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Soil microbial abundance is a key factor to predict soil organic carbon 

dynamics in peatlands. However, little is known about the effects of altitude 

and soil depth and their interaction on soil microbial abundance in peatlands. 

In this study, we measured the microbial abundance and soil physicochemical 

properties at different soil depths (0–30 cm) in peatlands along an altitudinal 

gradient (from 200 to 1,500 m) on Changbai Mountain, China. The effect of 

soil depth on soil microbial abundance was stronger than the altitude. The 

total microbial abundance and different microbial groups showed the same 

trend along the soil depth and altitudinal gradients, respectively. Microbial 

abundance in soil layer of 5–10 cm was the highest and then decreased with 

soil depth; microbial abundance at the altitude of 500–800 m was the highest. 

Abiotic and biotic factors together drove the change in microbial abundance. 

Physical variables (soil water content and pH) and microbial co-occurrence 

network had negative effects on microbial abundance, and nutrient variables 

(total nitrogen and total phosphorus) had positive effects on microbial 

abundance. Our results demonstrated that soil depth had more effects on 

peatland microbial abundance than altitude. Soil environmental change with 

peat depth may lead to the microorganisms receiving more disturbances in 

future climate change.
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Introduction

Soil microorganisms are a vital part of peatland ecosystems and play a critical role as a 
“carbon pump” in the process of organic matter decomposition (Liang et al., 2020; Li J. et al., 
2022). Ecologists have tried to comprehend the patterns of soil microbial communities along 
the environmental gradient. With the increasing awareness of the significance of microbial 
participation in the carbon cycle process and the development of biomarker technology, the 
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pattern of soil microorganisms along the altitudinal and depth 
gradients has attracted scholars’ attention (Wang et al., 2019; Looby 
and Martin, 2020). However, existing research so far have not 
reached the same conclusion. Some studies indicated that the 
altitude had a stronger impact on the community composition of 
microbes than soil depth (Li J. et al., 2022), while other studies 
suggested that soil microbial community activity and composition 
was more depended on soil depth (Dove et al., 2021; Lamit et al., 
2021; Zhao H. et al., 2021). Moreover, several studies demonstrated 
the complex interaction between altitude and depth had 
significantly influenced soil microbial abundance and their ratios 
(Xu et al., 2022). These examples suggest the ongoing debate on the 
pattern of microbial abundance and communities along the 
altitudinal and depth gradients. The reason is that these studies 
focus on different ecosystems or vegetation zones, little is known 
about the pattern within one ecosystem.

Environmental conditions could affect the distribution of 
microorganisms in peatlands. For example, soil pH, soil water 
condition, and dissolved organic carbon (DOC) were found to 
be  major factors influencing the biogeographic patterns of 
microorganisms (Rousk et al., 2010; Wagner et al., 2015; Wang 
et al., 2021), and soil nutrients including total nitrogen and total 
phosphorus significantly affected soil microbial abundance 
(Fenner and Freeman, 2011). However, the importance of the 
internal interaction of microorganisms in regulating the microbial 
abundance has been ignored. In fact, biotic variables (e.g., 
microbial co-occurrence network) are also supposed to be  an 
important factor influencing the spatial pattern of soil 
microorganisms (Fan et al., 2017). The symbiosis, predation, and 
competition relationships between soil microorganisms formed a 
complex microbial ecological interaction network (Faust and 
Raes, 2012). The co-occurrence network has been widely used in 
forest, farmland and other ecosystems to evaluate microbial 
interactions (Fan et al., 2017; Tu et al., 2020; Xie et al., 2020). 
However, there are limited data about the living microbial lipid 
co-occurrence network along the altitudinal and depth gradients 
in peatlands.

The Changbai Mountain in northeastern China are exceedingly 
vulnerable to climate change, and the peatlands are widely 
distributed in this region (Wang et al., 2018; Zhao M. L. et al., 
2021), which provides an ideal place to study the pattern in 
microbial abundance along the altitudinal and depth gradients. In 
the present study, we set four altitudinal gradients and six depth 
gradients in peatlands in the Changbai Mountain to understand 
the change in microbial abundance and their responses to abiotic 
and biotic factors along the altitudinal and depth gradients.

Materials and methods

Study area

The Changbai Mountain is located in Jilin Province, 
northeastern China (Zhao et  al., 2022). The peatlands in the 

Changbai Mountain are dominated by sedges (Bao et al., 2010; 
Wang et  al., 2018). The climate in this region is a typical 
continental monsoon climate; the mean annual temperature 
(MAT) in the study area ranges from −0.2°C to 3.9°C, and the 
mean annual precipitation (MAP) ranges from 580 to 770 mm in 
the study area (Zhao et al., 2022).

Sample collection

Samples were collected in July 2020. Soil cores at 0–30 cm 
depth with an interval of 5 cm were collected in four altitude 
gradients (200–500, 500–800, 800–1,200 and 1,200–1,500 m; 
Figure 1). Two peat samples were collected in each altitudinal 
gradient. Peat samples were kept at −20°C immediately after 
collection. Each sample was separated into two subsamples. One 
was used for the measurement of soil water content (SWC), and 
the other was freeze-dried and sieved for the measurement of 
extracted microbial lipids and soil physicochemical properties.

Phospholipid fatty acids analysis

The analysis of microbial abundance was used by phospholipid 
fatty acids (PLFAs) technology. The extraction and separation of 
PLFAs were performed followed the Bligh Dyer method (Bligh 
and Dyer, 1959). The sample test method was described by Zhao 
M. L. et al. (2021). The detected compounds were identified in the 
MIDI library (MIDI, Inc., Newark, United States) (Zhang et al., 
2019). The PLFAs were used as the microbial biomarkers 
according to Joergensen (2021). The gram-positive bacteria (G+) 
were the sum of the abundances of Firmicutes and Actinobacteria, 
the G+ and gram-negative bacteria (G-) belong to bacteria (B). 
The total microbial abundance was the sum of the abundances of 
bacteria, fungi (F) and unspecific microbial biomarkers.

Soil physicochemical property 
measurement

Soil water content (SWC) was measured by the gravimetric 
method. Soil pH was measured by a potentiometric test with a soil 
to water ratio of 1:10. The total organic carbon (TOC) and 
dissolved organic carbon (DOC) were detected on a TOC analyzer 
(Shimazu, Japan). The total phosphorus (TP) and total nitrogen 
(TN) were determined by an automated analyzer (Smartchem140, 
AMS-Alliance, and French; Lu, 2000).

Microbial co-occurrence network 
analysis

Co-occurrence network was used to show microbial 
biomarker interactions, the analysis was visualized using Gephi 
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v.0.9.1. Each node means one microbial lipid and each edge means 
a strong relationship between two nodes. The topology of the 
co-occurrence networks was assessed referred to previous studies 
(Tu et al., 2020; Li J. et al., 2022). Briefly, average degree indicates 
the complexity of the co-occurrence network. Average path length 
indicates the distance between any two members of the 
co-occurrence network. A higher average degree indicates a 
higher complexity of the network, a shorter average path length 
suggests a stronger correlation between members.

Data analysis

Two-way ANOVAs were used to examine the main effect of 
altitude and soil depth and their interaction on peat 
physicochemical properties and soil microbial abundance. 
Redundancy analysis (RDA) was conducted to analyze the 
relationship of microbial abundance to peat physicochemical 
properties. Variation decomposition analysis (VDA) was used to 
analyze the effects of peat physicochemical properties and 
microbial co-occurrence networks on soil total microbial 
abundance. The physical (pH and SWC) and nutrient (DOC, TN, 
TOC, and TP) variables were used as abiotic factors and the 
microbial ecological interaction network was used as the biotic 
factor in the prediction model. Based on previous studies, the 
microbial co-occurrence networks are represented by the first two 
axes’ scores of the principal component analysis for microbial 
community composition (Purahong et  al., 2016). A positive 
coefficient of VDA indicates a positive effect on the prediction of 
the total microbial abundance, and a negative coefficient suggests 
the opposite (Gross et al., 2017). The data were log10-transformed 

to conform to normality and homogeneity of variance. The 
analyses were performed using SPSS 21.0, Canoco 5.0, Origin 
29.0, and R 4.1.1 with the packages vegan (Oksanen et al., 2020), 
MuMIn (Bartoń, 2022), performance (Lüdecke et  al., 2021), 
ggplot2 (Wickham, 2016), and ggh4x (van den Brand, 2021).

Results

Soil microbial abundance changes with 
depth and altitude

Soil depth and altitude significantly affected the total microbial 
abundance (Table 1). The effect of soil depth on the abundance of 
the microbial group was stronger than the altitude (Table 1). The 
soil layer of 5–10 cm had the highest total microbial concentration, 
which then decreased with soil depth (Figure  2A). The 
concentration of total microbial PLFAs was higher at 500–800 m 
than at other altitudes (Figure 2B). The concentrations of G+, G−, 
and F showed a similar trend with the total microbial 
concentration (Figure 2).

Soil properties and co-occurrence 
network change with depth and altitude

Soil depth significantly affected DOC, TN, and pH (Table 1). 
As soil depth increased, DOC decreased and TN generally 
increased. No significant difference was found in SWC, TOC, and 
TP between different depths. Altitude significantly affected SWC 
(Table  1). SWC generally increased with the altitude. No 

FIGURE 1

Site locations of the sedge peatlands along an altitudinal gradient on Changbai Mountain, China.
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significant difference was found in soil pH, TN, TP, and TOC 
along the altitudinal gradient.

Microbial co-occurrence network did not show significant 
differences along the altitudinal gradient (Figure 3A), but it had 
significant differences between soil depths (Figure 3B). As soil 
depth increased, the negative interaction ratio and average path 
length of co-occurrence networks decreased, and the positive 
interaction ratio, average degree, average clustering coefficients, 
and graph density of co-occurrence networks gradually increased 
(Table 2; Figure 3B).

Relationship between the microbial 
abundance and biotic and abiotic  
factors

The RDA analysis found that the first and second axes together 
explained over 60.0% of the total variation in microbial groups 
(Figure 4). Soil pH, TN, DOC, and depth were the main factors 
that significantly affected the microbial abundance. Samples from 
the top soil layers were located in the lower quadrant of the RDA 
graph while samples from deeper soil layers were located in the 
upper quadrant (Figure 4).

The VDA analysis showed that the total microbial 
abundance was significantly affected by both abiotic and biotic 
factors. Soil nutrients including DOC and TN had a positive 
correlation with the total microbial abundance. Soil physical 
properties (pH and SWC) and the microbial interaction 
network had a negative relationship with the total microbial 
abundance (Figure 5).

Discussion

Soil physicochemical properties differed 
between depths and significantly 
affected microbial abundance in 
peatlands

Soil depth has a great impact on soil microbes because of the 
unequal distribution of plant roots and soil nutrients across soil 
profiles (Rousk et  al., 2010). Soil nutrients and physical 
environments were the main factors affecting the total microbial 
abundance in peatlands. Soil nutrients provided energy for the 
growth, metabolism, and reproduction of microorganisms (Zhang 
et al., 2022). In our study, soil depth significantly affected soil 
physicochemical properties and microbial abundance in 
peatlands. Soil nutrients had a positive influence on the soil 
microorganisms and soil physical factors had a negative impact on 
the abundance of soil microbes (Figure 5).

Soil nutrient is a key factor affecting microbial abundance in 
peatlands. DOC can be  used as a carbon substrate for soil 
microbes, and TN can alleviate carbon limitation on soil 
microorganisms (Guo et al., 2011; Zhou et al., 2017). In our study, 
DOC and TN differed significantly between soil depths, and they 
significantly affected the total microbial abundance (Table  1; 
Figure 5). This result was consistent with former research (Bradley 
et al., 2006; Jia et al., 2020; Zhao M. L. et al., 2021). DOC is the 
most active intermediate in carbon cycle process because of its 
high mobility and bioavailability (Marschner and Kalbitz, 2003). 
DOC is utilized as a substrate, leading to microbial mineralization 
and CO2 emissions in peatlands (Battin et al., 2008; Zhang et al., 

TABLE 1 A summary of analysis of variance (ANOVA) on the effects of altitude and soil depth for soil physicochemical properties and microbial 
groups.

Variable Altitude Depth Altitude × depth

f value Value of p f value Value of p f value Value of p

SWC 4.04 0.019* 1.702 0.173 0.776 0.690

TOC 2.03 0.136 1.813 0.148 0.622 0.828

DOC 2.759 0.064 40.149 <0.001** 1.181 0.348

TN 1.22 0.324 68.85 <0.001** 1.376 0.236

TP 1.043 0.391 0.676 0.646 0.824 0.644

pH 0.829 0.491 5.84 0.001** 1.039 0.454

Firmicutes 5.731 0.004** 17.948 <0.001** 1.739 0.110

Actinobacteria 5.428 0.005** 12.255 <0.001** 0.871 0.601

G+ bacteria 6.273 0.003** 18.868 <0.001** 1.418 0.216

G− bacteria 11.777 <0.001** 10.928 <0.001** 0.663 0.793

Fungi 4.29 0.015* 5.696 0.001** 0.700 0.761

Bacteria 11.648 <0.001** 19.048 <0.001** 1.024 0.466

Unspecific 2.427 0.09 10.681 <0.001** 1.011 0.477

Total 9.442 <0.001** 19.526 <0.001** 0.967 0.514

f value is the value of F-test, *Difference was significant at p < 0.05, **Difference was significant at p < 0.01. SWC, soil water content; TOC, soil total organic carbon; DOC, dissolved 
organic carbon; TN, total nitrogen; TP, total phosphorus.
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2022). Nitrogen accumulation increases microbial abundance 
because it increases the utilization rate of nitrogen resources, 
which can alleviate carbon limitation on soil microorganisms or 
inhibit the limitation of carbon caused by soil acidification (Guo 
et al., 2011; Zhou et al., 2017). This finding indicated that nitrogen 
accumulation had a positive effect on microbial abundance. The 
terrestrial surface temperature is projected to exceed 2°C by the 
end of this century, and the atmospheric nitrogen deposition and 
the intensity of extreme precipitation events will increase (IPCC, 
2022). These changes may lead to more DOC exports from the 
peatlands (Cole et al., 2002; Clark et al., 2010) and an increasing 
nitrogen accumulation in peatlands (Zhang et al., 2018, 2022). 

Our findings suggest that DOC and TN positively affect soil 
microbial abundance and microbial activities, which may lead to 
higher CO2 emissions in peatlands.

Soil physical properties also affect soil microbial abundance. 
Soil pH changed cell membrane charge and thus influenced the 
nutrient absorption by soil microorganisms and the enzyme 
activity in metabolic processes (Rousk et al., 2010). The acidic 
environment in peatlands is conducive to the growth of 
microorganism, and the microbial abundance generally decreased 
as soil pH increased in our study, which is consistent with former 
research (Anderson et al., 2010). Water regime could also affect 
soil microbial abundance. The effects of water drainage on soil 

A

B

FIGURE 2

Concentration of various microbial groups based on the phospholipid fatty acids along the depth (A) and altitudinal (B) gradient on Changbai 
Mountain, China. Values were shown as Means ± SE. Different letters suggest significant differences among study sites based on one-way ANOVA 
and Tukey’s test (p < 0.05). TPLFAs: total phospholipid fatty acids abundance; G+: gram-positive bacteria; G−: gram-negative bacteria; F: fungi; B: 
bacteria.

https://doi.org/10.3389/fmicb.2022.1068540
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Zhao et al. 10.3389/fmicb.2022.1068540

Frontiers in Microbiology 06 frontiersin.org

A

B

FIGURE 3

Microbial co-occurrence networks along the altitudinal (A) and depth (B) gradient on Changbai Mountain, China. The networks of co-occurring 
microbial biomarkers were determined based on Pearson correlation analysis. The node suggests the individual microbial biomarker based on the 
phospholipid fatty acid. The co-occurrence network nodes are colored by microbial groups. Blue edges indicate negative relationships between 
two individual nodes, while red edges suggest positive relationships. A connection stands for a strong correlation coefficient (r) >0.5. Each depth 
network was constructed from eight samples. Each altitudinal network was constructed from 12 samples.

TABLE 2 Topological parameters of network analysis in different altitudes and soil depths.

Network 
attributes

Altitude (m) Soil depth (cm)

200–500 500–800 800–
1,200

1,200–
1,500

0–5 5–10 10–15 15–20 20–25 25–30

Nodes 27 27 27 27 26 26 27 27 27 27

Edges 267 204 200 240 124 116 168 212 250 252

Interaction positives 100% 96.08% 95.5% 98.75% 79.03% 73.27% 98.21% 94.34% 95.2% 93.65%

Interaction negatives 0% 3.92% 4.5% 1.25% 20.97% 26.73% 1.79% 5.66% 4.8% 6.35%

Average degree 9.889 7.556 7.407 8.889 4.769 4.462 6.222 7.852 9.259 9.333

Modularity 0.073 0.104 0.164 0.111 0.293 0.264 0.186 0.088 0.072 0.046

Graph density 0.38 0.291 0.285 0.342 0.191 0.178 0.239 0.302 0.356 0.359

Average clustering 

coefficient

0.442 0.368 0.352 0.411 0.296 0.250 0.338 0.389 0.418 0.437

Average path length 1.207 1.336 1.305 1.328 1.542 1.652 1.48 1.394 1.213 1.204
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microbial community and enzyme activity were dependent on soil 
depth in peatlands (Xu et al., 2021). When SWC was high, soil 
microbial abundance decreased because microbial heterotrophic 
respiration of microorganisms was inhibited (Wagner et al., 2015).

The complexity of the co-occurrence 
network increased with soil depths and 
affected microbial abundance in 
peatlands

The complexity of the co-occurrence network indicated 
microbial interactions along the environmental gradient (Ma et al., 
2020). Environmental variables are essential for microbial niche 

differentiation, which enables distinct microbial groups to obtain 
adequate substrate and survive under various environmental 
conditions (Wiens et al., 2010; Li et al., 2020). The wide range of 
edaphic environments has driven the assembly process of soil 
microorganism (Dini-Andreote et al., 2015; Tripathi et al., 2018). 
In our study, the complexity of microbial co-occurrence networks 
increased and the microbial abundance decreased with soil depth 
(Table  2), and the VDA analysis indicated that microbial 
community assembly was one major factor affecting microbial 
abundance (Figure  5). The availability of carbon, energy and 
oxygen decreased with soil depth in peatlands, the competition of 
microorganisms for the resource increased, and their interactions 
increased. Resource limitation leads to the reduction of microbial 
abundance (Lu et al., 2020). Our results are consistent with a recent 

FIGURE 4

Redundancy analysis (RDA) ordination plot of the concentration of microbial groups constrained by the altitude, soil depth, and physicochemical 
properties. DOC, dissolved organic carbon; TOC, soil total organic carbon; TP, total phosphorus; TN, total nitrogen; SWC, soil water content.
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study which found the depth effect on bacterial community 
assembly processes in paddy soils (Li W. T. et al., 2022).

Conclusion

We explored the change in microbial abundance in peatlands 
along the depth and altitudinal gradients on Changbai Mountain, 
China. Soil microbial abundance was more affected by soil depth 
than the altitude. The microbial abundance at 5–10 cm was higher 
than that at depth of 0–5 cm and 10–30 cm. The microbial 
abundance at 500–800 m was higher than that at altitude of 
200–500 m and 800–1,500 m. The change in total microbial 
abundance was driven by both soil physiochemical properties 
and microbial co-occurrence network. Our study provides a new 
insight into the significance of microbial participation in peatland 
carbon cycling along the environmental gradient. It is important 
to consider the depth effects on soil microbial abundance when 
assess the peatland carbon dynamic under climate change.
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