 50×, 75×, and 100×. These assemblies 
then went through Abricate loaded with CARD and VFDB 
libraries and RGI loaded with CARD library. Recall and Precision 
statistics based on the identification results are shown below 
(Table 7). We found that with Abricate, sequencing depth of 30× 
or above was sufficient to obtain highest recall and precision for 

TABLE 5 ONT multiplex sequencing time per flow cell.

Group ID Sequencing Time in hours to 
achieve a minimum genome 

coverage for each isolate on a flow 
cell

15× 30× 50×

Group 1 2.80 4.96 7.67

Group 2 2.30 4.14 6.72

Group 3 1.94 3.49 5.52

Group 4 1.87 3.48 5.67

Group 5 2.66 5.12 8.60

Group 6 2.37 4.38 7.23

Group 7 1.98 3.51 5.65

Group 8 3.24 6.19 10.45

Group 9 2.38 4.32 6.98

Group 10 1.90 3.41 5.37

Group 11 2.17 3.76 5.82

Group 12 2.86 5.27 8.34

Group 13 1.97 3.47 5.41

Group 14 2.61 4.97 8.64

Average Sequencing 

Time

(N = 14)

2.36 4.32 7.01
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both AMR and virulence gene identification for isolate FSL 
S5-0536, while with RGI, precision and recall reached the highest 
value when sequencing depth was at 75×.

Previously, Gargis et al. (2019) also found that AMR markers 
could be correctly detected from the biothreat pathogens Bacillus 
anthracis and Yersinia pestis with 100,000 ONT raw sequencing 
reads per isolate. Noting that Bacillus anthracis and Yersinia pestis 
have similar genome sizes as Salmonella (assuming the genome size 

of a given Salmonella strain is 4.8 Mbp), our sequencing workflow 
could usually achieve an accurate AMR profile prediction with 
around 20,000 raw sequencing reads per isolate (at around 
30 × coverage) using Abricate. The differences in precision and 
recall between RGI and Abricate were likely at least partially due to 
different default similarity cut-off values for sequence alignment 
through BLAST used with both softwares. In RGI (Alcock et al., 
2020), sequence matching hits are classified into three types: 

A

C D

B

FIGURE 4

False Positive (FP) and False Negative (FN) numbers of AMR and virulence genes detected with ONT data, taking results from Illumina data as 
benchmark. (A) Number of AMR gene FN (in orange) and FP (in blue) results for different AMR genes; AMR genes not shown did not yield AMR 
gene FP or FN results; (B) Number of AMR gene FN and FP results for each given isolate; isolates not shown did not yield AMR gene FN or FP 
results; (C) Number of virulence gene FN and FP results for different virulence genes; virulence genes not shown did not yield virulence gene FP or 
FN results; (D) Number of virulence FN and FP results for each given isolate; isolates not shown did not yield virulence gene FN or FP results.
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Perfect, Strict, or Loose. Except for the 100% match as “Perfect,” 
“Strict,” or “Loose” hits will include hits with much lower identity 
or coverage. RGI generated results from all three types of sequence 
matching hits, this may have led to some inaccurate identification 
of AMR with “Strict” or “Loose” hits. In this study, more AMR 
genes were identified using RGI than Abricate, the least identity in 
RGI results was 51.35% with a gene coverage of 91.8%, whereas the 
Abricate results only included hits with minimum identity and 
coverage of 80 and 90%, respectively. Higher identity and coverage 
of sequence matching hits adopted by Abricate compared to RGI 
may increase the accuracy of AMR identification by Abricate when 
using ONT data. A more recent study (Tan et al., 2020) found that 
AMR profiles of Streptococcus suis could be identified for 100% of 
the 10 isolates tested using RGI (with CARD library) with ONT 
sequencing data generated by a MinION sequencer. “Loose” 
algorithm of RGI was also used for MinION assemblies in Tan 
et al.’s study, while our findings implied that some of the AMR 
genes identified by “Loose” algorithm of RGI from ONT sequencing 
data may not be  accurate as compared to results generated by 
Illumina data for Salmonella when coverage is from 15× to 100×.

3.4. Recommendation for cost-effective 
multiplexing strategy for serotype 
prediction and AMR/virulence gene 
prediction

The current study shows that, when multiplexing five 
Salmonella genome DNA samples in one ONT FC, 50× or greater 
depth of genome coverage per isolate/sample allows for accurate 
serotype prediction and AMR/virulence gene profiling with 
accuracy comparable to Illumina data for Salmonella. The 
sequencing time for obtaining at least 50× per multiplexed isolate 
was 7.01 h on average (range: 5.37 to 10.45 h) based on data from 
sequencing of 14 FCs with five different serotypes multiplexed in 
each FC, and 69 different Salmonella serotypes tested in total. A 
cost estimation of ONT sequencing with five Salmonella isolates 

multiplexed in one FC has been made in our previous study (Wu 
et  al., 2021). These recommendations are based on the ONT 
GridION sequencer, FC R9.4.1, sequencing kit SQK-RBK004, 
basecalling model modified for 6 mA dam/5mC dcm and CpG, 
as well as the corresponding bioinformatics pipeline developed 
for the current study. As various sequencing platforms, 
sequencing kits and bioinformatics tools are available for ONT 
sequencing, any deviation from or further improvement of the 
factors described above may change the prediction results and 
accuracy significantly. Although the sequencing kit (SQK-
RBK004) used in this study has the capability of barcoding up to 
12 different isolates in one FC, we focused on validating only five 
isolates multiplexed as we have demonstrated in our previous 
study that multiplexing five Salmonella genome DNA isolates 
could achieve the most efficient combination of sequencing time, 
data distribution stability, and cost reduction. Previously, we have 
demonstrated that the unevenness of data yield between each 
multiplexed isolate increases significantly as the multiplexing 
number of isolates increases; and multiplexing seven to 10 
isolates resulted in only a small cost benefit, considering their 
much longer sequencing time (more than 19 h; Wu et al., 2021).

Abricate combined with the CARD/VFDB library is 
recommended for Salmonella AMR/virulence gene identification, as 
it showed relatively higher accuracy compared to RGI at 50× 
genome coverage for AMR identification. For AMR/virulence gene 
detection with ONT sequence data, the choice of appropriate 
algorithm and setting is particularly important to reduce the impact 
of relatively low sequencing accuracy of ONT data compared to 
Illumina data. And to maintain the advantage of the fast turnaround 
time of ONT sequencing. Meanwhile, a combination of SISTR and 
SeqSero2 results are recommended for predicting serotypes of 
Salmonella. Although SISTR had slightly lower accuracy compared 
to SeqSero2  in the current study, they each have advantages in 
different aspects as they use different algorithms and databases for 
serotype prediction (Yoshida et al., 2016; Zhang et al., 2019; Xu et al., 
2020; Wu et al., 2021). Although it is unknown if certain strains of 
Salmonella would alter the accuracy of serotyping under the 
recommended settings, the 69 serotypes we covered in the current 
study represented the majority of common serotypes and major 
types of H and O antigens of Salmonella. Further validation and 
verification with more Salmonella serotypes can be  carried out 
during practice, for example in the food industry or in public health.

4. Conclusion

In this study we  evaluated the ONT-multiplex-sequencing-
based WGS method for Salmonella serotype prediction and AMR/
virulence gene detection, using Illumina sequencing data for bench 
marking. We demonstrated that for all the 69 Salmonella serotypes 
tested, accurate serotype prediction and AMR/virulence gene 
profiling can be obtained with an average of 7 h of ONT sequencing 
when multiplexing five Salmonella serotypes. The accuracy was 
comparable to results from Illumina data. Multiplexing five isolates 
results in a 23% reduction to the cost of ONT sequencing of a single 

TABLE 7 Recall and precision of AMR/virulence gene identification for 
Salmonella serotype Typhimurium using assemblies from WGS data at 
different sequencing depths.

Parameters Sequencing Depth (Salmonella 
genome size 4.8Mbp)

15× 30× 50× 75× 100×

Abricate + CARD (AMR gene identification)

Recall 96% 100% 100% 100% 100%

Precision 100% 100% 100% 100% 100%

Abricate + VFDB (Virulence gene identification)

Recall 100% 100% 100% 100% 100%

Precision 100% 100% 100% 100% 100%

RGI + CARD (AMR gene identification)

Recall 68% 82% 81% 84% 84%

Precision 76% 86% 84% 84% 84%
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isolate per FC. Meanwhile, the workflow we developed also allows 
for Salmonella serotype prediction and AMR/virulence gene 
detection to be completed within one working day. This study is an 
evaluation of multiplex-nanopore-sequencing based WGS as a cost-
effective and rapid Salmonella classification method. It is also a 
starting point for exploring the application of ONT-based WGS in 
AMR and virulence gene detection for the food safety area. Our 
findings pave the way for the application and standardization of 
ONT-based WGS in surveillance, tracking, and risk assessment of 
Salmonella across the food supply chain as a cost-effective and rapid 
Salmonella classification and AMR/virulence gene profiling tool.
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