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Potential of Bacillus pumilus to 
directly promote plant growth
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Plant Growth-Promoting Bacteria (PGPB) are a promising alternative to 

conventional fertilization. One of the most interesting PGPB strains, among 

the spore-forming bacteria of the phylum Firmicutes, is Bacillus pumilus. It 

is a bacterial species that inhabits a wide range of environments and shows 

resistance to abiotic stresses. So far, several PGPB strains of B. pumilus have 

been described, including B. pumilus LZP02, B. pumilus JPVS11, B. pumilus 

TUAT-1, B. pumilus TRS-3, and B. pumilus EU927414. These strains have been 

shown to produce a wide range of phytohormones and other plant growth-

promoting substances. Therefore, they can affect various plant properties, 

including biometric traits, substance content (amino acids, proteins, fatty 

acids), and oxidative enzymes. Importantly, based on a study with B. pumilus 

WP8, it can be concluded that this bacterial species stimulates plant growth 

when the native microbiota of the inoculated soil is altered. However, there 

is still a lack of research with deeper insights into the structure of the native 

microbial community (after B. pumilus application), which would provide a 

better understanding of the functioning of this bacterial species in the soil and 

thus increase its effectiveness in promoting plant growth.
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Introduction

Bacillus pumilus is a Gram-positive, spore-forming bacteria, which commonly occurs 
in various environments including marine water, deep-sea sediments, and soil (Priest, 1993; 
Shivaji et al., 2006; Liu et al., 2013; Pudova et al., 2022; Yakovleva et al., 2022; Zhang et al., 
2022). This species exhibits significant resistance to environmental stresses, e.g., low or no 
nutrient availability, drought, irradiation, UV radiation, chemical disinfectants, or oxidizing 
enzymes (Nicholson et al., 2000). Previously, Bacillus pumilus was included in the Bacillus 
subtilis group. Currently, Bacillus pumilus belongs to the Bacillus pumilus group which also 
includes B. altitudinis, B. australimaris, B. safensis, B. xiamenensis, and B. zhangzhouensis 
(Chen et al., 2016).

Progressive climate change and environmental pollution are intensifying the 
development of eco-friendly fertilizers (Čimo et  al., 2020; Dobrzyński et  al., 2021; 
Kasperska-Wołowicz et al., 2021; Wierzchowski et al., 2021; Zielewicz et al., 2021; Heyi et al., 
2022). One of the best solutions for safe fertilization appears to be fertilizers based on plant 
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growth-promoting bacteria (Čimo et  al., 2020). Due to its 
properties, Bacillus pumilus is classified as a plant growth-
promoting bacteria (PGPB; Gutiérrez-Mañero et  al., 2001; 
De-Bashan et al., 2010; Kaushal et al., 2017). PGPB can stimulate 
plant growth either directly or indirectly. Mechanisms of direct 
action are defined as the use of bacterial traits that result in the 
direct promotion of plant growth, including the production of 
auxins, e.g., indole-3-acetic acid (IAA), 1-aminocyclopropane-1-
carboxylic acid (ACC) deaminase, cytokinins, gibberellins, 
atmospheric nitrogen fixation (nitrogenase production), 
phosphorus solubilization, and iron sequestration (by production 
bacterial siderophores). In contrast, indirect mechanisms relate to 
the properties of bacteria that inhibit the functioning of one or 
more plant pathogenic organisms. Indirect mechanisms include, 
e.g., the production of antibiotics (e.g., cyclic lipopeptides), 
enzymes that degrade the cell wall of fungi (including chitinases 
and β-1,3 glucanases), and production of hydrogen cyanide (HCN) 
inducing plant resistance (e.g., against fungal phytopathogens; Joo 
et al., 2005; Cuong and Hoa, 2021; Lipková et al., 2021; Shahid 
et al., 2021; Bessai et al., 2022; Mirskaya et al., 2022)

The mini-review aims to summarize the current state of 
knowledge on the Bacillus pumilus plant growth promotion 
properties and highlight the lack in the literature on this issue.

Overall potential of Bacillus pumilus

Bacillus pumilus is one of the most studied bacterial strains in 
terms of promoting the growth of bacteria from the genus Bacillus. 
So far, it has been found that B. pumilus is capable of producing 
several phytohormones. Gutiérrez-Mañero et al. (2001) detected a 
few gibberellins (GA1, GA3, GA4, and GA20) in the culture of 
B. pumilus using full-scan gas chromatography and mass 
spectrometry assays. Joo et  al. (2005) found other gibberellins 
derived from this species (strain no. CJ-69), including a few new 
ones such as GA5, GA8, GA34, GA44, and GA5. B. pumilus is also 
able to produce other traits that directly promote plant growth. 
Isolated from the tea rhizosphere, B. pumilus TRS-3 showed the 
production of indole 3-acetic acid (IAA), siderophore, and 
phosphate solubilization (Chakraborty et  al., 2013). Besides, 
B. pumilus JPVS11 is capable of producing ACC deaminase which 
contributes to decreasing ethylene levels in the plants by degrading 
ACC (Kumar et al., 2021). Importantly, B. pumilus is also capable of 
fixing atmospheric N2 by nitrogenase production which reduces this 
nitrogen form to ammonia (Masood et al., 2020). Other authors also 
detected these plant growth-promoting traits in B. pumilus (Hafeez 
et al., 2006; Murugappan et al., 2013; Upadhyay et al., 2019).

Promoting plant growth under different 
growing conditions

To date, several papers have been published on the effect of 
various B. pumilus strains on plant growth parameters. 

The inoculation efficiency of B. pumilus was studied in various 
conditions including in vitro, growth chambers, greenhouses, and 
in-field conditions. A lot of these studies focus on rice growth 
promotion and deal mainly with biometric parameters and 
chemical properties of shoots and roots (Win et al., 2018; Ngo 
et al., 2019; Liu et al., 2020) Importantly, both commercial strains 
and soil isolates are used to study on the effects of bacteria on the 
efficiency in promoting plant growth.

The research based on growing plants on Murashige and 
Skoog liquid medium has proven that the strain B. pumilus LZP02 
is able to promote rice growth by increasing the root length, root 
surface area, number of nodes, root tips, forks, and chlorophyll 
content (Liu et al., 2020). In addition, the application of B. pumilus 
LZP02 also caused an increase in nitrogen, phosphorus, calcium, 
and magnesium contents in rice roots (Liu et al., 2020). Previously, 
it was proven that B. pumilus promotes rice growth under growth 
chamber conditions (Ngo et  al., 2019) B. pumilus TUAT1 
significantly enhanced growth, root development, and nutrient 
absorption in 21-day-old rice seedlings compared to the control. 
Interestingly, significantly better efficiency of the studied strain 
was obtained after inoculating plants with spores than vegetative 
cells (Ngo et al., 2019).

As well, it has been reported that B. pumilus may be a good 
growth promoter of other plants, including grasses, trees, and others. 
For instance, after the application of B. pumilus of Alnus glutinosa, 
higher values of parameters linked with root system (in both studied 
soil types) and an increase in shoot surface (in one of the studied soil 
types) was documented compared to control (Ramos et al., 2003). 
Subsequently, the application of B. pumilus caused an increase in 
plant height, number of leaves and branches in Chinese tea under in 
vivo conditions (Chakraborty et  al., 2013). Moreover, after 
inoculation of lentils (Lens culinaris Medik.) by B. pumilus, Siddiqui 
et al. (2007) noted an increase in plant length and plant fresh weight. 
Ahmad et al. (2012) also noted that inoculation B. pumilus of Lollium 
multiflorum led to increased biomass and growth of plants. 
Inoculation of wheat (var. Orkhon) by B. pumilus led to increasing 
root length, root area, shoot dry weight, and P and N contents in 
aboveground plants (Hafeez et al., 2006).

Interestingly, B. pumilus can also be an endophytic bacteria. 
This species was isolated from tissue surfaces of Ocimum sanctum 
and its ability to colonize tissues was confirmed by scanning 
electron microscopy (SEM; Murugappan et al., 2013). Importantly, 
the inoculation of Octimum sanctum by this species also caused 
an increase in root and shoot length and leaves number compared 
to non-inoculated treatment (Murugappan et al., 2013).

Recently it has been suggested that B. pumilus promotes plant 
growth better in combination with nitrogen fertilizers (Win et al., 
2018; Masood et al., 2020). Strain B. pumilus TUAT-1 with added 
nitrogen fertilization increased the height, biomass, and 
chlorophyll content of 21-day-old rice seedlings); (what is 
important, this study was conducted under field conditions (Win 
et al., 2018). Next, Masood et al. (2020) carried out a study to 
determine the main mechanisms relating to PGPB-improved N 
nutrition in tomatoes under greenhouse conditions. The authors 
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recorded an interesting pattern, namely B. pumilus improves 
tomato growth and N uptake only under N fertilization. Moreover, 
B. pumilus inoculation under nitrogen fertilization increased leaf 
chlorophyll contents, plant height, shoot fresh weight, and shoot 
dry weight in comparison with only bacteria inoculation treatment.

It was also documented that Bacillus pumilus is able to 
enhance the activity of a few antioxidant enzymes from the 
oxidoreductase class, including peroxidase, ascorbate peroxidase, 
superoxide dismutase, catalase, glutathione reductase, and 
adenosine triphosphatase in inoculated plants (Liu et al., 2020); 
(Shahzad et al., 2021). Besides, B. pumilus may cause an increase 
in soil enzyme activity such as alkaline phosphatase, acid 
phosphatase, urease, and β-glucosidase (Kumar et al., 2021).

Promoting plant growth under plant 
stress conditions

Bacillus pumilus has also been shown to promote plant growth 
under abiotic stress conditions (Kumar et al., 2021; Shahzad et al., 
2021). Recently, it was found that B. pumilus can promote plant 
growth under salinity stress (Kumar et al., 2021). Positive effects of 
rice inoculation by B. pumilus JPVS11 (pot experiment) such as the 
enhancement of plant height, root length, and plant fresh weight 
were observed at the various values of NaCl concentration (0, 50, 
100, 200, and 300 mM). Furthermore, B. pumilus also may promote 
plant growth in conditions of Cd contamination; maize seeds 
inoculation with B. pumilus contributed to an increase in the 
germination percentage, shoot length, leaf length, number of leaves, 
and plant fresh weight at different concentrations of CdSO4 (Shahzad 
et al., 2021). In addition, Khan et al. (2016) conducted a study on 
plant growth-promoting properties of rice seedlings by B. pumilus 
under saline and high boron (B) conditions. In non-inoculated 
treatment, they observed high values of B and salt toxic ions in 
leaves. On the other hand, there are also studies that show the lack 
of plant growth promotion by B. pumilus under abiotic stress 
conditions. This phenomenon was found in a study on several plants 
of the Brassica genus under caesium-contaminated conditions (Aung 
et al., 2015).

Mechanisms of promoting plant growth

Importantly, inoculation of plants by B. pumilus may affect the 
expression of genes related to root development, for instance, this 
bacteria increased transcript abundance CRL5 (Murugappan et al., 
2013), which regulates crown root formation by expression 
activation of the OsRR1. It is a gene of rice which encodes a negative 
regulator of cytokinin signaling (Radhakrishnan et  al., 2017). 
Moreover, B. pumilus may decrease transcript abundance WOX11 
(Ngo et al., 2019), which contributes to the repression of OsRR2 
(Cheng et al., 2016). This fact indicates that the impact of B. pumilus 
on the expression of previously mentioned rice genes may be one of 
its mechanisms of plant growth promotion (Ngo et al., 2019).

Plant growth promotion by Bacillus 
pumilus in co-inoculation

There are also results describing the potential to promote 
plant growth in consortia with other microorganisms. A 
consortium composed of B. pumilus EU927414, Pseudomonas 
medicona EU927412, and Arthrobacter sp. EU927410 led to a 24% 
increase in wheat yield compared to the control under field 
conditions (Upadhyay et  al., 2019). In addition, it has been 
documented that the application of the consortium of B. pumilus 
and Bacillus subtilis increased values of crude protein, dry matter, 
fat, and carbohydrate in amaranth grains. Besides, in this study, a 
significant increase in a few amino acid values including 
methionine lysine and tryptophan was recorded in the studied 
sample (Pandey et al., 2018). Also dos Santos et al. (2018) used a 
combined application of B. pumilus and B. subtilis, however, in 
sugarcane cultivation. There, together with mineral fertilization 
and filter cake compost, the solution improved shoot and root 
growth, as well as increased phosphorus content in soil up to 13% 
compared to untreated control. Another example of co-inoculation 
is the application of B. pumilus CECT 5105 in combination with 
Bacillus licheniformis CECT 5106 and mycorrhizal fungus 
Pisolithus tinctorius to enhance Pinus pinea seedlings growth 
(Probanza et al., 2001). In this study, authors did not observe a 
synergic effect with mycorrhizal infection, however, the 
inoculation by various consortiums showed an increase in a few 
biometric parameters of the studied plant. For example, B. pumilus 
and Pisolithus tinctorius combination led to an increase in aerial 
and root system parameters.

Effect of Bacillus pumilus on native soil 
microbiota and post-inoculation tracking 
of its abundance

A very important aspect related to the application of PGPB is 
their impact on the indigenous microbiota of the inoculated soil 
or rhizosphere. Assessing the impact of plant growth-promoting 
bacteria on the soil microbiota can be crucial to its effectiveness. 
So far, there are several papers considering the B. pumilus effect 
on the formation of native microbial communities. For instance, 
(De-Bashan et al., 2010) revealed that inoculation with B. pumilus 
may shift the bacterial community over 60 days under greenhouse 
conditions and documented that B. pumilus prefers to colonize the 
roots tips and root elongation area (FISH analysis). Besides, using 
denaturing gradient gel electrophoresis (PCR-DGGE), Kang et al. 
(2013) conducted a study on the reaction of soil bacterial 
community soil under fava beans to B. pumilus WP8 and its post-
inoculation monitoring in soil.  Their results indicated that the 
studied strain survived in large numbers up to 40 days in bulk soil 
and shifted the bacterial community, especially dominant taxon 
populations. However, despite the short-lived studied strain in 
soil, it exhibits the ability to promote fava bean seedlings for at 
least 90 days; the inoculation of B. pumilus WP8 enhanced shoot 
length, aboveground dry weight, root length, and root dry weight. 
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Interestingly, in the case of another Bacillus strain, Bacillus 
amyloliquefaciens NJN-6, using the qPCR technique, (Fu et al., 
2017) recorded its stable abundance in the rhizosphere soil of 
banana plantation within 3 years of inoculation (in the range of 
2.5–3.0 log copies of 16S rRNA gene per gram of soil). Also, it is 
worth mentioning that the survival rate of bacterial inoculants in 
the soil largely depends on the indigenous soil microbiota; the 
survival of PGPB in the soil is high when the diversity of native 
microbiota is low and vice versa (Mallon et al., 2015; Manfredini 
et  al., 2021). In addition, (Bueno et  al., 2022) carried out an 
interesting study on the persistence of B. subtilis in the endosphere 
of soybean roots, showing that after the application of 
concentrations of 1 × 104  CFU ml−1 and 1 × 1010  ml−1, a higher 
abundance of this strain was recorded a few weeks after 
inoculation compared to B. subtilis abundance in treatment: 
B. subtilis + mineral fertilization (the study based on transformed 
B. subtilis with ampicillin resistance gene).

The PLFA (phospholipid fatty acid) technique was also used to 
assess the response of native soil microbiota to B. pumilus application. 
The introduction of a consortium composed of B. pumilus and 
B. licheniformis shifted the rhizosphere microbiota, despite the low 
abundance of both strains in the final phase of the study (Probanza 
et al., 2001). Another example of using PLFA to evaluate native 
microbiota reaction to B. pumilus inoculation is a study conducted 
by (Ramos et  al., 2003). The authors observed changes in the 
rhizosphere microbial community in one of the studied soil types 
from Alnus glutinosa cultivation (Ramos et al., 2003).

The only study assessing the status of the native microbiota 
following the application of B. pumilus (strain TUAT-1) was 
conducted by (Win et al., 2020) using Next-Generation Sequencing 
(NGS). The researchers studied B. pumilus TUAT-1 effect on the 
microbiota of bulk soil, rhizosphere, and root endosphere in forage 
rice 2 and 5 weeks after transplantation under greenhouse 
conditions. B. pumilus TUAT-1 shifted the microbial community of 
rhizosphere and roots endosphere, e.g., this bacterial strain 
significantly contributed to an increase in the Desulfuromonadales 
abundance and a decrease of the abundance of Xanthomonadales 
5 weeks after transplantation of rice. While in the bacterial 
community of root endosphere, B. pumilus TUAT-1 significantly 
enhanced the relative abundance of Acidobacteriales, Saprospirales, 
and Alteromonadales 2 weeks after transplanting in comparison 
with control treatment. However, in bulk soil, the author did not 
note such a significant alteration in native microbiota after the 
introduction of the above-mentioned PGPB. Moreover, compared 
to the control, B. pumilus TUAT-1 enhanced bacterial biodiversity, 
including Shannon diversity in the rhizosphere and root endosphere 
2 weeks after transplanting. Importantly, using qPCR techniques, 
the researchers also demonstrated that B. pumilus TUAT-1 persisted 
in the rhizosphere soil 2 and 5 weeks after transplanting of rice 
(Win et  al., 2020). Different patterns after the introduction of 
B. subtilis into the soil were noted by dos (Dos Santos et al., 2022). 
The authors showed that B. subtilis application did not affect the 
root endophytic microbial community of soybean (greenhouse 
conditions), which was also evaluated by alpha diversity metrics. 

Importantly, it is still unclear whether the PGPB effect on native 
microbiota can be long-term. This phenomenon may depend on 
many factors, including the soil’s chemical properties, the stage of 
plant development, plant root exudates, or indeed the biodiversity 
and composition of the native microbial community. Hence, there 
is a need for further studies on the effects of PGPB on indigenous 
endophytic microbiota and soil microbiota, both for B. pumilus and 
other strains of the Bacillus genus (Manfredini et al., 2021).

Conclusion

Bacillus pumilus is a very interesting PGPB strain that has 
already been incorporated into the commercial circuit. Despite that, 
there are deficiencies in the literature in several areas. There is still 
a lot to be understood about the reaction of various plants to the 
inoculation of B. pumilus. The need for further research in this field 
is determined by the specificity of the plant rhizosphere microbiome, 
which can interact differently with B. pumilus strains and vice versa. 
In addition, it is vital to test the effectiveness of this bacterium on 
different soil types with different physicochemical properties. 
Importantly, there is a very small number of studies assessing the 
impact of B. pumilus on the native microbiota using NGS (only one 
paper to date). NGS offers the possibility of a more detailed analysis 
of the bacterial community structure than DGGE or PLFA. Hence, 
it is possible to find the abundance of important taxa involved in 
biochemical changes in the soil. e.g. whether the abundance of 
oligotrophic bacteria, including Acidobacteria, decreased after 
inoculation with the B. pumilus strain. Also, in order to test the 
effect of alterations in the native microbiota under the influence of 
PGPB, studies of this type should be conducted over a long period 
of time (even up to several years) and under field conditions. Finally, 
it is worth mentioning that there is also a lack of studies on the 
tracking of B. pumilus strains in soil (bulk and rhizosphere soil) or 
plant tissues after its introduction, especially in the long term aspect.
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