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Confined environments increase psychological stress and lead to health 

problems such as abnormal mood and rhythm disruption. However, the 

mechanism by which confined environments impact health has remained 

unclear. Significant correlations have been reported between psychological 

stress and changes in gut microbiota. Therefore, we  investigated the effect 

of a confined environment on the composition of the gut microbiota by 16s 

rDNA high-throughput sequencing, and analyzed the correlation between 

gut microbiota and health indicators such as uric acid (UA), sleep, and 

mood. We found that the gut microbiota of the subjects clustered into two 

enterotypes (Bi and Bla), and that the groups differed significantly. There were 

notable differences in the abundances of genera such as Bifidobacterium, 

Dorea, Ruminococcus_torques_group, Ruminococcus_gnavus_group, 

Klebsiella, and UCG-002 (p < 0.05). A confined environment significantly 

impacted the subjects’ health indicators. We also observed differences in how 

the subjects of the two enterotypes adapted to the confined environment. 

The Bi group showed no significant differences in health indicators before 

and after confinement; however, the Bla group experienced several health 

problems after confinement, such as increased UA, anxiety, and constipation, 

and lack of sleep. Redundancy analysis (RDA) showed that UA, RBC, mood, and 

other health problems were significantly correlated with the structure of the 

gut microbiota. We concluded that genera such as UCG-002, Ruminococcus, 

CAG352, and Ruminococcus_torques_group increased vulnerability to 

confined environments, resulting in abnormal health conditions. We  found 

that the differences in the adaptability of individuals to confined environments 

were closely related to the composition of their gut microbiota.
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Introduction

In environments such as those required for aerospace 
travel, voyages, and home isolation, individuals reside in small 
and relatively closed spaces for long periods of time; these 
periods are also often accompanied by information isolation (Li 
et  al., 2016; LaGoy et  al., 2020; Nie et  al., 2021). Confined 
environments (CEs) can gradually increase psychological 
stress, resulting in functional gastrointestinal disorders, 
depression, irritability, and other health problems (Holmes and 
Simmons, 2009; Paul et al., 2010; Bell et al., 2019). The working 
conditions and environmental microorganisms in CEs can have 
additional effects on psychological and physical health (Berg 
et  al., 2005; Reini, 2010; Kimhi, 2011). The temperature, 
humidity, and gaseous composition of CEs can also affect the 
physiological and cognitive well-being of the staff (Li 
et al., 2018).

Studies have shown that continuous increases in 
psychological stress can lead to abnormal moods and affect 
gastrointestinal function and lipid metabolism homeostasis 
through bidirectional regulation of the gut-brain axis; the gut 
microbiota play a very important role in this process (Arase 
et al., 2016). Multiple complex interactions have been recorded 
between psychological stress and gut microbiota. Indeed, 
disturbances to gut microbiota have been documented to 
promote disease progression (Xu et  al., 2020). Allen et  al. 
(2021) showed that psychological stress can trigger intestinal 
epithelial cells to express pro-inflammatory molecules and 
promote reactive oxygen species (ROS) production. This 
expression is stimulated by the presence of gut microbiota, the 
composition of which can gradually change in response to ROS 
stress. The generation of intestinal ROS is related to 
physiological activities such as mood changes and insomnia 
(Brainard et al., 2016; Palinkas and Suedfeld, 2021). Studies 
have shown that intestinal cells secrete uric acid (UA) upon 
hydrogen peroxide stimulation to resist oxidative stress and 
that the increase in UA is related to imbalances in the gut 
microbiota (Wang et al., 2022).

Some CE-simulation experiments show that light, gas, and 
work rhythms significantly affect the psychological states of the 
subjects, in turn affecting their cognitive abilities, teamwork, and 
other aspects of work efficiency (Berg et al., 2005; Kimhi, 2011). 
However, changes in gut microbiota in CEs and how they correlate 
with health indicators have remained unclear. Although current 
research on gut microbiota has focused on the association of gut 
microbiota with physical and chemical indicators of disease, few 
studies have investigated the influence of gut microbiota on urine 
metabolism. Therefore, we performed 16 s rDNA sequencing of 
the gut microbiota of subjects in a CE to analyze changes in the 
gut microbiota composition. We then investigated the correlations 
between gut microbiota and urine metabolism, sleep, mood, and 
other health conditions and screened the relevant landmark flora. 
This study therefore lays the foundation for examining the impact 
of CEs on human health.

Materials and methods

Subject

The subjects were 12 healthy males, aged 19–26 years, 
163–186 cm tall and 54–95 Kg in weight. The subjects did not have 
cardiovascular system diseases, hemorrhoids, infectious diseases 
and skin diseases, etc., did not take alcohol, antibiotics and other 
drugs 7 days before the experiments, and maintained a good sleep. 
Before participating in the experiment, the subjects have 
understood the process and risks of this experiment, and signed 
the informed consent form. All experiments were approved and 
performed following the guidelines of the Ethical Committee of 
Naval Medical University (Approval No. AF-HEC-018).

Confined environment

The experiment was carried out in submarine environment 
simulation cabin (SESC). The living conditions are normal 
pressure and room temperature in the confined environment, and 
the effective volume is about 200 m3. The errors of temperature 
and relative humidity in the room are less than ±0.5°C and ± 5 
%RH. During the experiment, the subjects were forbidden to 
smoke and drink, eat normally every day. The subjects could use 
computers, fitness equipment, etc., but there was no external 
network, and the submarine environment simulation cabin was in 
a state of information isolation. The entire experiment lasted 
14 days and nights. The flow chart of experimental was shown in 
Figure 1A.

Sample collection

Faecal samples of subjects were collected at 18:00–22:00 on 
day 1 and day 14. The faecal samples of one subject were added 
into sterilized 5-mL Eppendorf tubes on ice and stored at 
−80°C. Urine samples of subjects were collected at 7:30 am on day 
1 and day 14. The Urine samples of one subject were added into 
20-mL sampling tube on ice and stored at −80°C.

16S rRNA gene sequencing of gut 
microbiota

Faecal samples of subjects were prepare for microbiota 
analysis. Faecal DNA was extracted using an E.Z.N.A. stool DNA 
Kit (Omega Bio-tek, USA) according to the manufacturer’s 
instructions. The V3-V4 regions of the bacterial 16S rRNA genes 
were amplified using universal primers 338F 
5′-ACTCCTACGGGAGGCAGCA-3 and 806R 
5′-GGACTACHVGGGTWTCTAAT-3′. PCR amplification of the 
16S rRNA gene was carried out in triplicate as follow: template 
DNA 10 ng, 2.5 mM d NTPs 2 μl, forward and reverse primer 
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(5 μM) 0.8 μl respectively, TransStart fast Pfu polymerase 0.4 μl, 
5 × Fast Pfu Buffer 4 μl, and ddH2O in a final volume of 20 μl. PCR 
amplification program was as follows: an initial activation step 
with 95°C for 3 min, followed by 27 cycles at 95°C for 30 s, 55°C 
for 30 s, and 72°C for 30 s and a final extension at 72°C for 10 min 
(Dennis et al., 2013). The quality of PCR products was quantified 
using QuantiFluor™-ST system (Promega, USA) according to the 
standard protocols. Then, purified PCR products were sequenced 
on an Illumina MiSeq platform (Illumina, USA) at Majorbio 
Bio-Pharm Technology Co., Ltd., Shanghai, China.

Microbiota analysis

Microbiota analysis of subjects were performed by Majorbio 
Cloud1 provided by Majorbio Bio-Pharm Technology Co. Ltd. 
(Shanghai, China). All raw reads were demultiplexed and quality-
filtered using QIIME (version 1.9.1) with the following criteria: (1) 
The 300 bp reads were truncated at any site receiving an average 
quality score < 20 over a 10 bp sliding window abandoned the 
truncated reads that were < 50 bp; (2) Sequences that reads 
containing ambiguous characters, or two nucleotide mismatches in 
primer matching were removed. An operational taxonomic units 
(OTUs) were set as at least 97% identified sequences. The invalid 

1 https://cloud.majorbio.com

sequences were cut-off using UPARSE (version 112). RDP Classifier 
(version 2.133) was used to analyses the taxonomy of each 16S rRNA 
gene sequence, and against the SILVA (version 138) 16S rRNA 
database using a confidence threshold of 70% (Quast et al., 2013).

Determination of urine chemical index

The RBC counting in urine was determined by automated 
urine analysis workstation IQ200 (Beckman Coulter, Brea, 
California, America). The UA content in urine was determined by 
automatic biochemical analyser Cobas C702 (Roche, Basel, Swiss).

Health conditions survey

The subjects of health conditions were investigated with a 
questionnaire described by Li et al. (2016). The questionnaire was 
carried out before and after the experiment, including sleep quality 
and time, constipation, anxiety, memory loss, dizziness, anorexia, 
and facial acne. In addition to sleep time, each other health 
problem is scored as 5 points, and the total score of each item after 
accumulation was used to represent the health status of the subject.

2 http://drive5.com/uparse/

3 http://rdp.cme.msu.edu/
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FIGURE 1

Enterotypes analysis and α-diversity changes of gut microbiota in confined environment. (A) The flow chart of experimental; (B) Enterotypes 
analysis of gut microbiota (day 1, T1; day 14, T2); (C–F) The α-diversity changes of gut microbiota in different groups. Bla group, containing 
subjects of 4, 7, 10, 12. Bi group, containing subjects of 1, 2, 3, 5, 6, 8, 9, 11. Sample F_1_1 means subject 1 in day 1. Sample F_3_1 means subject 
1 in day 14. Results are express as the mean ± SEM of subjects for each experimental group (Bi_T1 = 4, Bi_T2 = 4, Bla_T1 = 8, Bla_T2 = 8).
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Statistical analysis

The α-diversity analysis of different groups was detected by 
Welch’s t test. Differential relative abundance of taxa was detected 
by Kruskal-Wallis-H test with corrected p value, and the multiple 
test correction was fdr. Linear regression of gut microbiota based 
on Bray_Curtis distance was performed at the genus level to 
assess the impact of health indicators on gut microbiota. 
Enterotypes analysis of gut microbiota based on JDS distance was 
performed at the genus level. LEfSe analysis of gut microbiota 
was performed by using multi group comparison strategy: All 
gain all (more strict). The correlations between the relative 
abundance of species and health indicators were calculated by 
Spearman’s rank correlation coefficient and visualized by 
heatmap. Statistical analysis of physical and chemical indexes of 
urine was performed with ANOVA (SPSS 24.0). A p-value of 
<0.05, 0.01 or 0.001 was considered statistically significant.

Results

Enterotypes analysis of gut microbiota in 
a CE

16 s rDNA high-throughput sequencing was used to detect the 
gut microbiota composition of the subjects during the CE 
experiment. We obtained 1,177,407 sequences, which were clustered 
into 641 operational taxonomic units comprising 12 phyla, 89 
families, and 233 genera. Based on the abundance of flora at the 
genus level, the Jensen-Shannon distance was calculated, and 
clustering was performed by partitioning around medodids to obtain 
the best clustering K value. Principal coordinate analysis was used to 
determine the enterotype of the gut microbiota (Wu et al., 2011). As 
shown in Figure 1B, the gut microbiota enterotype analysis showed 
that the 12 subjects could be clustered into two enterotypes. Type 1 
was the Blautia type (Bla, comprising subjects 4, 7, 10, and 12), and 
type 2 was the Bifidobacterium type (Bi, comprising subjects 1, 2, 3, 
5, 6, 8, 9, and 11). The subjects of both groups showed a high degree 
of overlap in terms of gut microbiota type, but the flora characteristics 
were significantly different. Therefore, subsequent gut microbiota 
analysis was carried out based on the enterotype. α-diversity analysis 
of the enterotype groups showed that the α-diversity of the Bi group 
significantly increased in the CE (p < 0.05), whereas that of the Bla 
group did not significantly change (Figures  1C,D). Horizontal 
comparison showed that there were significant differences in the 
α-diversity of the gut microbiota of the two enterotype groups during 
the experimental process, which was consistent with the results of 
the subjects’ gut microbiota typing (Figures 1E,F).

Effect of CE on the gut microbiota of 
different enterotypes

As shown in Figure  2, the effect of the CE on the gut 
microbiota of different enterotypes was analyzed at the phylum 

and genus levels. The gut microbiota of subjects in the Bi 
enterotype group were dominated by Firmicutes, Actinobacteriota, 
and Proteobacteria; these three phyla accounted for >99% of the 
total abundance, with Firmicutes and Actinobacteriota amounting 
to 54 and 37%, respectively. In the Bla group, Firmicutes, 
Actinobacteriota, and Bacteroidota were the main phyla and 
accounted for >99% of the total population; Firmicutes and 
Bacteroidota amounted to 41 and 25%, respectively (Figure 2A). 
At the genus level, Blautia, Bifidobacterium, Streptococcus, and 
Subdoligranulum were the main components in the Bla group. 
However, compared with the Bla group, Bifidobacterium was more 
abundant in the Bi group (Figure 2B). The composition of the gut 
microbiota was further analyzed using a bubble abundance map 
(Figure 2C), which showed the top 30 most abundant genera; the 
sizes of the circles represented differences in the relative 
abundances of the gut microbiota. Most of the gut microbiota 
belonged to the phylum Firmicutes, with the compositions of the 
Bla and Bi groups being significantly different. The predominant 
genera in the two groups were different, with Bifidobacterium, 
Collinsella, and other bacteria belonging to the Actinobacteriota 
phyla being higher in the Bi group than in the Bla group.

Figure 2D shows a Venn analysis of gut microbiota in the 
CE. We found 113 core microbiota species in common across the 
four groups, with the number of microbiotas in the Bi group being 
less than that in the Bla group at the genus level. After 14 days of 
the CE experiment, the number of microbiotas in the Bi group 
increased; however, there was no significant change in the Bla 
group. Source Tracker analysis showed that 31.12% of the 
microbiota in the Bi_T2 group came from the Bi_T1 group. 
However, the origins of the majority of the microbiota (62.14%) 
were unclear, which may reflect the effect of the CE (Figure 2E). 
Only 11.8% of the microbiota in the Bi_T2 group was derived 
from Bi_T1, and the origins of most of the microbiota (83.04%) 
remained unclear (Figure 2F).

Difference in the gut microbiota of 
enterotypes in response to the CE

There were significant differences in the gut microbiota of the 
two enterotypes in the CE (Figure 3). Differences in the dominant 
phyla and genera (Figures  3A,B) of the gut microbiota were 
analyzed. At the phylum level, there were significant changes in 
Actinobacteriota and Proteobacteria across the four groups (p < 0.05). 
Analysis at the genus level showed that in the Bi group, the relative 
abundances of Bifidobacterium, Ruminococcus_gnavus_group, and 
Klebsiella were significantly higher than in the Bla group (p < 0.05, 
p < 0.01). However, the abundances of Dorea, Ruminococcus_
torques_group, Fusicatenibacter, Coprococcus, CAG-352, UCG-002, 
and other genera were significantly lower in the Bi group than in the 
Bla group (p < 0.05, p < 0.01). We  performed non-metric 
multidimensional scaling (NMDS) analysis of the gut microbiota of 
the subjects and verified the differences in the compositions of the 
Bi and Bla groups in the CE. After living in the CE for 14 days, the 
composition of the gut microbiota of the Bi group underwent 
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significant changes, whereas that of the Bla group experienced only 
small changes (Figure  3C). As shown in Figure  3D, linear 
discriminant analysis (LEfsE; linear discriminant analysis 
threshold = 2) showed that Bifidobacterium, Enterococcus, and other 
genera were significantly enriched in the Bi_T1 group, and that 
Klebsiella, Ruminococcus_gnavus_group, and other genera were 
significantly enriched in the Bi_T2 group. Dorea, Fusicatenibacter, 
UCG-002, and other genera were significantly enriched in the Bla_
T1 group, and Ruminococcus and Ruminococcus_torques_group 
were significantly enriched in the Bla_T2 group.

The relationships between the gut microbiota of subjects in a 
CE were investigated through correlation network analysis. 
Genus-level correlation network analysis revealed significant 
interactions between the different genera of gut microbiota (a 
green connection line represents a positive correlation, and red 
represents a negative correlation; the thickness of the line 

represents the magnitude of the correlation coefficient; Figure 4). 
We  documented close interactions between CAG-352, 
Coprococcus, Ruminococcus, and other genera, with the 
relationship becoming stronger after the CE experiments.

Effects of CE on urine physicochemistry 
and health indicators of subjects

The urine physicochemistry and health indicators of the 
subjects during the CE experiment were evaluated. As shown in 
Figure  5, there were significant differences in the urine 
physicochemical (UA content, red blood cell (RBC) content, sleep 
time (S), and other health indicators (H)) between the Bi and Bla 
groups after living in a CE. There was no difference in other 
physicochemistry indexes in the urine of the subjects during the 

A

D

E F

C

B

FIGURE 2

Changes in gut microbiota composition in confined environments. (A) Community bar-plot analysis of the relative abundance of gut microbiota 
on Phylum level. (B) Community bar-plot analysis of the relative abundance of gut microbiota on Genus level. (C) Bubble plot of gut microbiota in 
different enterotype groups. Bubble size represents the abundance of gut microbiota. (D) UpSet Venn diagram of gut microbiota in different 
enterotype groups. (E) Source tracker analysis of gut microbiota in Bla enterotype group. (F) Source tracker analysis of gut microbiota in Bi 
enterotype group.
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experiment (Supplementary Table 1). In the Bi group, the UA 
content decreased significantly after 14 days in the CE (p < 0.05; 
Figure 5A). There was no significant difference in the RBC content 
and S between the Bi_T1 and Bi_T2 groups (Figures  5B,C). 
However, compared with the Bla_T1 group, subjects in Bla_T2 
group had a significantly higher UA and RBC content 
(Figures 5D,E). The UA content increased from 1800 ± 200 mg/l to 

3,500 ± 200 mg/l; the UA content of subject no. 1 increased most 
drastically, from 1899.4 mg/l to 5330.00 mg/l. The S of the subjects 
in the Bla group significantly decreased from 8 to 6 h (Figure 5F); 
these subjects also generally found it difficult to fall asleep. 
Subjects were assessed for other health indicators as well, namely 
anorexia, vertigo, acne, memory, anxiety, and constipation. The 
results are shown in Figure 5G. The subjects in the Bi group were 

A C

B D

FIGURE 3

Analysis of differences in gut microbiota of subjects in confined environment. (A) Phylotypes significantly different between Bi_T1, Bi_T2, Bla_T1 
and Bla_T2 group on Phylum level. (B) Phylotypes significantly different between Bi_T1, Bi_T2, Bla_T1 and Bla_T2 group on Genus level. (C) NMDS 
(Non-metric multidimensional scaling) analysis of gut microbiota. (D) LEfSe (Linear discriminant analysis effect size) analysis of gut microbiota. LDA 
scores (threshold >2.0) as calculated by LEfSe of taxa differentially abundant in Bi and Bla groups during the experiments (T1 to T2). The diameter 
of each circle was proportional to the relative abundance of taxa. Results are express as the mean ± SEM of subjects for each experimental group 
(Bi_T1 = 4, Bi_T2 = 4, Bla_T1 = 8, Bla_T2 = 8), *p < 0.05, **p < 0.01.
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generally in good health, with only a few showing abnormal health 
conditions. In the Bla group, except for subject no. 5, all had 3–4 
abnormal health conditions. Constipation (8 subjects) and 
anorexia (7 subjects) were common in these subjects, whereas 
acne was documented less frequently (only 2 subjects). All of the 
subjects underwent a detailed health investigation before the 
experiment, which revealed none of the above-mentioned health 
problems. This indicated that the Bi group subjects adapted better 
to the CE, whereas the Bla group subjects were easily affected 
by the CE.

The differences of gut microbiota lead to 
different health indicators in confined 
environment

Figure 6 shows linear regression analysis of the gut microbiota 
and UA content, RBC content, S, and other health conditions of 
the subjects in different groups. There were no significant 
correlations between the β-diversity of the gut microbiota and 
health indicators at the beginning of the experiment (day 1, T1 
group) (Figures 6A–C). However, the UA content, RBC content, 
and health indicators were significantly negatively correlated with 
β-diversity after the experiment (day 14, T2 group, p < 0.001) 
(Figures  6D–F). Although S was positively correlated with 
β-diversity, this was not significant (Figure 6G, p = 0.0708). The 
RDA analysis was consistent with the ordinal regression results. 
The UA content, RBC content, and health indicators were 
significantly correlated with the composition of gut microbiota 
(p < 0.05), and UA content was positively correlated with RBC 
content and other health indicators. However, there was no 
significant correlation between S and gut microbiota (p = 0.078) 

(Figure  6H). The UA and RBC content in the Bla group may 
be correlated with the changes in Ruminococcus_torques_group, 
Collinsella, and other bacteria.

The Spearman correlation coefficient was used to analyze the 
correlations between gut microbiota and indexes such as the UA 
content, RBC content, and health indicators (Figure  7;  
Boix-Amorós et  al., 2016). During the CE experiment, the 
correlation between the composition of the gut microbiota and 
health indicators of the subjects changed significantly. The relative 
abundances of most of the genera were not significantly correlated 
with health indicators at the beginning of the experiment; only 
those of Ruminococcus_gnavus_group and Subdoligranulum were 
negatively correlated with the UA content (Figure 7A). As shown 
in Figure  7B, after living for 14 days in the CE, the relative 
abundances of UCG-002, Ruminococcus, Fusicatenibacter, 
Collinsella, CAG352, and other genera were significantly positively 
correlated with the UA content, whereas those of Klebsiella, 
Ruminococcus_gnavus_group, and Streptococcus were significantly 
negatively correlated with the UA content. The relative abundance 
of Klebsiella was significantly positively correlated with S, whereas 
the abundances of CAG-352, UCG-002, Ruminococcus, Alistipes, 
and other genera were significantly negatively correlated. The 
relative abundances of Bifidobacterium, Klebsiella, and other 
genera were significantly negatively correlated with the RBC 
content in urine, whereas those of Ruminococcus_torques_group 
and norank_f_lachnospiraceae showed significantly positive 
correlations. The relative abundances of Ruminococcus, CAG-352, 
Coprococcus, and other genera were significantly positively 
correlated with health indicators, whereas those of Klebsiella and 
Ruminococcus_gnavus_group were significantly negatively 
correlated. The Spearman correlation analysis showed that the 
changes in CAG-352, Ruminococcus, UCG-002, Klebsiella, 

A B

FIGURE 4

Network analysis applied to the gut microbiota of subjects in confined environment. (A) At the beginning of experiment (day 1, T1); (B) At the end 
of experiment (day 14, T2). The size of the node indicates the abundance of genera, and the node color corresponds to phylum taxonomic 
classification. The color of the line represents positive (green) and negative (red) correlations, and the thickness of the line is equivalent to the 
correlation values.
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Ruminococcus_torques_group, and other genera were consistently 
correlated with the health indicators of subjects in different 
groups. The relative abundances of these genera significantly 
impacted the structure of the gut microbiota.

Multivariate association with linear models (MaAsLin) 
analysis is a method that investigates the correlations between 
environmental factors (such as clinical data, physicochemical 

indicators) and the relative abundance of microbial community 
species using linear models (Torres et al., 2020). MaAsLin analysis 
verified that the relative abundances of UCG-002, CAG-352, 
Klebsiella, Bifidobacterium, Coprococcus, and other genera were 
significantly correlated with the health conditions of the subjects 
(Figures 7C–J). The CE experiment showed that, compared with 
the Bla group, the Bi group was more adaptable to such 

A B C

D

G

E F

FIGURE 5

Changing in UA, RBC and other health indicators of subjects in confined environment. (A) UA content of urine in Bi group; (B) RBC counting of 
urine in Bi group; (C) Sleep time of subjects in Bi group; (D) UA content of urine in Bla group; (E) RBC counting of urine in Bla group; (F) Sleep time 
of subjects in Bla group; (G) Health assessment of subjects at the end of experiment (day 14). Results are express as the mean ± SEM of subjects for 
each experimental group (Bi_T1 = 4, Bi_T2 = 4, Bla_T1 = 8, Bla_T2 = 8), *p < 0.05, ***p < 0.001.
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environments. This difference may be related to the higher relative 
abundances of Bifidobacterium, Klebsiella, and other genera and 
lower relative abundances of UCG-002 and CAG-352 in the Bi 
group. The high relative abundances of Ruminococcus_torques_
group, Ruminococcus, UGG-002, Coprococcus, and other genera in 
the gut microbiota may make the subjects in the Bla group 
vulnerable to CEs, thereby increasing their UA content, insomnia, 
anxiety, and other health abnormalities.

Discussion

Living in CEs has been linked to issues such as space 
depression, information isolation, and lack of exercise, which can 
greatly impact health (Sandal et  al., 2006; Arendt, 2012). In 
addition to special working environments, such as travel and polar 
exploration, homes have become a relatively common CE due to 
isolation during the COVID-19 pandemic. In such conditions, the 
psychological pressure faced by the occupants may lead to 
metabolic disorders. This can in turn disrupt the bidirectional 
transmission of the gut–brain axis, causing health problems such 
as anxiety and circadian rhythm disorders (Risberg et al., 2004; 
Nie et al., 2020). Most studies of the impact of CEs on health have 
concentrated on ergonomics, behavior, and other such factors, but 
not on the composition of gut microbiota. This study investigates 
the effect of a strict CE (limited living space, information isolation, 
normal work, and rest time) on the composition of the gut 

microbiota and health indicators (UA content, sleep time, etc.) 
and statistically analyzes relevant correlations.

The CE is a complex system with components such as 
environmental microorganisms, noise, and lighting that have 
been shown to significantly impact health (Gemignani et  al., 
2014; Connaboy et al., 2020). We showed that CEs have different 
effects on the health indicators, such as UA, RBC, and S, of 
subjects in the Bla and Bi groups. UA (2, 6, 8-trioxypurine) is the 
end product of purine metabolism (Ridi and Tallima, 2017). 
However, when the metabolic balance of UA is disrupted, there 
is excessive retention of UA in the joints and elsewhere in the 
body; this causes conditions such as gout and diabetes 
(Vangipurapu et al., 2020). This study shows, for the first time, 
that CEs significantly increase the UA content in urine, possibly 
as a result of abnormal metabolism. Studies have shown that UA 
is a biomarker of the oxidative stress state of the intestinal 
environment (Wang et al., 2022). Our results indicate that the 
intestine might be under oxidative stress in people in CEs. In 
addition to UA, RBCs were abnormally increased in the urine of 
subjects in the Bla group. There are almost no RBCs in normal 
urine, but they may enter the urine when glomerular filtration is 
damaged. This indicates a problem with renal permeability in the 
Bla group subjects exposed to a CE. Most of the subjects in the 
Bla group also had insomnia, depression, anorexia, and other 
health problems. Thus, in a CE, the health indicators of subjects 
may be closely linked to changes in the gut microbiota through 
the gut–brain axis (Wei et al., 2022).

A B C D

E F G H

FIGURE 6

Linear regression analysis of gut microbiota characteristics with different health indicators. (A) Linear regression of gut microbiota with UA content 
at day 1 (T1); (B) Linear regression of gut microbiota with sleep time at day 1 (T1); (C) Linear regression of gut microbiota with RBC counting at day 
1 (T1); (D) Linear regression of gut microbiota with UA content at day 14 (T2); (E) Linear regression of gut microbiota with RBC counting at day 14 
(T2); (F) Linear regression of gut microbiota with health conditions at day 14 (T2); Y-axis is the β diversity (NMDS) sorting axis. (G) Linear regression 
of gut microbiota with sleep time at day 14 (T2); (H) RDA (Redundancy analysis) of gut microbiota with health status. The length of the health 
factor arrow can represent the influence of the factor on the gut microbiota. The angles between the arrows represent positive and negative 
correlations.
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FIGURE 7

Correlation analysis of gut microbiota composition with different health indicators. (A) Correlation analysis between relative  
abundance of gut microbiota and indicators on genus level at day 1 (T1); (B) Correlation analysis between relative abundance of gut 
microbiota and indicators on genus level at day 14 (T2); (C) MaAslin (Multivariate Association with Linear Models) analysis between 
relative abundance of Streptococcus and UA content; (D) MaAslin analysis between relative abundance of UCG-002 and UA content; 
(E) MaAslin analysis between relative abundance of Klebsiella and sleep time; (F) MaAslin analysis between relative abundance of  
CAG-352 and sleep time; (G) MaAslin analysis between relative abundance of Bifidobacterium and RBC counting; (H) MaAslin analysis 
between relative abundance of Ruminococcus_torques and RBC counting; (I) MaAslin analysis between relative abundance of  
Klebsiella and health conditions; (J) MaAslin analysis between relative abundance of Coprococcus and health conditions. *p  < 0.05, 
**p  < 0.01, ***p  < 0.001.
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The classification of enterotypes provides a reliable framework 
to understand the microbial diversity of healthy and diseased 
individuals (Arumugam et al., 2011). The gut microbiota of the 
subjects was clearly different and could be divided into Bi and Bla 
groups, and this is not consistent with the traditional enterotype 
analysis (Falony et al., 2016). However, there are only 12 subjects 
in this study, the enterotype of people in CE still needs a large 
number of samples for in-depth analysis. The difference in gut 
microbiota between enterotypes may affect the metabolic 
phenotype and responses to diet, pressure, and the external 
environment, thus affecting human health (Wang et  al., 2014; 
Zhong et al., 2019; Levy et al., 2020).

The gut microbiota not only affect host digestion and metabolic 
regulation but also modulate the hosts’ mental state and immune 
function (Jameson and Hsiao, 2018; Simpson et al., 2021; Jose et al., 
2022). We found a significant difference in the adaptability of the Bi 
and Bla groups to a CE. The UA content in the subjects’ urine was 
positively correlated with the abundances of UCG-002, Coprococcus, 
Ruminococcus, Fusicatenibacter, and other bacterial genera, which 
may affect UA metabolism (Chu et al., 2021). Studies have shown 
significant differences in the composition of gut microbiota between 
patients with hyperuricemia and healthy individuals, with the 
imbalance of gut microbiota being related to an increase in UA (Guo 
et al., 2016; Wei et al., 2022). We found that the relative abundance of 
Bifidobacterium was significantly higher in the Bi group than in the 
Bla group. Although we did not find a significant association between 
Bifidobacterium and the UA content, other studies have shown that 
Bifidobacterium promotes the degradation of UA in the gut (Guo 
et al., 2016; Méndez-Salazar et al., 2021). In addition, Bifidobacterium 
has been linked to kidney disease and may reduce the severity of 
disease in rats (Hanifi et al., 2020; Wang et al., 2020). Klebsiella, a 
commensal genus present in the human gut, has also been detected 
in CEs such as submarines and the International Space Station 
(Solomon et al., 2020; Kvesi et al., 2022). We found that Klebsiella was 
significantly enriched in the gut microbiota of the Bi group and 
negatively correlated with the UA content. Correlation network 
analysis showed that Klebsiella was negatively correlated with 
Ruminococcus_torques_group, Coprococcus, and other genera. Thus, 
it might inhibit the proliferation of related strains and ameliorate gut 
microbiota disturbances (Oliveira et al., 2020; Flaugnatti et al., 2021).

In our experiments, although the subjects were working and 
resting normally, their health conditions were affected by the 
environment; they reported experienced anxiety, memory loss, 
and anorexia. In the Bla group, Ruminococcus_torques_group, 
Fusicatenibacter, Dorea, UCG-002, and other genera were 
significantly enriched and positively correlated with abnormal 
health indicators. Studies have shown that UCG-002, 
Ruminococcus, and CAG-352 are associated with reduced S 
(Grosicki et  al., 2020). UCG-002 and UCG-003 are the main 
bacterial genera mediating the positive correlation between 
chronic insomnia and Coronary Microvascular Dysfunction 
(CMD; Jiang et  al., 2022). Lack of sleep may lead to the 
accumulation of ROS in intestinal tissue, causing oxidative stress 
and disrupting the gut microbiota composition (Benedict et al., 

2016; Triplett et al., 2020). Additionally, the genera Fusicatenibacter 
and Dorea were significantly enriched in the Bla group; this may 
be associated with decreases in memory or cognitive abilities (Li 
et  al., 2019). Long-term social isolation in CEs could lead to 
anxiety-like behaviors that impair social relationships and reduce 
appetite (Donovan et al., 2020). UCG-002 enrichment in the gut 
of the Bla group has been strongly correlated with reduced 
appetite (Fluitman et al., 2022).

Recent studies have shown that Ruminococcus has an 
important impact on health (Reau and Suen, 2018). In the Bla 
group, Ruminococcus and Ruminococcus_torques_group were 
significantly enriched and negatively correlated with health 
indicators such as UA and RBC. Studies have shown that 
Ruminococcus plays an important role in digesting dietary 
carbohydrates, but that it is also associated with intestinal 
disorders (irritable bowel syndrome, inflammatory bowel disease, 
Crohn’s disease, etc.), immune disorders (allergies, eczema, 
asthma, etc.), and neurological disorders (autism, depression, etc.; 
Gerber et al., 2013; Hynönen et al., 2016; Crost et al., 2018; Henke 
et  al., 2021). However, Ruminococcus_gnavus_group was 
significantly enriched in the Bi group and negatively correlated 
with UA, RBC, and other indicators (p < 0.05). In germ-free mice, 
colonization with a single strain of Ruminococcus_gnavus_group 
effectively improved their spatial working memory (Coletto et al., 
2022). Chiumento et al. (2019) showed that ruminococcin C1, 
synthesized by Ruminococcus gnavus E1, significantly inhibits the 
proliferation of pathogenic bacteria in the intestine and alleviates 
gut microbiota disruption.

The research on the impact of confined space on health is still 
in a primary stage. This experiment was limited by the 
experimental conditions. The number of subjects was small and 
the experiment time was short, so the subjects were mainly subject 
to short-term stress in CE. The impact of long-term experiment 
time (>1 month) on health indicators needs to be further studied 
in CE, especially in the functional analysis of the core gut 
microbiota. It is expected to improve the health of the people in 
the CE by regulating the target flora.

Conclusion

In this study, the effect of a CE on gut microbiota and health 
conditions were investigated. We  documented significant 
differences in the adaptability of subjects of different enterotypes 
to the CE. Subjects with the Bi enterotype were more adaptable to 
the CE than those with the Bla enterotype, who experienced 
health problems such as elevated UA, lack of sleep, constipation, 
and abnormal mood. Gut microbiota analysis showed that the 
compositions of the Bi and Bla enterotypes were significantly 
different and that the abundances of Bifidobacterium, Dorea, 
Ruminococcus_torques_group, Ruminococcus_gnavus_group, 
Klebsiella, UCG-002, Ruminococcus, and other genera were 
significantly associated with health indicators. This study 
highlights individual differences in the impacts of CEs on human 
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health and the close relationship between the environment and 
gut microbiota.
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