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The γ-proteobacterium Shewanella oneidensis MR-1 reduces iodate to 

iodide extracellularly. Both dmsEFAB and mtrCAB gene clusters are involved 

in extracellular reduction of iodate by S. oneidensis MR-1. DmsEFAB reduces 

iodate to hypoiodous acid and hydrogen peroxide (H2O2). Subsequently, 

H2O2 is reduced by MtrCAB to facilitate DmsEFAB-mediated extracellular 

reduction of iodate. To investigate the distribution of bacteria with the 

capability for extracellular reduction of iodate, bacterial genomes were 

systematically searched for both dmsEFAB and mtrCAB gene clusters. The 

dmsEFAB and mtrCAB gene clusters were found in three Ferrimonas and 26 

Shewanella species. Coexistence of both dmsEFAB and mtrCAB gene clusters 

in these bacteria suggests their potentials for extracellular reduction of 

iodate. Further analyses demonstrated that these bacteria were isolated from 

a variety of ecosystems, including the lakes, rivers, and subsurface rocks in 

East and Southeast Asia, North Africa, and North America. Importantly, most 

of the bacteria with both dmsEFAB and mtrCAB gene clusters were found 

in different marine environments, which ranged from the Arctic Ocean to 

Antarctic coastal marine environments as well as from the Atlantic Ocean to 

the Indian and Pacific Oceans. Widespread distribution of the bacteria with 

capability for extracellular reduction of iodate around the world suggests 

their significant importance in global biogeochemical cycling of iodine. The 

genetic organization of dmsEFAB and mtrCAB gene clusters also varied 

substantially. The identified mtrCAB gene clusters often contained additional 

genes for multiheme c-type cytochromes. The numbers of dmsEFAB gene 

cluster detected in a given bacterial genome ranged from one to six. In latter, 

duplications of dmsEFAB gene clusters occurred. These results suggest 

different paths for these bacteria to acquire their capability for extracellular 

reduction of iodate.
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Introduction

Iodine (I) is a trace element of both health and environmental 
significance. As iodine is a crucial component of human thyroid 
hormones triiodothyronine and thyroxine, iodine deficiency 
disorders of humans (e.g., goiter and cretinism) are attributed to 
insufficient intake of iodine, such as drinking of the groundwater 
with low iodine level (Laurberg et al., 2001; Zimmermann, 2009; 
Zhang E. et al., 2013; Duan et al., 2016). Excessive intake of iodine, 
such as drinking of the groundwater with high iodine level, also 
results in thyroiditis and probably cancer (Laurberg et al., 2001; 
Andersen et al., 2009; Zhang E. et al., 2013; Duan et al., 2016). 
Thus, abnormal level of iodine in groundwater affects human 
health (Wen et al., 2013; Zhang E. et al., 2013; Duan et al., 2016). 
Furthermore, radioactive iodine-129 (129I) is an important risk 
driver of the Hanford and Savannah River Sites in Washington 
and South Carolina States, respectively, United States, where 129I 
level in groundwater is higher than that for the drinking water 
standard (Otosaka et al., 2011; Zhang S. et al., 2013; Kaplan et al., 
2014). Finally, global cycling of iodine impacts air quality and 
climate (Carpenter et al., 2021).

In environment, iodate (IO3
−) and iodide (I−) are the two 

dominant species of inorganic iodine. For example, IO3
− is the 

major iodine species found in groundwater of the Hanford and 
Savannah River Sites (Otosaka et al., 2011; Zhang S. et al., 2013), 
while the dominant species found in the groundwater in Datong 
and Taiyuan Basins, China and North China Plains is I− (Li et al., 
2013; Tang et al., 2013; Zhang E. et al., 2013). Both IO3

−and I− are 
found in oceans where their combined concentration is 
0.4–0.5 μM (Chance et al., 2014).

Microorganisms play crucial roles in redox transformation of 
IO3

−and I− in environments. I−-oxidizing microorganisms oxidize 
I− to molecular iodine (I2), while IO3

−-reducing microorganisms 
reduce IO3

− to I− (Iino et al., 2016; Yamazaki et al., 2020; Reyes-
Umana et al., 2022). The enzymes involved in microbial oxidation 
of I− to I2 include the extracellular multicopper oxidase LoxA 
(Suzuki et al., 2012; Shiroyama et al., 2015), while those involved 
in microbial reduction of IO3

− to I− include two different types of 
enzymes (Yamazaki et al., 2020; Guo et al., 2022; Reyes-Umana 
et al., 2022; Shin et al., 2022).

IdrABP1P2 of the dissimilatory IO3
−-reducing bacterium 

Pseudomonas sp. strain SCT is the first enzyme identified for IO3
− 

reduction (Yamazaki et al., 2020). This enzyme consists of four 
subunits, in which IdrA is suggested to be the catalytic subunit, 
IdrB is the electron transfer subunit and IdrP1 and IdrP2 are the 
detoxification subunits. All of these subunits are believed to 
be  localized in the periplasm. During IO3

− reduction, IdrB is 
proposed to receive electrons from cytochrome c (Cyt-c) in the 
periplasm and then transfers the electrons to IdrA. IdrA is 
suggested to use the electrons to reduce IO3

− to hypoiodous acid 
(HIO) and hydrogen peroxide (H2O2). The generated H2O2 is 
proposed to be reduced to H2O by IdrP1 and IdrP2. Cyt-c may also 
supply electrons to IdrP1 and IdrP2. HIO is suggested to be further 
reduced to I− probably by Cld (Yamazaki et al., 2020). Based on 

their polypeptide sequences, IdrA and IdrB are the homologs of 
dimethylsulfoxide (DMSO) reductase DmsA and DmsB, 
respectively. IdrP1 and IdrP2 are the c-type cytochromes (c-Cyt) 
that are peroxidases. The genes for IdrABP1P2 are clustered 
together in the genome of Pseudomonas sp. strain SCT (Yamazaki 
et al., 2020).

The idrABP1P2 gene cluster also exists in the genome of the 
dissimilatory IO3

−-reducing bacterium Denitromonas sp. IR-12 
(Reyes-Umana et  al., 2022). Deletion of idrA gene impairs 
bacterial ability to grow with IO3

− as the sole terminal electron 
acceptor. The proposed functions of IdrABP1P2 from Denitromonas 
sp. IR-12 in IO3

− reduction are the same to those proposed for the 
IdrABP1P2 of Pseudomonas sp. strain SCT except that HIO is 
proposed to be disproportionate to IO3

− and I−. The IO3
− is further 

reduced by IdrAB (Reyes-Umana et  al., 2022). Furthermore, 
microorganisms with idrABP1P2 gene cluster are widespread in 
oceans, suggesting their global significance in biogeochemical 
cycling of iodine (Reyes-Umana et al., 2022).

The dissimilatory metal-reducing bacterium Shewanella 
oneidensis MR-1 reduces IO3

− extracellularly via DmsEFAB and 
MtrCAB (Mok et al., 2018; Toporek et al., 2019; Guo et al., 2022; 
Shin et al., 2022). The DmsEFAB is the first enzyme demonstrated 
experimentally for reducing IO3

− to HIO and H2O2 (Guo et al., 
2022). Correspondingly, MtrCAB is also confirmed experimentally 
to reduce H2O2 to H2O for facilitating DmsEFAB-mediated IO3

− 
reduction. The Mtr extracellular electron transfer pathway is 
suggested to transfer electrons from the cytoplasmic membrane 
and across the periplasm to the DmsEF and MtrAB in the outer 
membrane. DmsEF and MtrAB transfer electrons across the outer 
membrane to DmsAB and MtrC, respectively. On bacterial 
surface, DmsAB and MtrC work collaboratively to reduce IO3

− 
(Guo et al., 2022).

Unlike Pseudomonas sp. strain SCT and Denitromonas sp. 
IR-12, S. oneidensis MR-1 is not an IO3

−-respiring bacterium 
(Toporek et  al., 2019). In S. oneidensis MR-1, DmsEFAB and 
MtrCAB are for extracellular respiration of DMSO and ferric iron 
[Fe(III)]-containing minerals, respectively (Beliaev and Saffarini, 
1998; Beliaev et al., 2001; Gralnick et al., 2006; Bretschger et al., 
2007; Coursolle and Gralnick, 2010). It is believed that their 
extracellular localization enables DmsEFAB and MtrCAB to 
reduce IO3

− collaboratively and extracellular reduction of IO3
− by 

S. oneidensis MR-1 is a fortuitous function (Guo et al., 2022). The 
non-IO3

− -respiring bacteria with the capability for extracellular 
reduction of IO3

− are also believed to impact the fate, transport, 
and global biogeochemical cycling of iodine (Guo et al., 2022). 
However, to what extent the bacteria with the capability for 
extracellular reduction of IO3

− distribute around the world has 
never been investigated before.

Like idrABP1P2 gene cluster, the genes for DmsEFAB and 
MtrCAB are also clustered together, respectively (Gralnick et al., 
2006; Fredrickson et al., 2008; Wang et al., 2008). In this investigation, 
we  searched bacterial genomes for dmsEFAB and mtrCAB gene 
clusters and found that the bacteria with both dmsEFAB and 
mtrCAB gene clusters were widespread, showing global distribution 
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of the bacteria possessing capability for extracellular reduction of 
IO3

−. Worldwide occurrence of the bacteria with capability for 
extracellular reduction of IO3

− suggests the importance of these 
bacteria in global biogeochemical cycling of iodine.

Approach

Identification of dmsEFAB and mtrCAB 
homologs

DmsE and DmsF are homologous to MtrA and MtrB, 
respectively (Gralnick et al., 2006). Thus, we searched microbial 
genomes for DmsE/MtrA and DmsF/MtrB homologs by the 
approach that was described before (Shi et al., 2012a, 2014; Zhong 
and Shi, 2018). The DmsE, DmsF, MtrA, and MtrB of S. oneidensis 
MR-1served as templates for identifying microbial open reading 
frames (ORFs) whose protein sequences shared similarity to the 
templates by BLAST programs of the National Center for 
Biotechnology Information (NCBI) and of the Universal Protein 
Resource (UniProt; E < 0.01; Altschul et  al., 1990), in which 
scoring matrix = BLOSUM62, gapopen = 0, gapextend = 0 and 
databases = non-redundant protein sequences database (nr) and 
UniprotKB database. The in-house Perl scripts and a hidden 
Markov model-based PRED-TMBB software were used to verify 
identified homologs with the CX2CH motifs and the trans-outer 
membrane motifs, respectively (Bagos et al., 2004;Shi et al., 2012b; 
Shi et  al., 2014; Zhong and Shi, 2018). After verification, the 
identified homologs served as the templates for next round of 
genome search. The polypeptide sequences from the genes 
immediately upstream and downstream of the identified 
dmsEF/mtrAB gene clusters were further compared with 
previously identified DmsA, DmsB, and MtrC. The identified 
dmsEFAB gene clusters and the mtrCAB gene clusters co-existed 
with dmsEFAB gene clusters in the same bacterial genome were 
subjected to the additional analyses.

Phylogenetic reconstruction and 
identification of additional genes for 
c-Cyts

Clustal W (version 2.1) was used to align the polypeptide 
sequences identified. The parameters used were Gap Opening 
Penalty = 10; Gap Extension Penalty = 0.2; Protein 
matrix = BLOSUM series (Larkin et al., 2007). MEGA7 was used 
to analyze the aligned sequences of DmsA, DmsB, DmsE/MtrA, 
DmsF/MtrB, or MtrC homologs. Phylogenetic trees were 
constructed with Maximum Likelihood at a confidence level 
determined by 1,000 bootstrap replications (Kumar et al., 2016). 
The results of phylogenetic reconstruction were displayed with 
Evolview v2 (He et al., 2016). The genes for c-Cyts on the upstream 
and downstream of the mtrCAB gene clusters were also identified 
by the method described above (Shi et al., 2012b, 2014; Zhong and 

Shi, 2018). The map of distribution for the identified bacteria was 
constructed similarly to that described previously (Baker 
et al., 2022).

Results and discussion

Overviews

DmsE/MtrA is a decaheme c-Cyt that is inserted into the 
outer membrane porin protein DmsF/MtrB. The function of 
DmsF/MtrB is to insulate DmsE/MtrA from the outer membrane, 
which permits rapid electron transfer across the outer membrane 
by DmsE/MtrA (Hartshorne et  al., 2009; White et  al., 2013; 
Edwards et al., 2020). Thus, the identified microorganisms that 
possessed dmsEFAB and/or mtrCAB gene clusters were all the 
Gram-negative bacteria. Supplementary Table S1 listed the 
bacteria identified with both dmsEFAB and mtrCAB gene clusters 
from this investigation. These included three Ferrimonas and 26 
Shewanella species. It should be noted that in S. oneidensis MR-1, 
dmsEFAB and mtrCAB gene clusters are for extracellular 
respiration of DMSO and Fe(III)-containing minerals, respectively 
(Beliaev and Saffarini, 1998; Beliaev et al., 2001; Gralnick et al., 
2006; Bretschger et al., 2007; Coursolle et al., 2010). Involvement 
of dmsEFAB and mtrCAB gene clusters in extracellular reduction 
of IO3

− is fortuitous (Guo et al., 2022). Restrictive distribution of 
the bacteria with capability for extracellular reduction of IO3

− in 
Ferrimonas and Shewanella species may be  attributed to this 
fortuitous function.

Possession of both dmsEFAB and mtrCAB gene clusters 
suggests that these bacteria are capable of reducing IO3

− 
extracellularly. This is consistent with the previous observations 
that in addition to S. oneidensis MR-1, other Shewanella species, 
such as S. putrefaciens, reduced IO3

− (Councell et  al., 1997; 
Farrenkorf et al., 1997; Mok et al., 2018; Toporek et al., 2019; Guo 
et al., 2022; Shin et al., 2022).

Global distribution

The original habitats for this group of bacteria with both 
dmsEFAB and mtrCAB gene clusters varied substantially (Figure 1; 
Supplementary Table S1). Some of them were isolated from the 
sediments of the lakes located in China, India, and the United States 
(Myers and Nealson, 1988; Li et al., 2014; Rathour et al., 2021); city 
drainage in Vietnam (Dao et  al., 2022); subsurface rock in 
United States (Fredrickson et al., 1998), river water in Tunisia and 
rainbow trout in South Korea (Figure 1; Supplementary Table S1). 
Notably, >82% of the identified bacteria with dmsEFAB and 
mtrCAB gene clusters were isolated from a variety of marine 
environments around the world. These included the costal 
sediments in Mallorca, Spain; Xiamen, China, and Nova Scotia, 
Canada (Rossello-Mora et al., 1995; Zhao et al., 2005; Huang et al., 
2010); sediments in Ross Sea, South China Sea, and Arctic Ocean 
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(Ivanova et al., 2003; Hwang et al., 2019; Li et al., 2021); a cold seep 
field in South China Sea (Figure 1; Supplementary Table S1) and 
deep-sea sediments in Southwest Indian Ocean and West Pacific 
Ocean (Wang et al., 2004, 2021; Yu et al., 2021). Some were also 
found in seawater in East Sea, Korea; North Sea, United Kingdom; 
Troitsa Bay, Russia; Alboran Sea and Black Sea (Makemson et al., 
1997; Reid and Gordon, 1999; Venkateswaran et al., 1999; Kim 
et al., 2017; Bae et al., 2021) as well as sea ice floe close to Point 
Barrow, Alaska, United States (Figure 1; Supplementary Table S1); 
the gastric cavity of galaxy coral in the coastal area near Hainan 
Island, China (Tang et al., 2020), and the intestines of sea animals 
in Japan (Satomi et al., 2003). Thus, bacteria with both dmsEFAB 
and mtrCAB gene clusters occur globally. Distribution of the 
bacteria with dmsEFAB and mtrCAB gene clusters is also 
comparable to the distribution of bacteria with porin-cytochrome 
gene clusters (Baker et al., 2022). Widespread occurrence of these 
bacteria around the world, especially their distribution in a variety 
of marine environments, suggests significant importance of the 
bacteria with capability for extracellular reduction of IO3

− in global 
biogeochemical cycling of iodine.

DmsA and DmsB homologs
A total of 52 DmsA homologs were identified from the 

bacteria with dmsEFAB and mtrCAB gene clusters (Figure 2A; 
Supplementary Table S2). For comparison, IdrA of Pseudomonas 
sp. strain SCT and Denitromonas sp. IR-12 were included for 

phylogenetic analyses (Yamazaki et al., 2020; Reyes-Umana et al., 
2022). Like DmsA and SO_4358 of S. oneidensis MR-1, all the 
identified DmsA homologs possessed the twin-arginine sequence 
at their N-termini for their secretion to the periplasm via the 
twin-arginine protein secretion system (Supplementary Figure S1; 
Gralnick et  al., 2006). The identified DmsA homologs were 
35–98% identical to DmsA of S. oneidensis MR-1. Notably, 
SO_4358 of S. oneidensis MR-1 was 36% identical to DmsA of 
S. oneidensis MR-1 (Supplementary Table S2). SO_4358 is not 
involved in extracellular reduction of iodate by S. oneidensis MR-1 
(Guo et al., 2022). The identified DmsA homologs were distantly 
related to IdrA of Pseudomonas sp. strain SCT and Denitromonas 
sp. IR-12 (Figure 2A; Supplementary Table S2).

The twin-arginine sequence was also detected in the DmsB 
homologs identified (Supplementary Figure S2; Gralnick et al., 
2006). These DmsB homologs were 52%–99% identical to DmsB 
of S. oneidensis MR-1. Among them, SO_4359 of S. oneidensis 
MR-1 was 61% identical to DmsB of S. oneidensis MR-1 
(Supplementary Table S3). The identified DmsB homologs were 
11%–24% identical to IdrB of Pseudomonas sp. strain SCT and 
Denitromonas sp. IR-12 (Figure 2B; Supplementary Table S3).

DmsE/MtrA/MtrD and DmsF/MtrB/MtrE 
homologs

In S. oneidensis MR-1, MtrDEF are homologous to MtrABC, 
respectively, and mtrDEF genes are clustered together and are part 

FIGURE 1

Global distribution of the bacteria with capability for extracellular reduction of iodate. Their original habits are indicated. See 
Supplementary Table S1 for details.

https://doi.org/10.3389/fmicb.2022.1070601
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Guo et al. 10.3389/fmicb.2022.1070601

Frontiers in Microbiology 05 frontiersin.org

of mtrCAB gene cluster (Fredrickson et al., 2008). However, the 
mtrDEF gene cluster is not involved in extracellular reduction of 
IO3

− by S. oneidensis MR-1 (Guo et  al., 2022). Ninety-seven 
DmsE/MtrA/MtrD and DmsF/MtrB/MtrE homologs were 
identified, respectively, from the bacteria with dmsEFAB and 
mtrCAB gene cluster (Figures 2C,D; Supplementary Tables S4, S5). 
Identified DmsE/MtrA/MtrD homologs were 47%–98% identical 
to DmsE/MtrA/MtrD of S. oneidensis MR-1 
(Supplementary Table S4), respectively; while the identified 
DmsF/MtrB/MtrE homologs were 24%–96% identical to DmsF/
MtrB/MtrE of S. oneidensis MR-1, respectively 
(Supplementary Table S5). These DmsE/MtrA/MtrD and DmsF/
MtrB/MtrE homologs were 32%–43% and 14%–23% identical to 
MtoA/PioA and MtoB/PioB of the Fe(II)-oxidizing bacteria 
Sideroxydans lithotrophicus ES-1 and Rhodopseudomonas 
palustrisTIE-1, respectively (Figures  2C,D; 
Supplementary Tables S4, S5; Jiao et al., 2005; Jiao and Newman, 
2007; Liu et al., 2012; Shi et al., 2012b; Liu et al., 2013). Previous 
results showed that MtoA/PioA and MtoB/PioB of S. lithotrophicus 
ES-1 and R. palustrisTIE-1were homologous to MtrA and MtrB of 
S. oneidensis MR-1, respectively (Jiao and Newman, 2007; Shi 
et al., 2012b; Liu et al., 2014). Purified MtoA of S. lithotrophicus 
ES-1 was capable of oxidizing Fe(II), including the solid phase 
Fe(II) (Liu et al., 2012, 2013). PioA and PioB were also involved 
in extracellular oxidation of Fe(II) by R. palustrisTIE-1 (Jiao and 
Newman, 2007). Given that they are more homologous to DmsE/

MtrA and DmsF/MtrB of S. oneidensis MR-1 than to MtoA/PioA 
and MtoB/PioB of S. lithotrophicus ES-1 and R. palustrisTIE-1, the 
identified DmsE/MtrA/MtrD and DmsF/MtrB/MtrE homologs 
are most likely to mediate electron transfer from inside cells to 
outside cells.

MtrC/MtrF homologs
Forty-five MtrC/MtrF homologs were identified from the 

bacteria with dmsEFAB and mtrCAB gene clusters (Figure 2E; 
Supplementary Figure S3; Supplementary Table S6). These 
homologs were 29%–71% identical to MtrC of S. oneidensis MR-1 
(Supplementary Table S6). MtrC of S. oneidensis MR-1is a 
lipoprotein with 10 c-type hemes and is located on the bacterial 
surface (Shi et al., 2006, 2008; Lower et al., 2009; Edwards et al., 
2020). It contains a lipid-binding site in its N-terminus and 
replacement of this site renders MtrC unable to bind to the outer 
membrane (Edwards et al., 2015). Similar to MtrC of S. oneidensis 
MR-1, all identified homologs possessed this lipid-binding site in 
their N-termini (Supplementary Figure S3). Thus, these MtrC/
MtrF homologs are most likely on the bacterial cell surface. All the 
identified MtrC/MtrF homologs also possessed 10 c-type heme-
binding sites (Supplementary Figure S3). Similar to MtrC and 
other c-Cyts, these MtrC homologs should possess intrinsic 
peroxidase activity to degrade the H2O2 formed from extracellular 
reduction of IO3

− (Thomas et  al., 1976; Shi et  al., 2006; Guo 
et al., 2022).

A

D E

B C

FIGURE 2

Phylogenetic analyses of identified DmsEFAB and MtrCAB homologs. (A) DmsA homologs, (B) DmsB homologs, (C) DmsE/MtrA/MtrD homologs, 
(D) DmsF/MtrB/MtrE homologs and (E). MtrC/MtrF homologs. Construction and graphical display of phylogenetic trees were described in text. The 
outer layer indicates bacterial genera with identified DmsEFAB and MtrCAB homologs. For comparison, IdrAB of Pseudomonas sp. strain SCT and 
Denitromonas sp. IR-12, MtoAB of Sideroxydans lithotrophicus ES-1, and PioAB of Rhodopseudomonas palustrisTIE-1 were included for the 
analyses.
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Genetic organization

Further investigation revealed that the numbers of dmsEFAB 
gene cluster and genes associated with mtrCAB gene cluster varied 
among the genomes of identified bacteria. Because of these 
differences, the identified bacteria could be categorized into seven 
different groups (Supplementary Table S1; Figure 3).

Group I bacteria contained a dmsEFAB gene cluster and a 
mtrCAB gene cluster. An additional gene for the outer membrane 
multiheme c-Cyt is also associated with the mtrCAB gene cluster 
(Group I, Figure 3). This group of bacteria included S. japonica 
KCTC 22435, S. livingstonensis LMG 19866, S. putrefaciens CN32, 
S. woodyi ATCC 51908, Shewanella sp. ARC9_LZ, Shewanella sp. 
SUN WT4, and Shewanella sp. WPAGA9 (Supplementary Table S1). 
Notably, the dmsEFAB and mtrCAB gene clusters of S. japonica 
KCTC 22435 were 99.5%–100% identical to those of Shewanella 
sp. WPAGA9, respectively (Figures 2A–E; Supplementary Tables 
S2–S6).

Like Group I  bacteria, Group II bacteria also contained a 
dmsEFAB gene cluster and a mtrCAB gene cluster. However, the 
mtrCAB gene cluster of this group of bacteria also contained a 
mtrDEF gene cluster and the genes for other outer membrane 
multiheme c-Cyt (Group II, Figure 3). Group II bacteria included 
S. fidelis ATCC-BAA-318, S. marisflavi EP1, S. piezotolerans WP3, 
S. schlegeliana JCM 11561, S. xiamenensis NUITM-VS1, 
Shewanella sp. 8A, Shewanella sp. ISTPL2, Shewanella sp. LZH-2, 
Shewanella sp. MBTL60-112-B1, Shewanella sp. MBTL60-112-B2, 
and Shewanella sp. MR-4 (Supplementary Table S1). Among this 
group of bacteria, Shewanella sp. MBTL60-112-B1 and Shewanella 
sp. MBTL60-112-B2 shared identical dmsEFAB and mtrCAB gene 
clusters (Figures  2A–E; Supplementary Tables S2–S6). These 
results suggest that they are very closely related. Results also 
showed that dmsEFAB and mtrCAB gene clusters of S. xiamenensis 
NUITM-VS1, Shewanella sp. 8A, and Shewanella sp. LZH-2 were 
97.6%–100% identical, respectively (Figures  2A–E; 
Supplementary Tables S2–S6), which suggest that these Shewanella 
spp. acquire dmsEFAB and mtrCAB gene clusters from a 
common ancestor.

Both Group III and IV bacteria contained two dmsEFAB gene 
clusters and a mtrCAB gene cluster. The major difference between 
these two groups of bacteria was that the mtrCAB gene of Group 
IV bacteria also had a mtrDEF gene cluster and one to three genes 
for the outer membrane c-Cyts (Group III and IV, Figure  3). 
Group III bacteria included Ferrimonas sp. SCSIO 43195, 
S. frigidimarina NCIMB 400, Shewanella sp. Actino-trap-3 and 
Shewanella sp. KX20019, among which an additional gene for the 
outer membrane multiheme c-Cyt associated with the mtrCAB 
gene cluster of S. frigidimarina NCIMB 400, Shewanella sp. 
Actino-trap-3 and Shewanella sp. KX20019 (Group III, Figure 3; 
Supplementary Table S1). The identified Group IV bacteria were 
Ferrimonas balerica DSM 9799 and S. oneidensis MR-1 
(Supplementary Table S1).

Group V bacteria all possessed three dmsEFAB gene clusters 
and a mtrCAB gene cluster with an additional gene for the outer 

membrane c-Cyt (Group V, Figure 3), which included F. lipolytica 
S7 and S. psychromarinicola M2 (Supplementary Table S1). One of 
the dmsEFAB gene clusters, the 06735–06750 gene cluster, of 
S. psychromarinicola M2 was 100% identical to the 15625–15640 
gene cluster, one of the dmsEFAB gene clusters of Shewanella sp. 
Actino-trap-3 from Group III (Figures  2A–D; 
Supplementary Tables S2–S5). Similarly, mtrCAB gene cluster of 
S. psychromarinicola M2 was 97.1%–99.7% identical to that of 
Shewanella sp. Actino-trap-3 (Figures 2C–E; Supplementary Tables 
S4–S6).

Both Group VI and VII bacteria had a mtrCAB gene cluster 
that also included a mtrDEF gene cluster and three genes for the 
outer membrane c-Cyts (Group VI and VI, Figure 3). However, 
the Group VI bacterium S. eurypsychrophilus YLB-08 possessed 
four dmsEFAB gene clusters (Group VI, Figure  3; 
Supplementary Table S1), while the Group VII bacteria 
S. sediminis HAW-EB3 and Shewanella sp. YLB-09 contained  
six dmsEFAB gene clusters (Group VII, Figure  3; 
Supplementary Table S1). Notably, among the six dmsEFAB gene 
clusters of Shewanella sp. YLB-09, the 01235–01250 and 01530–
01515 gene cluster were 100% identical to the 02855–02870 and 
03150–03135 gene clusters, respectively, which demonstrates 
duplications of dmsEFAB gene clusters in Shewanella sp. YLB-09 
(Figures 2A–D; Group VII, Figure 3; Supplementary Tables S2–S5). 
Furthermore, the mtrCAB gene cluster and its associated genes 
(07500–07460) of S. eurypsychrophilus YLB-08 were 100% 
identical to the mtrCAB gene cluster and its associated genes 
(09075–09035) of Shewanella sp. YLB-09 (Group VI and VII, 
Figure 3; Supplementary Tables S4–S6). Similarly, dmsEFAB gene 
clusters 01250–01265, 01545–01530, 23480–23495, and 23515–
23530 of S. eurypsychrophilus YLB-08 were 100% identical to 
dmsEFAB gene clusters 01235–01250/02855–02870, 01530–
01515/03150–03135, 25010–25025 and 25045–25060 of 
Shewanella sp. YLB-09, respectively (Group VI and VII, Figure 3; 
Supplementary Tables S2–S5). Thus, the dmsEFAB and mtrCAB 
gene clusters of S. eurypsychrophilus YLB-08 and Shewanella sp. 
YLB-09 must be acquired from the same ancestor.

Conclusion

To investigate to what extent the extracellular IO3
−-reducing 

organisms were distributed around world, the bacteria with both 
dmsEFAB and mtrCAB gene clusters were systemically searched. 
A total of 29 bacteria were identified to possess both gene clusters. 
They belonged to the genus of Ferrimonas and Shewanella. 
Possession of both dmsEFAB and mtrCAB gene clusters suggests 
the ability to mediate extracellular reduction of IO3

− by these 
bacteria. The identified bacteria with capability for extracellular 
reduction of IO3

− were widespread around the world. Although 
some were found in freshwater lakes and rivers as well as the rocks 
of deep continental subsurface, most of them were derived from 
geographically distributed marine environments. The latter 
included those found in the Arctic, Atlantic, Indian, and Pacific 
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oceans. Widespread occurrence of the bacteria with capability for 
extracellular reduction of IO3

− suggests a crucial role of this group 
of bacteria in global biogeochemical cycling of iodine.

The genetic organizations of identified dmsEFAB and mtrCAB 
gene clusters varied significantly. The mtrCAB gene clusters often 
associated with genes for the outer membrane c-Cyt of multiheme. 

Some of the mtrCAB gene clusters also contained a mtrDEF gene 
cluster. The numbers of dmsEFAB gene cluster detected in a given 
bacterial genome ranged from one to six. Duplications of the 
detected dmsEFAB gene clusters also occurred. Thus, this group 
of bacteria acquire their capability for extracellular reduction of 
iodate differently.

FIGURE 3

Genetic organization of identified mtrCAB and dmsEFAB gene clusters. The relative positions of genes identified within the complete genomes are 
shown. The identified genes are labeled with arrows. The arrow sizes indicate the relative lengths of identified genes. The arrow orientation 
indicates the presumed direction of gene transcription. The numbers above the identified genes are part of their locus tags. Group I: S. japonica 
KCTC 22435, S. livingstonensis LMG 19866, S. putrefaciens CN32 (CN32), S. woodyi ATCC 51908, Shewanella sp. ARC9_LZ, Shewanella sp. SUN 
WT4 and Shewanella sp. WPAGA9; Group II: S. fidelis ATCC-BAA-318, S. marisflavi EP1, S. piezotolerans WP3, S. schlegeliana JCM 11561, S. 
xiamenensis NUITM-VS1, Shewanella sp. 8A, Shewanella sp. ISTPL2, Shewanella sp. LZH-2, Shewanella sp. MBTL60-112-B1, Shewanella sp. 
MBTL60-112-B2 and Shewanella sp. MR-4 (MR-4); Group III: Ferrimonas sp. SCSIO 43195, S. frigidimarina NCIMB 400 (Sfri), Shewanella sp. Actino-
trap-3 and Shewanella sp. KX20019; Group IV: Ferrimonas balerica DSM 9799 (Fbal) and S. oneidensis MR-1; Group V: F. lipolytica S7 (S7) and  
S. psychromarinicola M2; Group VI: S. eurypsychrophilus YLB-08 (YLB-08); and Group VII: S. sediminis HAW-EB3 and Shewanella sp. YLB-09  
(YLB-09). OM c-Cyt: the outer membrane c-type cytochrome. See text for details.
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Collectively, the results from this investigation provide new 
insights into the distribution and evolution of as well as the role in 
global biogeochemical cycling of iodine by the bacteria with 
capability for extracellular reduction of iodate. Physiological 
characterization of the iodate-reducing capacity for the predicted 
strains and their ecological roles on iodine cycling in different 
ecosystems are in need of further investigation.
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