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Introduction: Gentamicin is a conventional antibiotic in clinic. However, with

the wide use of antibiotics, gentamicin-resistant Escherichia coli (E. coli) is an

ever-increasing problem that causes infection in both humans and animals.

Thus, it is especially important to restore gentamicin-mediated killing efficacy.

Method: E. coli K12 BW25113 cells were passaged in medium with and without

gentamicin and obtain gentamicin-resistant (K12-RGEN) and control (K12-S)

strains, respectively. Then, the metabonomics of the two strains were analyzed

by GC-MS approach.

Results: K12-RGEN metabolome was characterized as more decreased

metabolites than increased metabolites. Meantime, in the most enriched

metabolic pathways, almost all of the metabolites were depressed. Alanine,

aspartate and glutamate metabolism and glutamine within the metabolic

pathway were identified as the most key metabolic pathways and the

most crucial biomarkers, respectively. Exogenous glutamine potentiated

gentamicin-mediated killing efficacy in glutamine and gentamicin dose-and

time-dependent manners in K12-RGEN. Further experiments showed that

glutamine-enabled killing by gentamicin was effective to clinically isolated

multidrug-resistant E. coli.
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Discussion: These results suggest that glutamine provides an ideal metabolic

environment to restore gentamicin-mediated killing, which not only indicates

that glutamine is a broad-spectrum antibiotic synergist, but also expands

the range of metabolites that contribute to the bactericidal efficiency of

aminoglycosides.

KEYWORDS

antibiotic resistance, glutamine, aminoglycoside, reprogramming metabolomics,
multidrug resistance, Escherichia coli

Introduction

Conventional antibiotic treatments against bacterial
infections are becoming ineffective due to the widespread
antibiotic resistance worldwide, demanding the development
of new antibiotics (Mühlberg et al., 2020; Vila et al., 2020).
However, classical approaches that develop new antibiotics are
not sufficient for the current pipeline, therefore new strategies
are crucially needed to overcome antibiotic-resistant bacteria
(Breijyeh et al., 2020; Gao et al., 2021; Ramanathan et al., 2021).

Recently, reprogramming metabolomics has been developed
to effectively promote the bactericidal efficiency of existing
antibiotics and restore anti-infective ability (Peng et al., 2015a;
Cheng et al., 2019; Gong et al., 2020; Jiang et al., 2020, 2022;
Yang et al., 2021a). Alanine, glucose, fructose, and glutamate
reprogram an Edwardsiella tarda kanamycin-resistant
metabolome into an E. tarda kanamycin-sensitive metabolome,
which becomes susceptible to kanamycin-mediated killing
(Peng et al., 2015b; Su et al., 2015, 2018). A similar effect has been
determined in glutamine-reprogrammed multidrug-resistant
Escherichia coli, glucose-reprogrammed gentamicin-resistant
Vibrio alginolyticus, pyruvate-reprogrammed colistin-resistant
V. alginoliticus, and nitrite- and glucose-reprogrammed
Pseudomonas aeruginosa. Following the reprogramming, these
antibiotic-resistant bacteria become sensitive to ampicillin-,
gentamicin-, and colistin-mediated killing, respectively (Zhang
et al., 2019, 2020; Li et al., 2020; Kuang et al., 2021, 2022;
Zhao et al., 2021; Tang et al., 2022). Therefore, reprogramming
metabolomics is a useful approach to combat antibiotic-resistant
bacteria by using the existing antibiotics.

Aminoglycoside antibiotics are among the first antibiotics
discovered and are one class of the existing antibiotics used.
Among the class of antibiotics, gentamicin is a representative.
Gentamicin is one of the most commonly used antibiotics
worldwide because of its antimicrobial efficacy and the relatively
low prevalence of clinical toxicity despite its toxicity to the
kidney and the inner ear (Appel and Neu, 1978; Sha and Schacht,
1999). Especially, gentamicin is recommended as the empirical
parenteral treatment for children with community-acquired
urinary tract infections and as a crucial antibiotic for preventing
orthopedic infections (Mosselhy et al., 2018; Roldan-Masedo
et al., 2019). However, due to the widespread use of antibiotics,
gentamicin-resistant E. coli is an ever-increasing problem that

causes infection in both human health and animal feeding
(Salas-Mera et al., 2017; Yamamoto et al., 2022). Therefore,
restoration of gentamicin-mediated killing is highly demanded.

In this study, the reprogramming metabolomics approach
was used to revert the resistance to gentamicin. First, E. coli
K12 BW25113 cells were passaged in a medium with or without
gentamicin to obtain a gentamicin-resistant strain (K12-RGEN)
and a gentamicin-sensitive strain (K12-S), respectively. Then,
gas chromatograph-mass spectromete (GC-MS) was used to
investigate the metabolic profile of K12-RGEN and identify
glutamine as the most crucial biomarker. Finally, glutamine was
shown to promote the gentamicin-mediated killing efficiency to
both lab-evolved K12-RGEN and clinically isolated multidrug-
resistant E. coli.

Materials and methods

Bacterial strains used

In the present study, E. coli K12 BW25113 [genotype,
1(araD-araB)567, 1lacZ4787(:rrnB-3), lambda-, rph-1,
1(rhaD-rhaB)568, hsdR514] was taken from the KEIO
collection. A single colony of E. coli K12 BW25113 was picked
from the Luria-Bertani (LB) agar plate and cultured in LB
medium for 16 h at 37◦C. The overnight cultures were diluted
1:100 in fresh LB medium and grew to phase OD600 of 0.5
at 37◦C. These bacteria were passaged in LB medium with
and without gentamicin for gentamicin-resistant strains and
control, respectively. The three strains, ancestor strain (K12),
gentamicin-resistant strain (K12-RGEN), and control strain
(K12-S), were collected to determine the minimum inhibitory
concentration (MIC) by antimicrobial susceptibility testing.

Minimum inhibitory concentration
measurement

Measurement of MIC was performed as previously
described (Kuang et al., 2021). In brief, 160 µg/ml of gentamicin
sulfate [Sangon Biotech (Shanghai) Co., Ltd.] was serially
double diluted by row in a 96-microwell plate. The overnight
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culture was diluted at 1:100 into 5 ml LB medium and grew to
a phase of 0.5 at OD600. A bacterial sample of 5 × 104 CFU
was then added to each well. After incubating for 16 h at 37◦C,
the bacteria growth in each well was recorded. The antibiotic
concentration of a well without bacteria growth is the MIC
of the tested strain. Data were obtained from three biological
replicates.

Growth curve analysis

The overnight cultures were diluted 1:100 in LB medium
and grew at 200 rpm at 37◦C. Then, the optical density of the
culture at OD600 was measured every 2 h. The growth curve
was drawn using GraphPad Prism version 8.0. At least three
biological replicates were performed.

Survival capability assay

The overnight culture was diluted 1:1000 into tubes with
5 ml LB medium. The tube was added to gentamicin with
different concentrations. After growing for 6 h at 200 rpm at
37◦C, the optical density of the culture at OD600 was measured.
The survival percentage was calculated as follows: optical density
of the culture with different concentrations of antibiotic divided
by that without antibiotic.

Metabolomics analysis

Metabolic profiling
Sample preparation was carried out according to the

previously reported study (Su et al., 2018). In brief, the
overnight cultured were diluted 1:100 into 50 ml LB broth.
After incubating for about 4 h until a growth phase of 1.0
at OD600 nm, bacterial metabolism was quenched by adding
a 2-fold volume of ice-cold methanol. Cells were collected,
resuspended, and adjusted into an OD600 of 1.0 with PBS. A total
of 10 ml of suspension were collected, and the pellet was added
into 1 ml pre-cooled methanol (HPLC grade) immediately.
Subsequently, 10 µl of 0.1 mg/ml of ribitol (Sigma) was added
as an internal quantitative standard. Intracellular metabolites
were extracted by ultrasonic crushing, and the supernatant was
evaporated by a vacuum centrifuge dryer (Labconco, USA). For
derivatization, 80 µl of methoxyamine hydrochloride (20 mg/ml
in pyridine) was added to each dried sample and incubated for
3 h at 37◦C. Subsequently, 80 µl of N-methyl-N-(trimethylsilyl)
trifluoroacetamide (MSTFA, Sigma) was added and incubated
for 45 min at 37◦C. Metabolites were analyzed by GC-MS using
an Agilent 7890A GC and 5975C VL MSD quadrupole MS
(Agilent Technologies, USA).

Gas chromatograph-mass spectromete data
analysis

The statistical analysis was performed as described
previously (Kuang et al., 2021). In brief, compounds were
tentatively identified by matching their retention time
and mass spectra with structures available in the NIST
library in the Xcalibur software (version 2.1). The peak area
corresponding to each metabolite was normalized based on
the Ribitol (internal standard) and total peak area in the
sample. Subsequently, metabolites were scaled by the quartile
range in the sample. The Mann–Whitney U-test (α = 0.05)
with SPSS statistics 17.0 (IBM, USA) was used to compare
the difference in abundance of metabolites between the two
groups. The R software (R × 64 4.0.3) was used for cluster
analysis. Principle component analysis and S-plot analysis were
conducted using SIMCA-P + (Version 12.0) software. Enriched
metabolic pathways were identified using the MetaboAnalyst
online website.1 Data were plotted using GraphPad Prism
version 8.0.

Bactericidal assay

Overnight bacterial cultures were collected by centrifugation
at 8,000 rpm for 3 min and washed three times with sterile saline.
To confirm the drug resistance of K12-RGEN , precipitates were
adjusted to OD600 of 0.2 and then diluted 100-fold using a fresh
LB medium. K12-S was used as a control. To investigate whether
glutamine improved the sensitivity of bacteria to antibiotics,
precipitates were adjusted to OD600 of 0.2 and then diluted
100-fold using M9 minimal medium with 10 mM NaAc, 2 mM
MgSO4, and 0.1 mM CaCl2. Each tube was added to 5 ml of
diluted bacterial solution in the presence and/or absence of
gentamicin and glutamine. After growing for 6 h with 200 rpm
at 37◦C, 100 µl of cultures were serially 10-fold diluted and 5 µl
of cultures were plated onto LB agar. Only the clearly visible
colonies were counted and multiplied by the dilution. Percent
survival was determined by dividing the CFU obtained from a
treated sample by those from the control.

Results

K12-RGEN exhibit resistance
characteristics

K12 was passaged in LB medium with or without 1/2
minimum inhibitory concentration (MIC) and became K12-
RGEN and K12-S, respectively. MIC of the three strains was
measured using a microplate method. The passage led to

1 https://www.metaboanalyst.ca/
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32 MIC (40 µg gentamicin) of K12-RGEN and 1 MIC (1.25
µg gentamicin) of K12-S compared with their parent strain
(Figure 1A), suggesting that K12-RGEN was a gentamicin-
resistant strain. To further demonstrate the resistance, survival
capability and bactericide assays were performed. The survival
capability of the two strains was reduced with increasing
gentamicin concentration, but higher survival was detected in
K12-RGEN than in K12-S (Figure 1B). Equally, higher viability
was found in K12-RGEN than in K12-S in the bactericide assay
(Figure 1C). Finally, the growth curve showed slower growth in
K12-RGEN than in K12-S (Figure 1D). These results indicate that
K12-RGEN is a gentamicin-resistant strain with a differential-
resistant phenotype.

Gentamicin-mediated resistant
metabolome

To understand metabolic alterations related to the
resistance, a GC-MS-based metabolomics approach was used
to characterize the metabolic profile of K12-RGEN compared
with K12-S. Four biological samples with two technical repeats
in each group yielded 16 data sets. The correlation coefficient
between technical replicates varied between 0.9946 and 0.9995,
demonstrating the reproducibility of the data (Figure 2A).
A total of 240 aligned individual peaks were obtained from each
sample. After the removal of internal standard ribitol and any
known artificial peaks, 56 metabolites were identified as shown
in Figure 2B. Among them, 33.93%, 26.78%, 17.85%, 12.50%,
and 8.93% were categorized as carbohydrates, amino acids,
fatty acids, nucleotides, and others, respectively (Figure 2C).

FIGURE 1

Antibiotic resistance phenotypes of K12-RGEN. (A) MIC of
K12-RGEN. (B) Survival of K12-RGEN to a lethal dose of
gentamicin. (C) Survival capability of K12-RGEN to a non-lethal
dose of gentamicin. (D) Growth curve of K12-RGEN. Results are
displayed as mean ± SEM and three biological repeats are
performed. Significant differences are identified. **p < 0.01.

FIGURE 2

Metabolite profiling of K12-RGEN and K12-S. (A) Reproducibility
of the metabolomic profiling platform used in the discovery
phase. The abundance of metabolites quantified in samples over
two technical replicates is shown. The Pearson correlation
coefficient between technical replicates varies between 0.9946
and 0.9995. (B) Heat map of unsupervised hierarchical
clustering of different metabolites (row). Blue indicates
decreases and yellow indicates an increase of the metabolites
scaled to the mean and standard deviation of row metabolite
level (see color scale). (C) Categories of the differential
metabolites. Fifty-six differential abundances of metabolites are
searched against in KEGG for categories. The pie chart is
generated in Excel 2010 (Microsoft, USA).

These results indicate that K12-RGEN has a metabolome that is
different from that of K12-S.

Gentamicin-mediated differentially
resistant metabolome

To gain a differential abundance of metabolites between
K12-RGEN and K12-S, a two-sided Mann–Whitney U-test
coupled with a permutation test was utilized. Using the
analysis, a total of 43 differential abundance of metabolites were
identified in K12-RGEN (Figure 3A). The Z-value showed the
dispersion of data with 18 upregulation and 25 downregulation
(Figure 3B). These differential abundances of metabolites were
classified into five categories. Among them, 37.21%, 23.26%,
18.60%, 16.28%, and 4.65% belonged to carbohydrates, amino
acids, nucleotides, lipids, and others, respectively (Figure 3C).
Therefore, a metabolic shift was determined in K12-RGEN .
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FIGURE 3

Differential metabolic profiling between K12-RGEN and K12-S. (A) Heat map showing the differential abundance of metabolites. Yellow and blue
indicate an increase and decrease of metabolites relative to the median metabolite level of the control, respectively (see color scale). (B) A
Z-score plot of differential metabolites based on control. Each point represents one metabolite in one technical repeat and is colored by sample
types. (C) Category of these differential abundances of metabolites.

Gentamicin-mediated enriched
metabolic pathways

A metabolic pathway is a set of biochemical reactions
that the cells need to carry out their function. Thus, it
is especially important to know the metabolic pathways
enriched by these differential abundances of metabolites for
understanding gentamicin-mediated metabolic alteration.

Metabolic pathway enrichment analysis showed that eight
metabolic pathways were enriched. According to the impact,
they were ranked from high to low as follows: glycine,
serine, and threonine metabolism > alanine, aspartate, and
glutamate metabolism > TCA cycle > aminoacyl-tRNA
biosynthesis > butanoate metabolism > cyanoamino
acid metabolism > biosynthesis of unsaturated fatty
acids > nitrogen metabolism (Figure 4A). Integrative
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FIGURE 4

Pathway enrichment analysis. (A) Pathway enrichment of
differential metabolites in K12-RGEN. (B) Integrative analysis of
metabolites in significantly enriched pathways. Yellow and light
blue indicate increased and decreased metabolites, respectively.

analysis showed that among the eight enriched metabolic
pathways, all metabolites of alanine, aspartate, and glutamate
metabolism and TCA cycle were decreased (Figure 4B).
These findings with the above more depressed metabolites
than elevated metabolites in the gentamicin-mediated
metabolome together suggest that the depressed metabolic
pathway plays a key role in the resistance. Meanwhile,
alanine, aspartate, and glutamate metabolism fuel the
TCA cycle. Thus, alanine, aspartate, and glutamate
metabolism can be identified as the most important metabolic
pathways.

Gentamicin-mediated biomarkers

Biomarker(s) may provide a differential metabolome value
and thereby identification of biomarkers is a key step in
the analysis of metabolomics. Thus, orthogonal partial least
square-discriminate analysis (OPLS-DA) was conducted to
recognize the sample pattern. Component t [1] differentiated
K12-RGEN from K12-S and Component t [2] discriminated
variation within the two groups (Figure 5A). Discriminating
variables were displayed with an S-plot when we set cutoff
values as greater or equal to 0.05 and 0.5 for the absolute
value of covariance p and correlation p(corr), respectively.
Among these metabolites used for the analysis, 11 played
more roles than the others in the differentiation and were

identified as biomarkers (Figure 5B). The scatter plot showed
their differential abundances between K12-RGEN and K12-S,
where only glutamine was depressed in K12-RGEN (Figure 5C).
Glutamine belongs to alanine, aspartate, and glutamate
metabolism. Reports have shown that the complementation
of crucially depressed metabolites may restore antibiotic-
mediated killing efficacy (Peng et al., 2015b; Zhao et al., 2021).
Therefore, glutamine as the crucial biomarker may revert
the resistance.

Glutamine-potentiated
gentamicin-mediated killing

To test whether glutamine reverted gentamicin resistance
to increase bacterial sensitivity to gentamicin, gentamicin
and glutamine were synergistically used to kill K12-RGEN .
Glutamine promoted gentamicin-mediated killing in a dose-
dependent manner (Figure 6A). When 20 mM glutamine
was used, the killing efficacy was elevated with increasing
gentamicin dose (Figure 6B). The killing efficacy was
also incubation period-dependent (Figure 6C). Therefore,
glutamine-potentiated gentamicin-mediated killing is effective
for lab-evolved gentamicin-resistant E. coli. On the other hand,
four clinically isolated multidrug-resistant E. coli strains and
three clinically isolated multidrug-resistant bacteria were used
to test the glutamine-induced potentiation (Figure 6D). Lower
survival was detected in the synergistic use of gentamicin and
glutamine than in gentamicin alone (Figure 6E). Therefore,
the glutamine-potentiated gentamicin-mediated killing is
effective for both lab-evolved gentamicin-resistant and
clinically isolated multidrug-resistant E. coli. Furthermore,
lower survival was also detected in the synergistic use of
glutamine and other antibiotics, such as cefoperazone-
sulbactam, ofloxacin, and tobramycin than antibiotic alone
(Figure 6F).

Discussion

Metabolic environments confound antibiotic-mediated
killing (Lee and Collins, 2011; Kuang et al., 2021; Zhao
et al., 2021; Su et al., 2022; Tang et al., 2022). However,
information regarding the metabolites-enabled killing of E. coli
by gentamicin is not available. The present study explores
how to provide a metabolic environment that potentiates
gentamicin-mediated killing efficacy. To do this, the metabolic
profile of lab-evolved E. coli K12-RGEN is compared with
that of control K12-S. The comparison shows that K12-
RGEN has a gentamicin-resistant metabolome, characterizing
more decreased metabolites than increased metabolites and
depression of all or almost metabolites in most enriched
metabolic pathways. Glutamine and alanine and aspartate
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FIGURE 5

Identification of crucial metabolites. (A) PCA analysis according to the treatments set. Each dot represents the technical replicate analysis of
samples in the plot. (B) S-plot generates from OPLS-DA. Predictive component p [1] and correlation p(corr) [1] differentiate K12-RGEN from
K12-S. The dot represents metabolites and candidate biomarkers are highlighted in red. (C) Scatter plot of biomarkers in data (B). Results (C) are
displayed as mean ± SEM, and significant differences are identified (**p < 0.01) as determined by a two-tailed Student’s t-test.

and glutamate metabolisms are identified as the most crucial
biomarkers and the most key metabolic pathways, respectively.
Exogenous glutamine-potentiated reverting causes K12-
RGEN and clinically isolated multidrug-resistant E. coli to be
sensitive to gentamicin. Therefore, glutamine provides an
ideal metabolic environment to restore gentamicin-mediated
killing.

Metabolites-enabled killing efficacy by antibiotics is related
to both antibiotic types and classes and bacterial species
(Peng et al., 2015b; Zhao et al., 2021). Although glutamine
potentiates antibiotic-mediated killing has been reported, only
glutamine-enabled killing of E. coli by ampicillin, of Salmonella
by apramycin, and of Mycobacterium persisters by rifampicin
are carefully studied (Huang et al., 2018; Yong et al., 2021;

Zhao et al., 2021). The present study identifies metabolites that
potentiate gentamicin-mediated killing efficacy and determines
glutamine-enabled killing of lab-evolved gentamicin-resistant
E. coli and clinically isolated multidrug-resistant E. coli. This
finding not only supports the conclusion that glutamine is a
broad-spectrum antibiotic synergist but also provides an ideal
way by which gentamicin-mediated killing is restored.

The metabolites-enabled killing of bacteria by
aminoglycoside antibiotics including kanamycin and
gentamicin has been investigated (Allison et al., 2011; Peng
et al., 2015b). Allison et al. show glucose-enabled eradication
of bacterial persisters (Allison et al., 2011). Peng et al. (2015b)
and Su et al. (2015) utilize alanine, glucose, and fructose
to reprogram kanamycin-resistant and multidrug-resistant
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FIGURE 6

Glutamine promotes gentamicin-mediated killing. (A) Percent survival of K12-RGEN in the presence of the indicated concentration of glutamine
and 10 µg gentamicin. (B) Percent survival of K12-RGEN in the presence of the indicated concentration of gentamicin and with or without
20 mM glutamine. (C) Percent survival of K12-RGEN in the indicated incubation time plus 20 mM glutamine and 10 µg gentamicin. The
concentration of K12-RGEN in (A–C) was 5 × 108 CFU/ml. (D) MIC measurement of clinically isolated bacterial strains in four to six kinds of
antibiotics commonly used in clinical practice. Purple indicates resistant; orange indicates intermediate; dark gray indicates susceptible. For
AMX, CRO, FOX, CFP, CAZ, MEM, GEN, CIP, TET, CLDM, PMB, LVFX, CZ, CT, TOB, CAP, and ROX, the standard was according to reference (CLSI,
2012). For ATM, OFX, and AK, the standard was according to reference (Kahlmeter et al., 2006). For MXF and BLFX, susceptible, intermediate,
and resistant E. coli were defined as MIC ≤ 0.025, MIC = 0.05, and MIC ≥ 0.1 and MIC ≤ 0.05, MIC = 0.1, and MIC ≥ 0.2, respectively. (E) Percent
survival of clinically isolated strains in the presence or absence of gentamicin (Y1 at 2 µg/ml; Y4, Y7 at 2.5 µg/ml; Y22 at 100 µg/ml;
K. pneumoniae KPN48 (2 µg/ml); E. tarda EIB202 (2 µg/ml); P. aeruginosa PA41 (1 µg/ml), or in the presence of both gentamicin and 20 mM
glutamine. (F) Percent survival of K12-RGEN in the indicated antibiotics (SCF, 10 µg/ml; OFX, 1.5 µg/ml; TOB, 2.5 µg/ml; FFC, 40 µg/ml) with and
without 20 mM glutamine. The concentration of clinically isolated strains in (E) and K12-RGEN in (F) was 1 × 106 CFU/ml. Amoxicillin (AMX),
Ceftriaxone (CRO), Cefoxitin (FOX), Cefoperazone (CFP), Cefoperazone-sulbactam (SCF), Ceftazidime (CAZ), Aztreonam (ATM), Meropenem
(MEM), Gentamicin (GEN), Amikacin (AK), Ciprofloxacin (CIP), Moxifloxacin (MXF), Balofloxacin (BLFX), Ofloxacin (OFX), Tetracycline (TET),
Clindamycin (CLDM), Polymyxin B (PMB), Levofloxacin (LVFX), Cefazolin (CZ), Colistin (CT), Tobramycin (TOB), Chloramphenicol (CAP),
Roxithromycin (ROX), Florfenicol (FFC). Results are displayed as mean ± SEM and three biological repeats are performed. Significant differences
are identified. **p < 0.01.
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Edwardsiella tarda metabolomes into sensitive metabolomes
and thereby lead to the elevation of kanamycin-mediated killing
efficacy. Zhang et al. demonstrate glucose-enabled killing of
antibiotic-resistant Vibrio alginolyticus by gentamicin based on
reprogramming metabolomics (Zhang et al., 2019, 2020). In
addition, Lv et al. (2022) find that a non-metabolite, n-butanol,
also potentiates aminoglycosides-mediated killing efficacy. The
present study exhibits glutamine-enabled killing of lab-evolved
gentamicin-resistant E. coli and clinically isolated multidrug-
resistant E. coli by gentamicin. This finding expands the range
of metabolites that contribute to the bactericidal efficiency of
aminoglycosides.

Notably, more studies on metabolomics-related antibiotic
resistance are carried out by using lab-evolved antibiotic-
resistant strains or clinically isolated antibiotic-resistant
pathogens (Li et al., 2018; Wen et al., 2021; Guan et al.,
2022). The present study utilizes a lab-evolved antibiotic-
resistant strain to identify a metabolite that provides a metabolic
environment for restoring antibiotic-mediated killing and then
to demonstrate the efficacy of the metabolite in eliminating
clinically isolated multidrug-resistant pathogenic E. coli. Thus,
this approach is effective in identifying metabolites-enabled
killing of clinically isolated bacteria by antibiotics.

Conclusion

A metabolome-reprogramming approach, which has been
demonstrated to be effective in reverting resistance and
restoring anti-infective ability (Peng et al., 2015a; Gong et al.,
2020; Jiang et al., 2020, 2022; Yang et al., 2021b), is used
to understand gentamicin-resistant metabolic mechanisms.
This leads to the identification of depressed glutamine and
inactivated alanine and aspartate and glutamate metabolism
as the most crucial biomarkers and the most key metabolic
pathways, respectively. Exogenous glutamine reverts gentamicin
resistance of lab-evolved gentamicin-resistant and clinically
isolated multidrug-resistant E. coli. These results provide a solid
foundation for further preclinical research.
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