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Accumulating plastics in the biosphere implicates adverse effects, raising 

serious concern among scientists worldwide. Plastic waste in nature 

disintegrates into microplastics. Because of their minute appearance, at a scale 

of <5 mm, microplastics easily penetrate different pristine water bodies and 

terrestrial niches, posing detrimental effects on flora and fauna. The potential 

bioremediative application of microbial enzymes is a sustainable solution for 

the degradation of microplastics. Studies have reported a plethora of bacterial 

and fungal species that can degrade synthetic plastics by excreting plastic-

degrading enzymes. Identified microbial enzymes, such as IsPETase and 

IsMHETase from Ideonella sakaiensis 201-F6 and Thermobifida fusca cutinase 

(Tfc), are able to depolymerize plastic polymer chains producing ecologically 

harmless molecules like carbon dioxide and water. However, thermal stability 

and pH sensitivity are among the biochemical limitations of the plastic-

degrading enzymes that affect their overall catalytic activities. The application 

of biotechnological approaches improves enzyme action and production. 

Protein-based engineering yields enzyme variants with higher enzymatic 

activity and temperature-stable properties, while site-directed mutagenesis 

using the Escherichia coli model system expresses mutant thermostable 

enzymes. Furthermore, microalgal chassis is a promising model system for 

“green” microplastic biodegradation. Hence, the bioremediative properties 

of microbial enzymes are genuinely encouraging for the biodegradation of 

synthetic microplastic polymers.
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1. Introduction

Plastics have a lot of good qualities, including weightless and stable physical 
properties, making them indispensable and highly resilient materials. The massive plastic 
production, which exponentially started in the 1950s, and the widespread usage of 
plastics have resulted in a large volume of post-consumer waste being dumped in landfills 
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or marine environments (Jambeck et  al., 2015; Geyer et  al., 
2017). In a recent United Nations Environment Programme 
(UNEP) report, around 400 million metric tons of plastic waste 
were produced annually (UNEP (United Nations Environment 
Programme), 2021). Experts believe that by 2060, global plastic 
waste production will be  tripled, which half will end up in 
landfills, and the rest will be  distributed in the environment 
(Organization for Economic Co-operation and Development, 
2021). Thus, concrete environmental regulation and waste 
disposal management should be  rationalized to control this 
impending environmental issue.

Plastic biodegradation is a natural process. Without human 
interference, the natural breakdown of plastic litter can occur 
via weathering, biodeterioration, and biofragmentation (Ojeda 
et al., 2011; Miles et al., 2017; Syranidou et al., 2019). However, 
this innate route is generally gradual. A plastic item can 
be  degraded entirely after a hundred to thousand years 
(Delaney, 2013). Weathered or fragmented plastic items are 
significant sources of plastic particles called microplastics 
(MPs; Ter Halle et al., 2016; Kalogerakis et al., 2017). MPs are 
polymers with a size of <5 mm (about 0.2 in). MPs can 
be categorized into primary or secondary MPs (Arthur et al., 
2009; Lehtiniemi et al., 2018). The primary MPs are product 
additives found in personal care and cosmetics (Habib et al., 
2020), paint coatings, cleaning agents, and tire wear (Verschoor 
et al., 2016), to name a few. While secondary MPs originate 
from degraded plastic waste, such as water bottles (Winkler 
et al., 2019) and carry bags (Yurtsever and Yurtsever, 2018). 
Despite their different origins, both primary and secondary 
MPs are suspended in open waters (Han et al., 2020), in water 
columns (Choy et al., 2019), or embedded in the soil (Liu et al., 
2018). MPs are chemically derived from various synthetic 
polymers, viz. polyethylene (PE), polypropylene (PP), polyvinyl 
chloride, polystyrene (PS), and polyamide (PA; Lise Nerland 
et  al., 2014; Lin et  al., 2018), that appear in different 
morphologies (i.e., fibers, fragments, beads), colors, and length. 
Because of their minute size, MPs cause detrimental effects on 
flora and fauna (Cao et al., 2017; Rodriguez-Seijo et al., 2017; 
de Souza Machado et al., 2019).

Bioprospecting is a process that explores biological 
products from plants, animals, and microorganisms (Ramesha 
et al., 2011). Bioprospecting offers a sustainable solution to 
many impending environmental issues like microplastic 
pollution. Many microorganisms can secrete enzymes with 
bioremediative potential against plastic particles (Table  1). 
These enzymes have shown remarkable biodegradation against 
various polymers and toxic compounds (Bhandari et  al., 
2021). The current waste disposal practices are inadequate in 
regulating litter quantities. As a result, there is a snowballing 
interest in exploiting efficient microbes to degrade many types 
of plastic. Therefore, this minireview paper focuses on the 
microbial enzymes involved in plastic polymer biodegradation, 
which offers a ‘bird’s-eye view’ of the bioremediative potential 
to assimilate microplastics.

2. Factors affecting plastic 
biodegradation process

Abiotic-biotic factors have essential roles in the biodegradability 
of plastics. Abiotic factors, such as temperature, pH, light, and 
humidity, crucially influence biodegradation (Gewert et al., 2018; 
Oluwasina et al., 2019; Singh et al., 2019; Arisa-Tarazona et al., 
2020). These factors enhance the hydrolysis of plastic polymers 
leading to chain scission. The scission allows biotic factors (i.e., 
microorganisms) to further polymer degradation. Temperature 
affects microbial diversity and activity (Zoungranan et al., 2020). 
Temperatures over 30°C decelerate plastic breakdown but increase 
microbial species abundance, which improves the biodegradation 
rate by 20% (Zoungranan et  al., 2020). At the same time, pH 
promotes microbial growth and enzymatic activity that affects 
biodegradation. At 0°C with pH 3 and 11, MPs showed brittleness 
and fragmentations (Arisa-Tarazona et al., 2020). Furthermore, 
photolysis using UV light improves plastic degradation and applies 
as a pre-treatment method. Synthetic plastics exposed to UV for 
12 months have produced fragments with decreasing sizes (Song 
et  al., 2017). Humidity is a significant environmental factor 
influencing plastic biodegradability, as well. Humidity may 
negatively or positively stimulate microbial growth and activity. 
High moisture content would increase biodegradation, but 
excessive moisture content hinders biodegradation due to dilution 
effects (Oluwasina et al., 2019).

Moreover, the overall plastic biodegradation is also affected by 
the plastic’s surface area and polymer characteristics. High-
molecular weight synthetic plastics (e.g., PE and PP) have reduced 
hydrophilicity because of their intact polymer chains and are thus 
more difficult to degrade than low-molecular weight plastics 
(Kawai, 1995). In addition, the absence of functional groups 
attribute to the durability of plastics. Some plastic additives have 
pro-oxidant functional groups with hydrophilic characteristics 
(Chiellini et  al., 2006; Harshvardhan and Jha, 2013) and are 
receptive to attack by microbial enzymes, light, and water. Taken 
together, the abiotic-biotic factors determine the efficiency of 
microplastic biodegradation. However, the structural complexity 
of synthetic polymers affects the actions of these factors. Factors 
affecting the plastic biodegradation were discussed in many 
comprehensive review papers (Shah et al., 2008; Tokiwa et al., 
2009; Yuan et al., 2020; Shilpa Basak and Meena, 2022).

3. Biodegradation of 
microplastics  by microbial 
enzymes

3.1. Microbial enzymes involved in 
biodegradation of synthetic polymers

Because microorganisms can produce enzymes that enable 
them to use plastic as a source of energy, microbes are ideal 
candidates for reducing plastic waste in the environment. 
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Gambarini et al. (2021) identified a substantial number of putative 
microbial plastic degraders belonging to 12 different microbial 
phyla, of which just seven phyla have reported degraders to date. It 
indicates that bacterial and fungal phyla have a significant untapped 
potential for discovering enzymes that can degrade plastics. In fact, 
a broad family of microbial enzymes was already been isolated, 
such as hydrolases, laccases, peroxidases, and lipases that showed 
degradation of synthetic plastics. Though the differences between 
fungal and bacterial enzymes are not exclusively discussed in many 
literatures, their distinct physiologies are likely to differentially 
influence the rates of plastic biodegradation (Waring et al., 2013). 
Related studies found that most fungal enzymes have complete 
enzymatic systems for the depolymerization and mineralization of 
plastic (Blanchette, 1995; Nikhil et al., 2012; Zhu et al., 2016).

Since microbial enzymes are generally more stable than their 
plant and animal counterparts, microbes are gaining interest as a 
source of beneficial plastic-degrading enzymes. A notable example 
is the bacterial strain Ideonella sakaiensis 201-F6 that can degrade 
polyethylene terephthalate (PET). PET is one of the most widely 
used synthetic plastic, with an annual global output of over 50 
million tons (Bornscheuer, 2016). The strain 201-F6 produced 
cutinase-like serine hydrolases named IsPETase and IsMHETase 
(Yoshida et al., 2016). The PET degradation process can be divided 
into two steps: the nick generation step and the terminal digestion 
step (Joo et al., 2018). In the nick generation step, the IsPETase 
cleaves one ester bond causing the formation of a nick in PET 

polymer chain, resulting in the generation of two PET chains with 
different terminals: terephthalic acid (TPA)-terminal and 
hydroxyethyl (HE)-terminal. Then, in the terminal digestion step, 
two PET chains having those termini are digested into bis-(2-
hydroxyethyl)terephthalic acid (BHET) and mono-(2-
hydroxyethyl)terephthalic acid (MHET) monomers (Joo et al., 
2018). Subsequent digestion of these molecules, which IsMHETase 
breaks down MHET, produces ecologically harmless terephthalic 
acid (TPA) and ethylene glycol (EG) by-products (Carniel et al., 
2017; Joo et  al., 2018; Knott et  al., 2020; Figure  1). Through 
assimilation and mineralization, TPA and EG are converted into 
carbon dioxide and water. However, one of the limitations of using 
IsPETase is its low thermal stability (Yoshida et al., 2016; da Costa 
et  al., 2021). Nevertheless, because of impressive enzymatic 
activity against PET, IsPETase has been subjected to structural 
improvements using various biotechnological tools.

A variety of cutinases have been identified to degrade PET as 
well. Cutinases have been found in fungi and bacteria, such as 
Fusarium solani pisi (Stavila et al., 2013) and Thermobifida fusca 
(Chen et al., 2010). The cutinases from both groups belong to the 
α/ß-hydrolase superfamily with similar spatial structures, catalytic 
characteristics, and substrate specificities. Despite the similarities, 
fungal and bacterial cutinases lack sequence homology. Thus, 
cutinases can be classified into prokaryotic and eukaryotic cutinase 
subfamilies (Chen et al., 2008). The T. fusca cutinase (Tfc) was 
reported to improve PET degradation with microbial pre-treatment. 

TABLE 1 List of some reported plastic-degrading enzymes from various microbial strains against various polymer types.

Microbial 
strain

Source/
Sample type

Identified Molecular 
weight (kDa)

Polymer type Size Ref
enzyme (mm)

Amycolatopsis 

orientalis ssp. 

orientalis

Culture collection PLAase I 24 PLA powder and 

microfilm

0.3–0.5 Li et al. (2008)

PLAase II 19.5

PLAase III 18

Aspergillus flavus 

PEDX3

Wax moth gut Laccase-like multicopper 

oxidases

– LDPE <0.2 Zhang et al. 

(2020)

Bacillus subtilis Soil Polyurethanase 28 Impranil DLN (PU) 0.002 Rowe and 

Howard (2002)

Humicola insolens Commercial 

product (Novozym© 

51,032)

Cutinase 32 PET particles 5 Carniel et al. 

(2017)

Ideonella sakaiensis 

201-F6

PET bottle recycling 

site

PETase 24 PET film 6 Yoshida et al. 

(2016)

Pseudomonas 

aestusnigri VGXO14

Crude oil-polluted 

marine sand

Hydrolase 32 Impranil DLN-SD 

(PE-PU)

0.1 Bollinger et al. 

(2020)

Synechococcus sp. 

PCC 7002

Culture collection Esterase - PE nanosphere 0.0002–0.0099 Machado et al. 

(2020)Hydrolase -

Thermobifida fusca 

KW3 (DSM 6013)

Culture collection Hydrolase TfCut2 - PET nanoparticles 0.1–0.16 Barth et al. 

(2015)

Carboxylesterase TfCa 52.94 PET particles 04-Aug Billig et al. (2010)

Thielavia terrestris 

CAU709

Soil Cutinase TtcutA 25.3 PET film 5 Yang et al. (2013)
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Microbial pre-treatment with Stenotrophomonas pavanii JWG-G1 
reduced PET surface hydrophobicity, causing an easy binding for 
Tfc (Huang et al., 2022). Microbial pre-treatment could be a novel 
approach for microplastic biodegradation and to increase the 
degradation rate. The synergistic action of JWG-G1 and Tfc initially 
starts with surface binding and biofilm development of JWG-G1, 
which leads to the formation of functional groups from breaking 
ester bonds to yield PET oligomers. Like IsPETase and IsMHETase, 
Tfc hydrolyzes PET oligomers (Huang et  al., 2022) to produce 
carbon dioxide and water molecules. Furthermore, several 
microbial strains were reported of producing cutinases with 
beneficial bioremediative applications. Examples are Aspergillus sp. 
RL2Ct (Kumari et al., 2016), Pseudomonas cepacia NRRL B-2320 
(Dutta et al., 2013), and Aspergillus nidulans that produced thermo-
alkaline cutinase called ANCUT2 (Bermúdez-Garcia et al., 2017). 
Cutinases also degrade other polymers, like poly(butylene 
succinate) (PBS; Hu et al., 2016) and polyester (Baker et al., 2012).

Another family of plastic-degrading enzymes are laccases that 
primarily described in fungal lignin biodegradation. However, 
laccases have been identified in both bacterial and fungal species. 
Laccases are copper-dependent enzymes that perform oxidation 
reactions of an oxygen molecule to water (Mayer and Staples, 2002; 
Martínez et al., 2005; Munk et al., 2015). These enzymes showed 
degradation of PA, PE, and PP (Fujisawa et al., 2001; Sheik et al., 
2015). The degradation steps are perhaps similar to the lignin 
decomposition, which proceeds by oxidative reactions that breaks 
carbon-to-carbon bonds or ether linkages to liberate functional 
groups (Asina et al., 2016). Fungal species like Cochliobolus sp. 
(Sumathi et al., 2016), Phlebia spp. (Arora and Rampal, 2002), 

Podospora anserina (Xie et al., 2014), and Yarrowia lipolytica (Lee 
et al., 2012) were reported of laccase production and involved in 
break down of lignin. Bacterial laccases, on the other hand, are 
more stable at varying conditions, like pH and temperature, than 
fungal laccases (Chauhan et  al., 2017), which indicates an 
encouraging application in microplastic bioremediation. Soil 
bacterium Azospirillum lipoferum produced laccase-like 
polyphenol oxidase that was thermostable up to 70°C with optimal 
pH of 6.0 (Diamantidis et al., 2000). Other strains, such as Bacillus 
subtilis MTCC 2414 (Muthukumarasamy et al., 2015), Microbulbifer 
hydrolyticus IRE-3 (Li et al., 2020), Pseudomonas extremorientalis 
BU118 (Neifar et al., 2016), and Serratia marcescens MTCC 4822 
(Kaira et al., 2015), were reported of producing laccases with broad 
deterioration activities against pollutants, including plastics. 
Nevertheless, the industrial application of laccases is restricted due 
to some limitations, like low yield and high-cost production 
(Akpinar and Ozturk Urek, 2017; Chenthamarakshan et al., 2017).

Peroxidases are a large family of oxidoreductases known to 
catalyze the oxidation of many inorganic and organic substrates by 
using hydrogen peroxide (Adewale and Adekunle, 2018; Twala 
et al., 2020). Most of the peroxidases were reported from various 
fungal species and involved in lignin degradation with laccases. 
The addition of manganese peroxidase showed increased PE 
degradation by lignin-degrading fungi (Iiyoshi et al., 1998), which 
is like the copper-induced laccase activity of IRE-3 (Li et al., 2020), 
improves biodegradation rates. Trace elements, such as manganese 
and copper, protect cells from oxidative stress resulting (Bonnarme 
and Jeffries, 1990; Levin et al., 2002) in the retention of polymer-
degrading activities. Marine fungus Alternaria alternata FB1 

FIGURE 1

PET degradation by the enzymes PETase and MHETase. The Gram-negative bacterium I. sakaiensis 201-F6 is able to produce IsPETase and 
IsMHETase enzymes. (A) The IsPETase degrads polythylene chain producing bis(2-hydroxyethyl)terephthalate(BHET) or mono(2-hydroxyethyl) 
terepththalate(MHET). (B) While IsMHETase are converting MHET to non-toxic compounds: terephthalic acid and ethylene glycol. (C) By 
assimilation, these molecules converted to a carbon dioxide as byproduct of microbial conversion of PET.
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efficiently degraded PE polymers by producing 153 exoenzymes, 
including peroxidase and laccase, and caused a 95% reduction in 
the polymer’s molecular weight (Gao et al., 2022). Compared to 
fungal peroxidase, studies about bacterial peroxidases are limited. 
Future biodegradation studies of plastics using bacterial peroxidase 
could open new avenues for breaking down many synthetic plastics.

Together with cutinase and hydrolase, lipase is one of the 
common enzymes associated with plastic degradation. Lipases have 
been produced in many bacterial and fungal strains. As discussed 
earlier, increasing molecular weight hinders the biodegradation 
rate, and specific fungal lipases can break down high-molecular 
weight polymers. Lipase is one of the best biocatalysts for PET 
degradation. Lipase B (CALB) from the yeast Candida antarctica, 
formerly Pseudozyma antarctica, is known for its high selectivity 
and catalytic activity. The action of CALB is similar to IsPETase and 
IsMHETase activities (Boneta et al., 2021). CALB demonstrated 
high-efficiency hydrolysis steps and polymer scission that led to the 
accumulation of TPA (Carniel et al., 2017; de Castro and Carniel, 
2017; de Castro et  al., 2017). Moreover, CALB and Humicola 
insolens cutinase resulted in complete PET depolymerization with 
a mole fraction of up to 0.88 and a 7.7-fold increase in PET to yield 
TPA (Carniel et al., 2017). Another, a purified lipase (CLE) from 
the Cryptococcus sp. strain S-2, effectively hydrolyzed high-
molecular weight plastic polymers like poly (lactic acid) and other 
bio-based polymers, such as polybutylene succinate, poly 
(ɛ-caprolactone), and poly (3-hydroxybutyrate), at a concentration 
of 0.8 μg/ml in 88 h (Masaki et al., 2005). It was found that the 
hydrolytic action involves the activation of a catalytic triad 
following the formation of tetrahedral intermediates that stabilizes 
the enzyme structure (Yoshitake et al., 2009). Hydrolysis produced 
volatile fatty acids and glycerols that eventually assimilated by the 
microorganisms to yield lipid acyl chains for cell membrane 
maintenance (Poddar et  al., 2020). Bacterial lipases are also 
recognized for breaking down plastic polymers like polyurethane 
(Gautam et al., 2007) and PET oligomers (Swiderek et al., 2022). 
Various bacterial species were reported to secrete novel lipases, 
including those from thermophilic and psychrophilic strains 
(Mobarak-Qamsari et al., 2011; Rabbani et al., 2013; Maiangwa 
et al., 2014). Members of mesophilic Bacillus spp. and Pseudomonas 
spp. have been described to produce lipases (Elwan et al., 1983; 
Khannous et  al., 2014; Jaiswal et  al., 2017) with potential 
microplastic biodegradation. However, the utilization of these 
enzymes in microplastic biodegradation has not been extensively 
explored. Further studies should be performed on the possible 
polymer degradation and assimilation of degradation by-products.

3.2. Advanced biotechnological 
approaches to enhance enzyme actions 
against microplastics

In order to overcome the possible limitations of microbial 
enzymes in the biodegradation of MPs, new strategies need to 
be  created. Researchers have recently demonstrated that 

biotechnological strategies improve enzyme structure and stability. 
One of the biotechnological tools widely used in protein 
engineering—the structural-based modeling, yields enzyme 
variants with higher enzymatic activity and temperature-stable 
properties. Son et al. (2020) successfully created IsPETaseS121E/D186H/

S242T/N246D variant with enhanced substrate binding affinity and 
thermo-stable characteristics (Ma et al., 2018; Son et al., 2020; 
Meng et  al., 2021). These enzyme variants exhibited 58-fold 
greater activity than the wild-type IsPETase (Son et al., 2020). 
Furthermore, site-directed mutagenesis (SDM) has efficiently 
been applied in degradation studies. Usually, an Escherichia coli 
strain is used to carry plasmid-encoding mutant and to express 
desirable enzymes. Furukawa et  al. (2019) showed that the 
hydrolysis activity of mutant thermostable cutinase from T. fusca 
(TfCut2) expressed in the E. coli model system was 12.7 times 
higher than the wild-type TfCut2. Hence, the application of SDM 
will find bioremediative potential against MPs.

Microalgae have been extensively studied for biotechnological 
applications, mainly to make biofuels. However, several studies 
have reported the bioremediative potential of microalgae as 
microbial chassis. In synthetic biology, a chassis is an organism 
that shelters and sustains genetic components by supplying 
resources needed for cellular functions (Chi et  al., 2019). 
Numerous functional expression studies were conducted using a 
green alga (Kim et al., 2020) and a diatom (Moog et al., 2019). 
Therefore, using eukaryotic microalgae instead of bacteria as 
model systems provide a viable and eco-friendly method for the 
bioremediation of microplastic-polluted water.

4. Discussion

Plastic production has been increasing for the past decades 
due to the high demands of different sectors. Anthropogenic 
activities and improper waste disposal are the leading causes of 
rampant plastic pollution in the environment. Since the 
COVID-19 pandemic occurred in 2020, global plastic pollution 
has increased (Ammendolia et al., 2021), which could escalate the 
number of MPs (Liang et al., 2022). Thus, microplastic distribution 
is an emerging environmental issue that needs a long-term and 
sustainable solution. Bioremediation is a sustainable method to 
mitigate quantities of plastic contaminants, including MPs. 
Numerous studies stated the promising application of microbe-
enzyme systems for the bioremediation of pollutants. Some of the 
prospective microbes are yeast (Tkavc et al., 2018), algae (Rehman 
et al., 2006), fungi (García-Delgado et al., 2015), and bacteria (Fu 
et al., 2021). This minireview paper concluded that the various 
enzymes of microbial origin have promising bioremediative 
applications in degrading synthetic microplastic particles.

Since enzymes could be  produced extracellularly or 
intracellularly, studies focusing on intracellular enzymes are 
minimal. Nevertheless, a recent work published by Mohanan et al. 
(2022) demonstrated cloning and expression of intracellular 
lipases, which effectively hydrolyzed short- and medium-chain 
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length plastics suggesting a potential bioremediative approach in 
microplastic biodegradation. Other innovative approaches, such 
as nanotechnology and enzyme immobilization, have started 
gaining attention for future applications to degrade MPs. The site-
directed immobilization strategy for PETase on magnetic 
nanoparticles revealed a promising strategy for microplastic 
reduction (Schwaminger et al., 2021). Additionally, the application 
of microbial consortia in microplastic bioremediation is 
exceedingly encouraging. The synergistic actions of microbial 
consortia and enzymatic activities from various microbial 
networks should be thoroughly investigated. Enzyme cocktails 
also showed enhanced degrading action against complex polymers 
(Mekasha et  al., 2016; Contreras et  al., 2020), which can 
be  considered an alternative option for microplastic 
bioremediation, especially for recalcitrant MPs. Given the 
seemingly endless potential of microorganisms and their constant 
adaptation to the changing environment, it is expected that further 
research in this area will soon lead to realistic biodegradation 
procedures that can be applied on a commercial scale.
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