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Background: Growing evidence suggests the gut microbiota and metabolites 

in serum or fecal may play a key role in the process of alcohol use disorder 

(AUD). However, the correlations of gut microbiota and metabolites in both 

feces and serum in AUD subjects are not well understood.

Methods: We established a rat model of AUD by a chronic intermittent ethanol 

voluntary drinking procedure, then the AUD syndromes, the gut microbiota, 

metabolomic profiling in feces and serum of the rats were examined, and 

correlations between gut microbiota and metabolites were analyzed.

Results: Ethanol intake preference increased and maintained at a high level 

in experimental rats. Anxiety-like behaviors was observed by open field 

test and elevated plus maze test after ethanol withdraw, indicating that the 

AUD rat model was successfully developed. The full length 16S rRNA gene 

sequencing showed AUD significantly changed the β-diversity of gut microbial 

communities, and significantly decreased the microbial diversity but did not 

distinctly impact the microbial richness. Microbiota composition significantly 

changed in AUD rats, such as the abundance of Romboutsia and Turicibacter 

were significantly increased, whereas uncultured_bacterium_o_Mollicutes_

RF39 was decreased. In addition, the untargeted metabolome analysis revealed 

that many metabolites in both feces and serum were altered in the AUD rats, 

especially involved in sphingolipid metabolism and glycerophospholipid 

metabolism pathways. Finally, multiple correlations among AUD behavior, gut 

microbiota and co-changed metabolites were identified, and the metabolites 

were directly correlated with the gut microbiota and alcohol preference.

Conclusion: The altered metabolites in feces and serum are important links 

between the gut microbiota dysbiosis and alcohol preference in AUD rats, and 

the altered gut microbiota and metabolites can be potentially new targets for 

treating AUD.
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Introduction

Drinking alcohol is associated with the risk of developing 
nearly 230 different types of diseases, such as mental and 
behavioral disorders, noncommunicable diseases such as liver 
cirrhosis, some cancers, and cardiovascular disease, as well as 
injuries resulting from violence and road collisions. Harmful use 
of alcohol is responsible for 5.1% of the global diseases burden. 
Alcohol consumption contributes to 3.3 million deaths annually 
and is the seventh leading risk factor for premature death and 
disability worldwide (Louisa Degenhardt et al., 2018; WHO, 2018, 
2022). Alcohol-related morbidity and mortality are mainly due to 
the population’s high AUD prevalence. AUD, including alcohol 
abuse and dependence, based on the fifth edition of the Diagnostic 
and Statistical Manual of Mental Disorders (DSM), is characterized 
by a progressive escalation from low or moderate to excessive 
alcohol consumption, and by alcohol seeking and craving, and 
alcohol withdrawal symptoms such as anxiety, depression, 
restlessness, insomnia, tremor, seizures, which can be lethal (Ron 
and Barak, 2016; Fan et al., 2018; Xiao et al., 2018). AUD leads to 
disease burden and global adverse effects on social and economic 
factors. Thus, it is necessary and urgent to elaborate on AUD’s 
mechanisms and to develop more effective treatments.

Pathogenesis of AUD has been studied for decades, and 
neurobiological, genetic, environmental, psychosocial, gender, 
and age factors are some contributors to AUD development 
(Flores-Bonilla and Richardson, 2020; Guinle and Sinha, 2020; 
Egervari et al., 2021; Siomek-Gorecka et al., 2021). However, the 
molecular mechanisms underlying AUD have not been fully 
elucidated. The vast majority of researches have focused on the 
effect of alcohol consumption on the central nervous system in the 
brain and neuroendocrine system, such as the circuits in the 
prefrontal cortex (PFC), ventral tegmentum area (VTA), nucleus 
accumbens (NAc), and hypothalamic–pituitary–adrenal (HPA) 
axis (Goldstein and Volkow, 2002; Funk et al., 2006; Koob and 
Volkow, 2016). AUD formation was related to the alcohol’s toxicity 
effects on the multiple neurotransmitter systems, such as 
dopamine, gamma-aminobutyric acid, glutamate, serotonin, 
acetylcholine, and opioid systems (Yang et al., 2022). Therefore, 
many pharmacotherapies approved or currently under 
development are targeting at these neurotransmitter systems, but 
showed a limited effect (Burnette et al., 2022), which suggests that 
there are some other possible physiological processes play critical 
roles in the development of AUD (Leclercq et al., 2017; Fan et al., 
2018). Studies found that the psychiatric disorders in AUD are 
also due to alcohol-induced dysregulation of the neuroimmune 
system (Erickson et  al., 2019). Alcohol consumption and 
withdrawal cause neuroinflammation by leading to 
pro-inflammatory gene induction and microglial activation 
(Crews et al., 2021), which might be important for developing 
AUD and other psychological disorders (Robinson et al., 2014). In 
addition, AUD could increase intestinal permeability, allowing gut 
bacteria and gut-derived products to displace from the gut lumen 
to the systemic circulation or mesenteric lymph nodes (Leclercq 

et al., 2012, 2014a,b). These substances can activate the immune 
system, which then synthesize and release pro-inflammatory 
cytokines that reach the central nervous system and induce 
neuroinflammation associated with changes in mood, cognition, 
and drinking behavior (Leclercq et al., 2017). Compositional and 
functional changes in gut microbiota play a pivotal role in obesity 
and diabetes mellitus (Pitocco et al., 2020), cardiovascular disease 
(Witkowski et al., 2020), mental health (Dinan and Cryan, 2017), 
and alcoholic liver disease (Bajaj, 2019). Taken together, the gut 
microbiota and gut-derived bacterial products play a vital role in 
the AUD development.

Recently, several studies on the relationship between 
microbiota and AUD focused on determining the presence of 
dysbiosis in the gastrointestinal tract in AUD subjects in humans 
and rodent models (Vujkovic-Cvijin et  al., 2020; Gupta et  al., 
2021) and the dysbiosis association with a variety of alcohol-
related disorders, such as alcoholic liver disease (LeBrun et al., 
2020) and mental disorders (Leclercq et  al., 2020). There is 
increasing evidence that alcohol consumption can disturb the gut 
microbiota composition at different taxonomic levels. At the 
phylum level, alcohol consumption reduced the relative 
abundance of Bacteroidetes and increased Firmicutes (Addolorato 
et al., 2020; Smirnova et al., 2020). At the genus level, alcohol 
consumption increased the abundance of Erysipelotrichia, 
Clostridium, Holdemania and Sutterella, whereas decreased the 
abundance of Allobaculum, Streptococcaceae, Enterobacteriaceae, 
and Faecalibacterium (Bjørkhaug et al., 2019; Lang et al., 2020). 
However, some types of these gut microbiota changes also could 
be caused by other factors, such as obesity, a high-fat diet, and 
aging, demonstrating that this dysbiosis may not be specific to 
AUD (Ley et al., 2005; Hildebrandt et al., 2009; Mariat et al., 2009; 
Day and Kumamoto, 2022).

Gut bacteria can produce various bioactive metabolites, which 
can act locally in the gut or enter the host’s bloodstream via the 
portal vein (Fan and Pedersen, 2021), thereby affecting the fecal 
or serum metabolome. Besides the metabolites absorbed from the 
gut, serum metabolites, including nutrients, hormones, metabolic 
substrates, and products of cellular basal metabolism which can 
present some host cell basal metabolites. Compared to serum 
metabolites, fecal metabolites may be more representative of the 
direct microbial metabolic products produced in the gut. On the 
other hand, these metabolites eventually can enter the liver, 
muscle, adipose tissue, and brain, where they signal through 
targeting host molecules and affecting host signaling pathways 
(Koh and Bäckhed, 2020; Stavroulaki et al., 2022). While there 
have been many studies describe microbial metabolites in obesity, 
type 2 diabetes, non-alcoholic fatty liver disease, and other 
metabolic diseases (Pedersen et al., 2016; Wahlström et al., 2016; 
Federici, 2019). However, the microbial metabolites in AUD have 
been relatively unexplored.

It is now widely recognized that gut microbes play an 
important role in AUD development. In addition to the changes 
in gut microbiota composition, the metabolites produced by gut 
microbiota, including short-chain fatty acids (SCFAs), bile acid, 
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secondary bile acid, serotonin, and taurine, also impact AUD 
(Postler and Ghosh, 2017; Wang et al., 2018; Yang et al., 2021). 
However, studies so far conducted only analyze the differences 
in fecal or serum metabolites during AUD and few reports 
integrate the relationship between differential metabolites in 
feces and serum. The combination of the two metabolomics 
approaches can provide a more comprehensive and detailed 
holistic metabolic profiling (Shan et  al., 2018). The effect of 
alcohol consumption on both fecal and serum metabolites 
pathways in AUD is unclear. The associations among gut 
microbiota, gut metabolites, serum metabolites, and behavior 
changes in AUD are also unclear. Therefore, in the present 
study, the fecal microbiome, fecal and serum metabolomics 
profiles were characterized in a rat model of intermittent 
ethanol access induced AUD via full-length 16S rRNA 
sequencing and untargeted metabolomics analysis. The findings 
suggest that exploring the gut microbiome and related 
metabolites is extremely relevant for detecting new 
etiologies of AUD.

Materials and methods

Animals and experimental design

Adult male Sprague–Dawley rats (SPF grade; age: 8 weeks; 
weight: 240–290 g; n = 16) were obtained from Laboratory Animal 
Center in Qiqihar Medical University (Qiqihar, China). Animals 
were housed individually and kept under control conditions of 
21–23°C, 40–60% humidity, and under a 12-hour regular light/
dark cycle. Food and water were provided ad libitum. After 7 days 
of adapting to the environment, rats were randomly assigned to 
the experimental AUD model group by intermittent access to 20% 
ethanol in a 2-bottle choice (IA2BC) procedure as previously 
described by Carnicella (Carnicella et  al., 2014; n = 8, 
weight = 263.67 ± 14.96 g, EtOH) and a control group (n = 8, 
weight = 264.33 ± 23.25 g, CON). Briefly, the EtOH group rats 
received free 24-h drinking of 2 bottles of selected wine 
(containing water and 20% ethanol) three times per week (usually 
Monday, Wednesday, and Friday), with 24-h and 48-h withdrawal 
periods on weekdays and weekends, respectively. During ethanol 
withdrawal, rats received two bottles of water. The placement of 
ethanol bottles was alternated during each drinking session to 
control side preferences (Carnicella et al., 2014). Rats in the CON 
group received free 24-h drinking of 2 bottles of water. Liquid 
consumption, food intake, and body weight were determined 
every day. After 4 weeks of experimental AUD model 
establishment, an open field test and an elevated plus maze test 
were performed to evaluate the anxiety level of each rat. The 
experimental schedule was showed in Figure 1. All procedures 
were approved by the Animal Ethical Care Committee of Qiqihar 
Medical University and followed ‘Guidelines for the Care and Use 
of Laboratory Animals’ published by the Chinese Animal 
Welfare Committee.

Anxiety-like behavior measurements

Open field test
The open field test (OFT) is commonly used to assay anxiety-

like behaviors, and the decrease in distance and time in the center 
field indicates increased anxiety. The apparatus consisted of a 
square box that measured 43 × 43 cm with 45 cm walls, and the test 
arena was divided into central (15 × 15 cm) and peripheral zones. 
The apparatus was placed under a homogenous illumination 
(14–20 lx). The methods according the references of Cheng 
(Cheng et al., 2020) with some modifications. Each rat was gently 
placed in the central area and was allowed to explore for 5 min. 
The time spent in the center, the distance traveled in the center as 
a percentage of the total distance, the total distance traveled, and 
resting time was recorded and analyzed by an automated video 
tracking system (ZhongShiKeJi Co., Beijing, China). Between each 
subject, the field was wiped clean to avoid cue smell.

Elevated plus maze
In addition, the elevated plus maze (EPM) is one of the most 

widely used methods for measuring anxiety-like behaviors. The 
facility is a plus-shaped maze composed of two open arms (width, 
10.00 cm, length, 50.00 cm) and two closed arms (width, 10.00 cm, 
length, 50.00 cm, walls, 30.00 cm) with a central platform 
(10.00 cm × 10.00 cm). The EPM was 80 cm elevated from the floor. 
The methods according the references of Jiao (Jiao et al., 2021) with 
some modifications. Rats were placed on the central platform facing 
an open arm individually, and the activity of the rat in the maze for 
5 min was recorded by an automated video tracking system. The 
maze was wiped clean after each test. The time spent in the open 
arms as a percent of the total time spent exploring the open and 
closed arms (percentage of time spent in the open arm) and the 
number of entries into open arms as a percentage of the total number 
of entries into both open and closed arms (percentage of entries into 
open arms) were used as an index of anxiety. Anxiety-like behavior 
is associated with decreased time and entries in the open arms.

Sample collection

After 4 weeks of AUD model establishment, fecal samples 
were collected (n = 8 per group) and placed in two sterile plastic 
tubes from each rat for microbial and metabolomic analysis, 
respectively. Next, the samples were rapidly snap-frozen in liquid 
nitrogen and stored at −80°C until used. Finally, blood was 
collected from the heart under isoflurane anesthesia. Then the 
blood was centrifuged to separate the serum and stored frozen at 
−80°C for the following metabolic analysis.

Full length 16S rRNA gene sequencing

Total genome DNA of fecal samples was extracted with 
QIAamp Power Fecal DNA Kit (QIAGEN, Germany) following 
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the manufacturer’s protocol. DNA quantity and quality were 
assessed using an ultramicro-spectrophotometer B-500 
(Shanghai Metash Instruments Co., Ltd., China). The bacterial 
communities in the fecal samples were investigated by PacBio 
Sequel (Biomarker Technologies Company, Beijing, China). The 
full-length 16S rRNA genes were selected for PCR with the 
barcoded primers 27F (5′-AGRGTTYGATYMTGGCTCAG-3′) 
and 1492R (5′-RGYTACCTTGTTACGACTT-3′), where the 
barcode was an eight base sequence unique to each sample. PCRs 
were performed according to the following volume: 25 μl 
reactions mixtures containing 5 μl of 5× FastPfu buffer, 5 μM 
each primer, 2 μl of 2.5 μM dNTPs, 0.4 μl FastPfu Polymerase, 
10 ng template DNA, and ddH2O making up to 25 μl. The cycling 
program was as follows: denaturation at 95°C for 3 min, 25 cycles 
(95°C for 30 s, 55°C for 30 s, and 72°C for 45 s), and a final 
extension at 72°C for 10 min. The PCR products were checked 
on a 1.5% agarose gel and further purified, then pooled in 
equimolar and sequenced on PacBio Sequel (Pacific 
Biosciences, USA).

The circular consensus sequences (CCS) were obtained by 
SMRT Link v 8.0 software with the index set as min Passes ≥5, 
min Predicted Accuracy≥0.9. For further sequence processing, 
Lima v1.7.0 and Cutadapt v2.7 were used to recognize the CCS by 
barcode and filter the length of 1,200 bp-1,650 bp CCS, 
respectively. Further details of the sequencing output, such as the 
average length, error rate, and quality, are summarized in 
Supplementary Table S1. Operational taxonomic units (OTUs) 
were clustered with a 97% similarity cutoff using USEARCH 
v10.0, and chimeric sequences were identified and removed using 
UCHIME v4.2. The taxonomy of each OTUs was performed using 
classify. Seqs by the RDP classifier implemented in Silva v132 16S 
rRNA database using a confidence threshold of 70% (Callahan 
et al., 2019). The alpha-diversity indices, including Chao, ACE, 
Shannon, and Simpson, were calculated to estimate microbiota 
diversity and abundance in each sample using QIIME 2 software. 
Beta-diversity indices were analyzed using principal co-ordinates 
analysis (PCoA), ANOSIM analysis and heatmap to show the 
composition of the gut microbiota communities in the different 
gut segment samples, and an analysis of molecular variance 

(AMOVA) was performed to compare the difference between 
EtOH and CON group.

Untargeted metabolomics analysis

Sample preparation
Fecal samples (50 mg) were used and thawed on ice. To these 

samples 1,000 μl of extraction liquid containing an internal target 
(1,000:2; V methanol:V acetonitrile:V water = 2:2:1) was added, 
and vortex for 30 s. Then the samples were homogenized in a bead 
mill for 10 min at 45 Hz and ultrasonicated for 10 min (in an ice 
water bath). The samples were centrifuged at 15,000 g for 15 min 
at 4°C after incubating for 1 h at −20°C. Then 500 μl of the 
supernatant was dried in a vacuum concentrator without heating. 
After 160 μl of extraction liquid (V acetonitrile:V water = 1:1) was 
added for reconstitution. The samples were vortexed for 30 s, 
sonicated for 10 min (in an ice water bath), and centrifuged at 
15000 g for 15 min at 4°C. Finally, the supernatant was carefully 
transferred (120 μl) to a fresh glass vial and stored at −80°C until 
metabolomics analysis.

For serum samples, 100 μl serum was used and thawed on ice, 
and after 300 μl of cold acetonitrile was added and the samples 
vortex for 30 s and incubated for 1 h at −20°C. Then the samples 
were centrifuged at 15,000 g for 15 min at 4°C. The supernatant 
was collected and dried under a stream of nitrogen. Next, the 
samples were reconstituted in 1:1 water/acetonitrile, vortexed for 
30 s, and kept at 4°C for 20 min. Then samples were centrifuged at 
15,000 g for 15 min at 4°C. Finally, the supernatant was carefully 
transferred to fresh vials for Liquid Chromatography-Mass 
Spectrometry (LC/MS) analysis. The quality control (QC) sample 
was mixed with 10 μl of each sample.

UHPLC-QTOF-MS analysis
The UHPLC-QTOF-MS system for metabolomic analysis is 

composed of Waters Acquity I-Class PLUS ultra-high performance 
liquid chromatography with Acquity UPLC HSS T3 column 
(1.8 μm 2.1*100 mm, Waters) coupled to a Xevo G2-XS QTof high-
resolution mass spectrometer. The mobile phase consisted of 0.1% 

FIGURE 1

The schedule timeline of the IA2BC procedure in the experiment design. OFT represent open field test, EPM represent elevated plus maze test.

https://doi.org/10.3389/fmicb.2022.1068825
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Wang et al. 10.3389/fmicb.2022.1068825

Frontiers in Microbiology 05 frontiersin.org

formic acid aqueous solution (A) and 0.1% formic acid acetonitrile 
(B) for positive ion mode, was performed with elution gradient as 
follows: 0 min, 98% A; 0.25 min, 98% A; 10.0 min, 2% A; 13 min, 
2% A; 13.1 min, 98% A; and 15 min, 98% A at 400 μl/min. The 
injection volume used in this study was 1 μl. The Waters Xevo 
G2-XS QTOF high-resolution mass spectrometer can collect 
primary and secondary mass spectrometry data in MSe mode 
under the control of the acquisition software (MassLynx V4.2, 
Waters). In each data acquisition cycle, dual-channel data 
acquisition can be performed on both low collision energy and 
high collision energy at the same time. The low collision energy 
was 2 V; the high collision energy range was 10–40 V; and the 
scanning frequency was 0.2 s for a mass spectrum. The parameters 
of the electron spray ionization (ESI) ion source were as follows: 
capillary voltage: 2,000 V (positive ion mode) or − 1,500 V 
(negative ion mode); cone voltage: 30 V; ion source temperature: 
150°C; desolvent gas temperature 500°C; backflush gas flow rate: 
50 L/h; desolventizing gas flow rate: 800 L/h.

Data preprocessing, annotation, and 
analysis

The raw data was collected using MassLynx V4.2 and was 
processed by Progenesis QI software for peak extraction, peak 
alignment, and other data processing operations, based on the 
Progenesis QI software online METLIN database and Biomark’s 
self-built library for identification. At the same time, the 
theoretical fragment identification and mass deviation were 
within 100 ppm. After normalizing the original peak area 
information with the total peak area, a follow-up analysis was 
performed. The identified compounds were searched for 
classification and pathway information in the databases of KEGG, 
HMDB, and lipid maps. T-test was used to calculate the significant 
differences (p value) of each compound between EtOH and CON 
groups. The unsupervised principal component analysis (PCA) 
and supervised orthogonal partial least squares discriminant 
analysis (OPLS-DA) was performed by R packages to characterize 
metabolic perturbation and differences between groups. The 
variable important in projection (VIP) value of the model was 
calculated using multiple cross-validations. The method of 
combining the difference multiple, the p value, and the VIP value 
of the OPLS-DA model was adopted to screen the differential 
metabolites. The screening criteria are FC > 2 or FC < 0.5, p value 
<0.05 and VIP >1. We plotted the results on a volcano map. The 
different metabolites of KEGG pathway enrichment significance 
were performed by the Web-based tool MetaboAnalyst 5.01. The 
correlations between major differences between gut microbiota 
and metabolites were performed by Spearman’s correlation 
coefficients analysis in the R package.

1 https://www.metaboanalyst.ca/MetaboAnalyst/home.xhtml

Results

AUD symptoms seen in the rats

During the 4 weeks experimental procedure, IA2BC procedure 
successfully induced AUD symptoms in SD rats. In the EtOH 
group, there was no significant differences were detected in the 
total liquid intake between the water day and EtOH day 
(Figure  2A), the percentage of alcohol intake was increasing 
whereas the percentage of water intake was decreasing (Figure 2B). 
On the other hand, the alcohol intake preference increased with 
the experimental time, then maintained at a high level, and it was 
significantly higher after the 12th day than that on the first day 
(Figure 2C). Additionally, no significant difference was observed 
between the EtOH and CON group in the total liquid intake, food 
consumption and body weight (Figures 2D-F).

AUD is often accompanied by mental disorders such as 
anxiety. Therefore, to confirm the establishment of AUD 
experimental animal models, open field test (OFT) and elevated 
plus maze (EPM) tests were performed at the end of the 
experimental procedure. In the OFT, anxiety-like behaviors were 
observed in this experimental group. In detail, the time spent in 
the center zone (t = 2.47, p = 0.027), the distance traveled in the 
center zone (t = 2.30, p = 0.038), and the total distance (t = 2.94, 
p = 0.011) was significantly reduced in the EtOH group compared 
to the CON group (Figures 3A-C), while the resting time was 
similar (Figure 3D). Additionally, the number of entries into open 
arms and the time spent in the open arms of the EPM was 
significantly decreased in the EtOH group compared to the CON 
group (Figures 3E,F), indicating an increase in the anxiety-like 
behavior in the rats of the EtOH group. The alcohol intake 
preference and anxiety-like behavior indicate that the AUD rat 
model was successfully developed in EtOH group.

Fecal microbiota changed in AUD rats

In total, 195,848 circular consensus sequencing (CCS) was 
obtained after barcode recognition, and 176,494 effective CCS 
were obtained after quality control and chimera filtering. On 
average, 10,722 and 11,340 effective CCS per sample were obtained 
from the EtOH and CON groups fecal contents, respectively, with 
an average length of 1,456 bp. These sequences were assigned to 
641 bacterial OTUs, including 17 phylum, 23 classes, 44 orders, 64 
families, 131 genera, and 157 species. In this study, 590 OTUs were 
shared, and 36 and 15 were obtained from the CON and EtOH 
groups, respectively (Supplementary Figure S1).

The distribution of bacterial taxon and the top 10 relative 
abundance of bacteria at the different taxon levels are shown in 
Figure 4. At the level of phylum taxon (Figures 4A–E), Firmicutes, 
Tenericutes, and Bacteroidetes were the most abundant phylum 
in the two groups accounting for 95.95% of relative abundance in 
the EtOH group and 93.30% in the CON group. The relative 
abundance of Firmicutes in the EtOH group (72.91 ± 1.49%) was 
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significantly higher than that in the CON group (64.00 ± 1.71%; 
t = 3.93, df = 14, p < 0.01).

The relative abundance of Tenericutes in the EtOH group 
(11.32 ± 1.20%) was significantly lower than that in the CON 
group (16.20 ± 1.64%; t = 2.41, df = 14, p = 0.03). Additionally, the 
relative abundances of Bacteroidetes in the EtOH and CON 
group were 11.94 ± 1.36% and 13.32 ± 0.92%, respectively (no 
statistically significant differences were detected: t = 0.84, df = 14, 
p = 0.41). The ratio of Firmicutes to Bacteroidetes was 
significantly higher in the EtOH group than that in the 
CON group.

At the family level (Figures 4F–J), Ruminococcaceae exhibited 
the highest proportion in the EtOH group (40.10 ± 3.71%) and 
CON group (43.99% ± 6.81%), with no significant differences 
between groups (t = 1.42, df = 14, p = 0.18). Moreover, the relative 
abundance of uncultured_bacterium_o_Mollicutes_RF39 and 
Lachnospiraceae was significantly lower, whereas 
Peptostreptococcaceae and Erysipelotrichaceae were significantly 
higher in the EtOH group than that in the CON group. 
Furthermore, a decrease in the abundance of uncultured_
bacterium_o_Mollicutes_RF39 was observed at the genus level. On 
the other hand, an increase in the abundance of Romboutsia and 
Turicibacter was observed in the EtOH group compared to the 
CON group (Figures 4K–N). At the species level (Figures 4O–R), 
the AUD significantly decreased the abundance of uncul-tured_
bacterium_o_Mollicutes_RF39 and significantly increased the 
abundance of Romboutsia ilealis and Turicibacter sanguinis in the 
EtOH group compared to the CON group.

A linear discriminant analysis effect size (LEfSe) analysis was 
performed according to linear discriminant analysis (LDA) 
fold = 4, and the relationship between different microbiota from 
the phylum to the species levels is shown in the cladogram 
(Figure 5). The results showed 23 OTUs at the phylum (2 OTUs), 
class (2 OTUs), order (4 OTUs), family (5 OTUs), genus (5 OTUs), 
and species levels (5 OTUs) were significantly different between 
the EtOH and CON groups. The relative abundances of 13 OTUs 
were higher in the EtOH group. However, 10 OTUs were more 
abundant in the CON group. Among the significantly differential 
OTUs, at the species level, Clostridium_disporicum, Romboutsia_
ilealis, and Turicibacter_sanguinis were the three most abundant 
bacteria in the EtOH group, while uncultured_bacterium_g_
Lachnospiraceae_NK4A136_group and uncul-tured_bacterium_o_
Mollicutes_RF39 were the most abundant in the CON group.

The chao1 richness and the abundance-based coverage 
estimator (ACE) richness indices were slightly lower in the EtOH 
group than in the CON group, but their differences were not 
statistically significant (Figures 6A,B). The obtained richness and 
diversity indices of the fecal microbiota showed that AUD 
significantly decreased the Shannon and Simpson diversity indices 
(Figures  6C,D). The results suggested that AUD significantly 
impacted the microbial diversity but did not distinctly impact the 
fecal microbial richness in the rats. Furthermore, using β-diversity 
analysis of ANOSIM based on Bray–Curtis distance, vastly 
different bacterial community structures were observed between 
the two groups (R = 0.562, p = 0.002; Figure 6E). The PCoA of 
Bray–Curtis distance performed on the OTU abundance matrix 
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FIGURE 2

IA2BC affected alcohol intake preference but did not affect body weight or liquid/food intake. (A) The total liquid intake showed no significant 
difference between the water day and EtOH day in EtOH group. (B) The ethanol consumption was increasing with the water consumption was 
decreasing in IA2BC rats. (C) Alcohol intake preference was increasing with chronic intermittent ethanol voluntary drinking time. The total liquid 
intake (D), food consumption (E) or body weight (F) did not altered by chronic intermittent ethanol voluntary drinking. Data are presented as 
Mean ± SEM, n = 8/group; compared with the first day, *p < 0.05, **p < 0.01, ***p < 0.001.
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showed that PCoA1 explained 19.77% of variance and PCoA2 
explained 12.48% of the variance (R = 0.562, p = 0.001). All the 
samples in the same group were grouped into one cluster 
(Figure 6F). Moreover, comparing heatmaps based on Bray–Curtis 
distance confirmed these results. A lower distance was observed 
among the samples in the EtOH group, and the samples in the 
same group clustered together (Figure 6G). The results showed 
that AUD significantly changed the β-diversity of gut microbial 
communities in rats.

The fecal metabolic profile changed in 
AUD rats

Untargeted liquid chromatography mass spectrometry 
(LC–MS) was used to detect the fecal metabolites in the EtOH 
and CON groups. In total, 5,490 metabolites in positive 
ionization mode and 5,945 metabolites in negative ionization 
mode were detected. To investigate the fecal metabolites 
differences between EtOH and CON rats, PCA and OPLS-DA 

were performed (Figure 7). The PCA results showed that the 
EtOH rats were clearly distinguished from the CON rats. 
Furthermore, the OPLS-DA results revealed that fecal 
metabolites significantly differed between EtOH and CON rats. 
The OPLS-DA permutation test validated the model, and the 
results demonstrated that the fecal metabolites were changed in 
EtOH compared to the CON rats, suggesting that AUD changed 
the fecal metabolome composition. Moreover, metabolites with 
VIP > 1 and p < 0.05 were considered to be significantly altered 
by AUD (Supplementary Data S1, S2). In the positive ionization 
mode, 2076 metabolites were up regulated, and 288 metabolites 
were down regulated. On the other hand, in the negative 
ionization mode, 80 metabolites were up regulated, and 492 
metabolites were down regulated in the EtOH group compared 
to the CON group, showed in the volcano plot and heatmap in 
Figures 8A–D. The differential metabolites were annotated and 
classified based on the HMDB database. The results showed 
that most of the differential metabolites in fecal belonged to 
glycerophospholipids, carboxylic acids and derivatives, fatty 
acyls (Figure 8E), and were classified as amino acids, peptides 
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FIGURE 3

IA2BC rats exhibited anxiety-like behaviors. Behavior test was performed at the 28th day of the procedure. In the open field test, EtOH group rats 
spent less time in the center zone (t = 2.47, p = 0.027), traveled significantly less distance in the center zone (t = 2.30, p = 0.038) and less total 
distances (t = 2.94, p = 0.011) than that of CON group (A–C). The resting time between EtOH and CON group had no significant difference (t = 1.04, 
p = 0.351, D). In the elevated plus maze, the EtOH group spent less time in open arms (t = 3.04, p = 0.009) and the number entries into open arms 
significantly reduced (t = 3.24, p = 0.006) compared with CON group (E,F). Results are displayed as means ± SD. Significant results were determined 
by unpaired t-tests, *p < 0.05, **p < 0.01.
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and analogs, glycer-ophosphoethanolamines, fatty acids and 
conjugates, glycerophosphocholines, and diradylglycerols in the 
subclass level (Supplementary Figure S2). The concentrations 
of cortisone, glutathione, sphingosine, and L-tyrosine were 
significantly increased in EtOH rats, whereas butyric acid, 
dopamine, L-glutamine, and L-aspartic acid were decreased 
(Supplementary Figure S3). The equations should be inserted 
in editable format from the equation editor.

To further explore the pathways associated with these altered 
metabolites by AUD, KEGG pathway enrichment analyses were 
performed by MetaboAnalyst 5.0. The top 20 significant pathways are 
shown in Figure 8F. We found that the lipid metabolism, amino acids 
metabolism, nucleotide metabolism, and carbohydrate metabolism 
pathways were involved in the process of the AUD, including 
sphingolipid metabolism, glycerophospholipid metabolism, steroid 
hormone biosynthesis, histidine metabolism, tryptophan metabolism, 
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FIGURE 4

Chronic intermittent ethanol voluntary drinking alters the composition of gut microbiota in rats. Histogram of top 10 relative abundance at 
different level. The relative abundance and the main bacterial genera between the two groups with Wilcoxon rank-sum test at the phylum (A–E), 
family (F–J), genus (K–N), and species (O–R) level in the fecal samples. Values are presented as the mean ± SD (n = 8 per group), *p < 0.05, **p < 0.01, 
***p < 0.001.
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FIGURE 5

Linear discriminant analysis Effect Size (LEfSe) analysis between the EtOH and CON groups, with a LAD score > 4.

A
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FIGURE 6

Chronic intermittent ethanol voluntary drinking alters the diversity of gut microbiota in rats. Difference in alpha diversity index between EtOH and 
CON group showed in the plot (A–D). (A) represent ACE index; (B) represent Chao1 index; (C) respresent Simpson index; (D) represent Shannon 
index. The width of each curve in the violin plot corresponds with the approximate frequency of data points in each region, dotted line indicating 
the median value and quartile positions. Significant results were determined by unpaired t-tests, ***p < 0.001; ns, p > 0.05. (E), ANOSIM analysis 
showed differences between EtOH and CON groups were significantly greater than those within groups. (F) PCoA plot based on Bray–Curtis 
distance, EtOH and CON groups could be effectively separated, showing that the composition of the gut microbiota in EtOH group was 
significantly different from that of CON group. (G) samples heat map based on the Bray–Curtis distance showed that the samples in the same 
group clustered together, indicating that EtOH changed the gut microbiota community.
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FIGURE 7

Multivariate statistical analysis of fecal metabolites measured by untargeted metabolomics analysis at positive (A–C) and negative (D–F) ion mode. 
PCA analyses comparing metabolites of all samples between EtOH and CON group (A,D); OPLS-DA scores showed significant differences 
between EtOH and CON group (B,E); and the OPLS-DA permutation test confirmed the differences of fecal metabolites in EtOH and CON group 
(C,F).

and pentose phosphate pathway. The results suggested that AUD 
altered the fecal metabolic profile in rats.

Correlations of the fecal metabolites and 
gut microbiota

To explore the functional correlations between the fecal 
metabolites and the gut microbiota, Spearman’s correlation analysis 
was performed. A strong correlation was found between the top 40 
significantly enriched in the KEGG pathway metabolites and the 
discriminated gut microbiota at the genus level (Figure 9). Romboutsia 
and Turicibacter were positively correlated with sphingosine, oleic 
acid, farnesyl pyrophosphate, 17α, 20α-dihydroxycholesterol, and 
alpha−linolenic acid but negatively correlated with uridine 
5′-diphosphate, P1,P4-bis(5- uridyl) tetraphosphate, and butyric acid. 
Similarly, Gram − negative_bacterium_cTPY-13, Faecalibaculum, 
Clostridium, and uncul-tured_bacterium_o_Coriobacteriales were 
positively correlated with sphinganine 1-phosphate, sphingosine, 
cortisone, sphinganine, indoleacetaldehyde, farnesyl pyrophosphate, 
phytosphingosine, and dihydroceramide. However, Lachnospirace-ae_
NK4A136_group and uncultured_bacterium_o_Mollicutes_RF39 were 

positively correlated with uridine 5′-diphosphate, P1,P4-bis(5′-
uridyl) tetraphosphate, butyric acid, 2′-deoxyinosine triphosphate, 
oleoyl-CoA, and 8,9-DiHETrE. Helicobacter was positively correlated 
with carnosine, butyric acid, L-glutamine, and 5-hydroxyindoleacetic 
acid. On the other hand, Anaeroplasma was positively correlated with 
2′-deoxyinosine triphosphate and oleoyl-CoA. Moreover, 
Lachnospiraceae_UCG-006 and uncul-tured_bacterium_f_
Lachnospiraceae were positively correlated with 5-hydroxyindoleacetic 
acid, and uncultured_bacterium_f_Ruminococcaceae was positively 
correlated with cysteinylglycine. Additionally, Desulfovibrio was 
negatively correlated with hypoxanthine, farnesyl pyrophosphate, and 
phytosphingosine. Finally, Candidatus_Soleaferrea and Papillibacter 
were negatively correlated with 3-ketosphinganine. The correlation 
results showed that AUD could significantly change the gut leading 
to significant changes in the fecal metabolites.

The serum metabolic profile changed in 
AUD rats

To identify the differences in the serum metabolites in AUD rats, 
untargeted LC–MS for metabolomics analysis of serum was used in 
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EtOH and CON rats. In total, 5,028 and 5,136 metabolites were 
detected in the positive and negative ionization modes, respectively. 
The PCA analysis showed significant differences in the metabolite 
profiles between the EtOH and CON groups in both positive and 
negative ionization modes. Furthermore, the OPLS-DA score plots 
revealed a remarkable separation of these two groups under both 
modes (Figure  10). In total, 768 metabolites were up regulated 
(262 in positive ionization mode and 506 in negative ionization 
mode), and 1,333 metabolites were down regulated (1,065 in positive 
ionization mode and 268 in negative ionization mode) in the EtOH 
group compared to the CON group (VIP > 1 and p < 0.05, showed in 

Figures  11A,B; Supplementary Data S3, S4), and unsupervised 
clustering heatmap showed in Figures 11C,D. Additionally, most of 
the significant differential metabolites belong to 
glycerophospholipids, carboxylic acids and derivatives, fatty acyls, 
and glycerolipids (Figure 11E), and which were classified as amino 
acids, peptides and analogs, glycerophosphoethanolamines, 
glycerophosphocholines, and diradylglycerols in the subclass level 
(Supplementary Figure S2). The concentration of sphingosine 
1-phosphate was increased in the EtOH group, whereas the 
concentrations of butyric acid, arachidonic acid, L-cysteine, 
L-tryptophan, serotonin, aldosterone, and farnesyl pyrophosphate 
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FIGURE 8

The fecal metabolic profile changed in AUD rats. Differential metabolites in fecal identification between EtOH and CON group at positive (A,C) and 
negative (B,D) ion mode. Expression of differential metabolites in the two groups was represented by Volcano plot (A,B) and heat maps (C,D). The 
number of differential metabolites were annotated and classified based on the HMDB database (E). The enrichment pathway of fecal differential 
metabolites by Kyoto encyclopedia of genes and genomes (KEGG) analysis (F).
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FIGURE 9

Correlation heatmap of differential microbiota and fecal metabolites. Data were calculated by Spearman’s correlation method after mean 
centering and unit variance scaling. *p < 0.05, ** p < 0.01.

were decreased in this group (Supplementary Figure S4). Moreover, 
the KEGG enrichment analysis of the differential metabolites 
showed that the lipid metabolism, amino acids metabolism, and 
carbohydrate metabolism pathways were involved in the AUD 
process, including sphingolipid metabolism, linoleic acid 
metabolism, glycerophospholipid metabolism, tryptophan 
metabolism, and lysine degradation (Figure 11F). The results showed 
that AUD also altered the serum metabolic profile in rats.

The correlations of the serum 
metabolites and gut microbiota

The altered serum metabolic profile may reflect the functions 
of the gut microbiota. Here the functional correlations were 
explored between the changed microbiota and the top  40 
significantly enriched in the KEGG pathway metabolites by 
Spearman’s correlation analysis (Figure 12). The results showed 
that Helicobacter was positively correlated with L-threonine, 
L-4-hydroxyglutamate semialdehyde, dihomo-gamma-linolenic 
acid, 3-dehydrosphinganine, pantothenic acid, calcidiol, 
5,6-DHET, and dihydroceramide. Additionally, Desulfovibrio was 
positively correlated with arachidic acid but negatively correlated 
with androsterone glucuronide and melatonin. Moreover, 
Lachnospirace-ae_NK4A136_group was positively correlated with 
arachidonic acid and deoxycorticosterone but negatively 

correlated with L-lysine. The results also showed that the 
uncultured_bacterium_o_Mollicutes_RF39 was positively 
correlated with deoxycorticosterone. Romboutsia and Turicibacter 
were positively correlated with delta 8,14-Sterol, androsterone 
glucuronide, androstenedione, 3-indoleacetic acid, and L-lysine. 
On the other hand, Romboutsia was negatively correlated with 
L-4-hydroxyglutamate semialdehyde, butyric acid, 
3-dehydrosphinganine, farnesyl pyrophosphate, pantothenic acid, 
6-phosphogluconic acid, arachidonic acid, 5,6-DHET, 12,13-
EpOME, dihydroceramide, D-proline, serotonin, L-tyrosine, 
8,9-DiHETrE, L-cysteine, and indolepyruvate.

Correlations of gut microbiota with the 
co-regulated metabolites in fecal and 
serum in AUD rats

The metabolites of feces and serum naturally differ greatly, 
because of the different metabolic pathways in gut and blood. 
The blood transports nutrients which absorbed from the 
digestive tract to the cells and carries away other waste products. 
So, in feces and serum, there would be  some coexisting 
metabolites, and among these metabolites which were altered 
by ethanol consumption must play a key role in the pathogenesis 
of AUD. Here, we  used a Venn diagram to screen the 
co-regulated metabolites in fecal and serum (Figure 13). There 
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are 116 co-up regulated metabolites and 119 co-down regulated 
metabolites in both feces and serum by ethanol consumption 
(Figure 13A; Supplementary Data S5). The KEGG enrichment 
analysis showed that many pathways were altered in AUD rats, 
such as sphingolipid metabolism, glycerophospholipid 
metabolism, linolenic acid metabolism, butanoate metabolism, 
and arachidonic acid metabolism (Figure 13B). We selected the 
19 metabolites which were significantly enriched in the KEGG 
pathway to perform Spearman’s correlation analysis with the 
changed microbiota (Figure  13C). There are multiple 
correlations among the AUD behavior, metabolites and gut 
microbiota. Alcohol preference was positively correlated with 
ceramide (d18:1/12:0), alpha-linolenic acid, and all-trans-
13,14-dihydroretinol in feces, negatively correlated with 
L-glutamic acid 5-phosphate, butyric acid in feces, and 
PE(14:1(9Z)/20:0) in serum. Romboutsia was negatively 
correlated with butyric acid, SM(d18:0/14:1(9Z)(OH)), PC(18:
1(11Z)/20:4(5Z,8Z,11Z,14Z)), PE(20:4(8Z,11Z,14Z,17Z)/P-
18:1(11Z)) in feces, and PE(14:1(9Z)/20:0), 8,9-DiHETrE, 
CDP-Ethanolamine, PC(18:1(11Z)/20:4(5Z,8Z,11Z,14Z)) in 
serum. Turicibacter and Clostridium were negatively correlated 
with butyric acid.

Discussion

In this study, the rats that underwent the IA2BC procedure 
showed a gradual escalation of EtOH intake and increased 
preference toward EtOH, in addition, in the behavioral tests, the 
rats exhibited substantial anxiety-like behavior during the 
withdrawal period. All these phenomena match major symptoms 
of human AUD listed in the DSM-V, indicating a successful 
establishment of a rat AUD model in terms of face and construct 
validity. Moreover, to make a profile of the alteration and 
correlations of the gut microbiome, fecal, and serum metabolome 
to further provide a new angle to manage the retractable human 
AUD besides the neurological perspective, we collected feces and 
blood from the rats. And, we found the gut microbiota community 
structure and composition were significantly altered in the EtOH 
group detected by full length 16S rRNA gene sequencing, and 
fecal and serum metabolome characteristics were changed in the 
EtOH group. Finally, multiple correlations among AUD behavior, 
gut microbiota and the metabolites were also identified. These 
findings suggest that gut microbiome and serum metabolome may 
constitute a new pharmacological target for the treatment of 
human AUD.
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FIGURE 10

Multivariate statistical analysis of serum metabolites measured by untargeted metabolomics analysis at positive (A–C) and negative (D–F) ion 
mode. PCA analyses comparing metabolites of all samples between EtOH and CON group (A,D); OPLS-DA scores showed significant differences 
between EtOH and CON group (B,E); and the OPLS-DA permutation test confirmed the differences of serum metabolites in EtOH and CON group 
(C,F).
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FIGURE 11

Differential metabolites in serum identification between EtOH and CON group at positive (A,C) and negative (B,D) ion mode. Expression of 
differential metabolites in the two groups was represented by Volcano plot (A,B) and heat maps (C,D). The number of differential metabolites were 
annotated and classified based on the HMDB database (E). The enrichment pathway of serum differential metabolites by Kyoto encyclopedia of 
genes and genomes (KEGG) analysis (F).

Numerous studies have confirmed that gut microbiota is a 
crucial determinant of health and disease (Dinan and Cryan, 
2017; Bajaj, 2019; Pitocco et al., 2020; Witkowski et al., 2020). 

Accumulating evidence suggests that alcohol consumption can 
disturb the gut microbiota, increase intestinal permeability and 
inflammation levels in the gut, and influence behavior in alcohol 
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dependence (Leclercq et  al., 2014a,b; Yang et  al., 2021). 
Furthermore, the gut dysbiosis induced by alcohol consumption 
may promote the development of alcohol addiction (Leclercq 
et  al., 2017). Using the full-length 16S rRNA gene amplicon 
sequencing, it was found that AUD significantly altered the gut 
microbiota composition in rats. At the level of phylum taxon, 
Firmicutes was significantly increased, whereas the Bacteroidetes 
decreased slightly, leading to a Firmicutes to Bacteroidetes (F/B) 
ratio significantly increased in the EtOH group than in the CON 
group. It has been described that Firmicutes and Bacteroidetes 
are the two main phyla of the gut microbiota (Consortium, 2012). 
Furthermore, the F/B ratio has been associated with different 
pathological states, such as inflammatory bowel disease (Stojanov 
et al., 2020) and type 2 diabetes mellitus (Hung et al., 2021), and 
is a relevant biomarker of gut dysbiosis in obesity (Indiani et al., 
2018) and aging-related processes (Vaiserman et al., 2020). This 
result is in agreement with prior observations performed by 
Wang and colleagues, where it has been observed that the F/B 
ratio increased in the chronic alcohol consumption mice (Wang 
et al., 2018). Interestingly, Tenericutes, a bacteria phylum lacking 
a peptidoglycan cell wall, was decreased in the EtOH group, 
which may be due to the decrease of one of the well-studied gut 
lineages, uncultured_bacterium_o_Mollicutes_RF39, which is rich 
in H2O2 catabolism genes and probably produce acetate and 
hydrogen (Wang et  al., 2020). Ethanol metabolism generates 
reactive oxygen species (ROS) through a cytochrome P450-
dependent mechanism (Wu and Cederbaum, 2003). This study 

found that alcohol reduced the abundance of bacteria that can 
hydrolyze H2O2 (one ROS species), leading to a high 
concentration of ROS in the gut and changes in the microbiome 
composition. The results also showed that Lachnospiraceae_
NK4A136_group, members of the Lachnospiraceae, were 
decreased in the EtOH group compared to the CON group. It has 
been described that Lachnospiraceae can digest carbohydrates to 
produce butyrate, which has been considered an anti-
inflammatory factor (Flint et al., 2012). In this study, the results 
showed a decreased level of butyric acid in both fecal and serum 
metabolites. Some studies revealed that the Lachnospiraceae_
NK4A136_group decreased in mice with alcohol-induced 
inflammation (Xia et al., 2021). Some bacteria are increased in 
the EtOH group at the species level, such as C. disporicum, 
R. ilealis, and T. sanguinis. For example, C. disporicum, a gram-
positive saccharolytic bacterium, is known to be  an 
ursodeoxycholic acid producer in the fecal content of rats 
(Tawthep et al., 2017). Moreover, it is one of the mucin degraders 
in the human gut, using mucin as the sole carbon and nitrogen 
source (Raimondi et  al., 2021). Mucins are major mucus 
components that cover the gastrointestinal tract and protect 
against exogenous and endogenous aggressive agents (Alemao 
et  al., 2021). Therefore, with the increase of C. disporicum 
abundance, gut mucosa degradation increased, promoting gut 
barrier damage and triggering systemic inflammatory responses. 
Additionally, R. ilealis has been proposed as a potentially harmful 
bacterium that significantly increases in patients with 

FIGURE 12

Correlation heatmap of differential microbiota and serum metabolites. Data were calculated by Spearman’s correlation method after mean 
centering and unit variance scaling. *p < 0.05, **p < 0.01.
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neurodevelopmental disorders and chemically induced murine 
colitis model (Bojović et al., 2020; Liu et al., 2022). Moreover, 
some reports showed that T. sanguinis is a strictly anaerobic, 
gram-positive, pathogenic potential bacterium in the gut and 
feces of many animals (Cuív et  al., 2011; Kim et  al., 2021). 
T. sanguinis was capable of serotonin uptake and altered intestinal 
expression of multiple gene pathways, including those critical for 
lipid and steroid metabolism (Fung et al., 2019; Hoffman and 
Margolis, 2020). Our results showed that AUD decreases the 

potential beneficial bacterium, whereas it increases the 
pathogenic bacterium that leads to gut dysbiosis.

Gut microbiota has an array of enzymes for digesting the 
dietary nutrients and regulating the metabolism of various 
substances in the host, such as short chain fatty acids (SCFAs), 
organic acids, neuroactive compounds, polyamines, bile acid, 
choline, and polyphenol (Adak and Khan, 2019). The 
gut-derived metabolites can act locally in the gut or enter the 
host’s bloodstream via the portal vein (Fan and Pedersen, 
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FIGURE 13

Correlations of gut microbiota with the co-regulated metabolites in feces and serum in AUD rats. The Venn diagram showed the co-regulated 
metabolites in feces and serum (A). The enrichment pathway of co-regulated metabolites by KEGG analysis (B). Network analysis among the AUD 
behavior, gut microbiome and co-regulated metabolites (C), the red line represented the positive correlation, the blue line represented negative 
correlation, |r| > 0.8, p < 0.05.
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2021). Some of the gut-derived bioactive metabolites are 
associated with regulating host metabolites and metabolic 
pathways, thereby affecting the fecal or serum metabolome. 
Under normal physiological conditions, the body’s 
metabolites and metabolic pathways maintain homeostasis. 
However, this homeostasis may be disrupted by gut dysbiosis. 
For example, gut dysbiosis observed in alcoholics could 
perpetuate and promote addiction through alterations in the 
metabolism and neuronal pathways (Day and Kumamoto, 
2022). In the serum metabolites in AUD patients, the 
neuroprotective kynurenic acid is decreased, whereas the 
neurotoxic metabolite quinolinic acid is increased. It has been 
described that the kynurenic acid / quinolinic acid ratio is 
positively correlated with the fecal abundance of the genus 
Faecalibacterium (Leclercq et al., 2021). The results showed 
that the significant differential metabolites in the fecal and 
serum were similar, belonging to amino acids, peptides, 
glycerophosphoethanolamines, glycerophosphocholines, and 
diradylglycerols. Furthermore, the KEGG pathway 
enrichment analyses of differential metabolites in the fecal 
and serum showed that sphingolipid metabolism, 
glycerophospholipid metabolism, steroid hormone 
biosynthesis, histidine metabolism, tryptophan metabolism, 
drug metabolism - cytochrome P450, and pentose phosphate 
pathway were involved in the process of AUD. Sphingolipids 
are a class of complex lipids that are structural molecules of 
cell membranes playing a vital role in maintaining 
membranes’ barrier function and fluidity in eukaryotic cells 
(Hannun and Obeid, 2008). Several studies suggest that some 
sphingolipids are bioactive and involved in pathological 
processes, including cancer, inflammation-associated 
illnesses, obesity, and neurodegeneration in human and 
animal models (Gomez-Larrauri et al., 2020; Alaamery et al., 
2021). In this study, an upregulation in the sphingolipid 
metabolism was detected in the fecal and serum of the EtOH 
group, especially the ceramide and sphingosine-1-phosphate 
(S1P), which are the best studies bioactive substances in 
(Hawkins et al., 2020). Furthermore, the gut microbiota can 
produce sphingolipids to improve the resistance to stress (An 
et al., 2011), and these sphingolipids can be traced to various 
tissues throughout the body in mice (Fukami et al., 2010), 
leading to systemic changes in lipid metabolism (Heaver 
et  al., 2018). In addition to sphingolipid metabolism, two 
other relevant lipid metabolic pathways, glycerophospholipid 
metabolism and steroid hormone biosynthesis are also 
modulated by alcohol consumption. Glycerophospholipids 
(GPLs) are the main components of biological membranes 
and are essential for cellular functions. Also, 
lysophosphatidylcholine (LysoPC) is one of the most 
prominent lysoglycerophospholipids in the 
glycerophospholipid metabolism pathway and can 
be produced by phosphatidylcholine (PC) hydrolysis. It has 
been described that LysoPC is a type of bioactive metabolite 
with a high circulating concentration in the body and can 

trigger immune-related signaling pathways causing immune-
related diseases (Ding et al., 2011; Zeng et al., 2017; Tseng 
et al., 2018). This study found that LysoPC was increased in 
fecal and serum of the EtOH group and PC was decreased, 
indicating that alcohol consumption may damage the cell 
membrane and upregulate the glycerophospholipid 
metabolism inducing inflammatory responses. The results 
also revealed that steroid hormone biosynthesis was altered 
in the EtOH group, characterized by the upregulation of many 
metabolites such as 18-hydroxycorticosterone, 
androstenedione, cortisol, and corticosterone. It has been 
reported that cortisol and corticosterone are the main 
glucocorticoids produced in the adrenal cortex and strongly 
affect memory and learning in several animals (Schiffer et al., 
2019). Previous studies indicate that corticosterone is 
involved in alcohol-induced intestinal epithelial dysfunction 
and alterations in the gut microbiota, playing a crucial role in 
the stress-induced promotion of alcohol-associated tissue 
injury at the gut-liver-brain axis (Shukla et al., 2021).

Additionally, in amino acid metabolism, some metabolic 
pathways were altered in serum compared to the feces in the EtOH 
group. In the serum, lysine, arginine, proline, glycine, serine, 
threonine, cysteine, methionine, and tryptophan metabolism 
pathways were down regulated. Most altered amino acids act as 
functional amino acids, which regulate critical metabolic and 
signaling pathways for oxidative stress protection, gut barrier, and 
immune function. Many studies have proved the key role of 
arginine, methionine, and cysteine in enhancing immune function 
through the mTOR activation, NO and glutathione synthesis, H2S 
signaling, and cellular redox state (Li et  al., 2007; Wu, 2009). 
Cysteine and glycine are precursors for synthesizing glutathione, 
the major antioxidant in cells. Arginine is one of the most versatile 
amino acids, as it is metabolically interconvertible with proline and 
can be synthesized into protein, nitric oxide, and creatine (Morris, 
2007). Arginine can maintain intestinal integrity and promote the 
repair of damaged intestinal epithelium by activating mTOR and 
other kinase-mediated signaling pathways in intestinal epithelial 
cells (Ban et al., 2004). It has been reported that L-arginine can 
reverse the anxiolytic and forgetting effects induced by quinpirole 
(Zarrindast et al., 2021). On the other hand, proline, cysteine, and 
tryptophan can protect mammalian cells against oxidative stress 
agents (Krishnan et  al., 2008). Additionally, tryptophan is a 
precursor of serotonin, which is a neurotransmitter that acts as a 
hormone playing an important role in the regulation of depression, 
anxiety, and digestive system. Most tryptophan is degraded through 
the kynurenine pathway metabolism in mammals, and previous 
studies found that the modulation of the kynurenine pathway is 
associated with gut microbiota changes, peripheral inflammation, 
and psychological symptoms in the AUD (Schröcksnadel et al., 
2006; Vécsei et al., 2013; Leclercq et al., 2021). Interestingly, in this 
study, the amino acids described above were downregulated in the 
EtOH group, indicating that the intestinal permeability, oxidative 
stress, and immune response induced by alcohol are related to the 
disorder of amino acid metabolism.
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There is also limitation in this study need to be presented. 
Whether the changes of metabolites in feces and serum are 
directly caused by alcohol consumption or gut microbiota is 
not clear. The fecal microbiota transplantation experiment, the 
relative bacteria strains inoculation test or the key metabolites 
up/down regulations should be  considered in the future 
research. In conclusion, the altered metabolites in feces and 
serum are important links between the gut microbiota 
dysbiosis and alcohol preference in AUD rats, and the altered 
gut microbiota and metabolites can be potentially new targets 
for treating AUD.
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