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Salmonella enterica subsp. enterica serovar Derby (S. Derby) is one of the most 

common serotypes responsible for salmonellosis in humans and animals. The 

two main sequence types (ST) observed in China are ST40 and ST71, with 

ST40 presently being the most common in Shenzhen. Recent years have 

seen an increasing number of cases of salmonella caused by ST40 S. Derby, 

but the epidemiology is not clear. We  gathered 314 ST40 S. Derby isolates 

from food and patient samples for 11 years in Shenzhen; 76 globally prevalent 

representative strains were also collected. Whole-genome sequencing (WGS) 

combined with drug resistance phenotyping was used to examine population 

structural changes, inter-host associations, drug resistance characteristics, 

and the food-transmission risks of ST40 S. Derby in Shenzhen over this 

period. The S. enterica evolutionary tree is divided into five clades, and the 

strains isolated in Shenzhen were primarily concentrated in Clades 2, 4, and 

5, and thus more closely related to strains from Asian (Thailand and Vietnam) 

than European countries. Our 11-year surveillance of S. Derby in Shenzhen 

showed that Clades 2, 4, and 5 are now the dominant epidemic branches, 

and branches 2 and 5 are heavily multi-drug resistant. The main resistance 

pattern is ampicillin-tetracycline-ciprofloxacin-chloramphenicol-nalidixic 

acid-streptomycin-sulfamethoxazole/trimethoprim. This may lead to a trend 

of increasing resistance to ST40 S. Derby in Shenzhen. Using a segmentation 

of ≤3 SNP among clone clusters, we discovered that Clades 2 and 4 contained 

multiple clonal clusters of both human- and food-derived strains. The food-

derived strains were mainly isolated from pig liver, suggesting this food has a 

high risk of causing disease outbreaks in Shenzhen.
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Introduction

Non-typhoidal Salmonella (NTS) is a significant zoonotic 
food-borne pathogen and one of the most serious public health 
issues worldwide (Majowicz et al., 2010). NTS can result in a range 
of clinical presentations, most frequently appearing as very minor 
gastrointestinal symptoms; however, the infection can occasionally 
become life-threatening, especially in young children and older 
adult individuals (Ruiz et al., 2004). The global burden of NTS 
gastroenteritis is estimated to be 93.8 million cases and 155,000 
deaths per year (Balasubramanian et al., 2019). Food of animal 
origin is a primary vector of human Salmonella infection and has 
been linked to outbreaks of human Salmonella enterica subsp. 
enterica serovar Derby (S. Derby), a serotype that primarily affects 
high-risk people and was first isolated by Peckham in 1923 from 
pork patties that caused food poisoning (Zheng et al., 2017). In 
Europe, S. Derby is the most common serotype isolated from 
pork. It accounts for 22.9% of all isolates, followed by S. 4,[5],12:i:- 
(i.e., the monophasic variant of S. typhimurium) (22.3%) and 
S. typhimurium (20.6%) (EFSA, 2016). In the United  States, 
S. Derby is the fourth most common isolate of non-human origin 
(Nguyen et al., 2015), while in China, it is the most common 
isolate from the sera of slaughtered pigs and the third most 
common from sera of clinical cases (Deng et al., 2012). Hence, 
S. Derby is the most common Salmonella serotype found in many 
countries, including countries in Europe, America, and Asia, and 
has been linked to several food-borne disease outbreaks in 
recent years.

In 1946, S. Derby caused an epidemic in Australia that affected 
68 infants and resulted in the deaths of 10 babies (Mushin, 1948). 
In the United  States, an outbreak in 1963 associated with 
contaminated eggs involved 822 cases in 53 hospitals (Sanders 
et al., 1963). In Germany, an outbreak between late 2013 and early 
2014 associated with pork contaminated with S. Derby involved 
145 patients, the majority of whom were elderly (Simon et al., 
2018). In addition to these well-known foodborne outbreaks, 
S. Derby is frequently implicated in causing widespread human 
cases not associated with any specific food. S. Derby is the fifth 
most common serovar isolated from humans in Europe and 
caused 612 confirmed cases in 2017. Cai et al. investigated the 
contamination of pork samples from slaughterhouses and farmers’ 
markets in Jiangsu Province, and S. Derby was the serovar most 
frequently isolated (Cai et al., 2016). In China, S. Derby is the third 
most commonly reported serovar in clinical cases (Ran et  al., 
2011) and the most frequent serovar in infants and toddlers (Cui 
et al., 2009).

Antibiotic resistance to Salmonella is one of the most important 
public health problems worldwide and has increased significantly 
over recent years due to the long-term use of antibiotics in animal 
production practices (Barza, 2002). Multidrug-resistant (MDR) 
Salmonella may pose a serious threat to humans through the food 
chain, potentially contributing to long-term illness, disability, and 
death (Valdezate et al., 2005). The U.S. Centers for Disease Control 
and Prevention (CDC) estimated that at least 2 million people in 

the United States are infected with drug-resistant bacteria each year, 
resulting in at least 23,000 deaths and posing a serious threat to 
human health (Hu et al., 2020). Salmonella antibiotic resistance has 
increased over the last 20 years (Zhang et  al., 2006). This 
phenomenon is especially severe in China. Here, Salmonella isolates 
in the 1960s were not multi-drug resistant, but since the mid-1970s, 
when antibiotics in animal feed became popular, a large number of 
new drug-resistant strains have emerged (Lin et al., 2004).

According to the Salmonella multilocus sequence typing 
(MLST) database (Maiden et al., 2013), there are more than 20 
different sequence types associated with S. Derby, and the 
prevalence of these varies among countries; for example, six 
different sequence types (ST39, ST40, ST71, ST678, ST682, and 
ST683) are associated with S. Derby in Denmark (Litrup et al., 
2010), and there are five in Germany (ST39, ST40, ST71, ST682, 
and ST774), of which ST39 is the most prevalent (Hauser et al., 
2011). In China, there are two main sequence types, ST40 and 
ST71, with ST40 being the most common (Li et al., 2016), ST40 is 
also the current most common ST in Shenzhen. ST classification 
is based on the number of different alleles present, but these 
different STs are not sufficient to describe the evolutionary 
relationship of affinities between different isolates. In recent years, 
rapid developments in technology have meant whole-genome 
sequencing (WGS) has become more convenient and versatile. In 
addition to predicting drug resistance genes, WGS data can also 
be used in species identification, serotype prediction, the screening 
of virulence genes, and the rapid tracing of disease outbreaks. 
WGS is gradually becoming the most important prevention and 
control tool for providing early warnings of infectious disease 
epidemics (You et al., 2022).

Salmonella infection is a major food safety concern, with 
S. Derby rated among the top  10 human-derived Salmonella 
serotypes according to data from the Food Safety Risk Surveillance 
of Shenzhen (FSS), infectious diarrhea pathogen spectrum 
sentinel surveillance (IDDS), and food poisoning outbreak 
surveillance (FDOS) in Shenzhen (Lin et al., 2019). Very little 
research on the genomics of S. Derby has been conducted in 
China to date, and often the source of illness remains unknown. 
We sequenced whole genomes of S. Derby isolates collected by 
IDDS, FDOS, and FSS in Shenzhen from 2011 to 2021 and 
compared them with those of representative global S. Derby 
isolates. Understanding changes in population structure, host 
associations, resistance characteristics, and the transmission risk 
of ST40 S. Derby in foods in Shenzhen can provide an important 
reference for subsequent salmonellosis preventive measures and 
infection source tracing, and the identification of high-risk foods.

Materials and methods

Strain sources

The Shenzhen CDC has established a functioning 
Foodborne Diseases surveillance network consisting of three 
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systems: FDOS, IIDDS, and FSS. We sequenced all the S. Derby 
isolates archived between 2011 and 2021. No statistical 
methods were used to determine sample size, and there were 
no data excluded from the analyses. The experiments were not 
randomized (Yang et al., 2022). FSS isolated 129 Salmonella 
strains from food samples (mainly livestock meat and poultry 
meat). A sentinel surveillance by IDDS and FDOS collected 
188 human samples from stool samples of outpatients with 
diarrhea. Because data collection is part of the infectious 
disease surveillance, individual informed consent was waived. 
All strains were isolated, purified, and cultured using a 
VITEK2- compact fully automatic microbial identifier 
(BioMérieux, France) and were identified as S. Derby serotype 
by glass-slide agglutination according to the White 
Kauffmann-Le Minor method (Grimont and Weill, 2007).

In total, 129 isolates were collected from food, including 
livestock meat (73.6%, 95/129), poultry meat (13.2%, 17/129), 
frozen food (4.7%, 6/129), aquatic products (3.9%, 5/129), ready-
to-eat foods (3.1%, 4/129), and pastries (1.6%, 2/129). Salmonella-
infected livestock meat mainly included pig liver (44.2%, 42/95) 
and pork (42.1%, 40/95), and the others were beef (7.4%, 7/95) 
and pig kidney (6.3%, 6/95; Supplementary Figure S1A). FSS 
could not continuously conduct sampling because of new 
coronavirus epidemic, resulting in no strains isolated in 2020, 
and only one strain isolated in 2021. However, human-derived 
strains were detected every year, these data collections are part of 
infectious disease surveillance and sample collection was less 
affected by new coronavirus outbreak (Supplementary Figure S1B).

WGS and genomic datasets

Genomic DNA was extracted using the QIAamp DNA Mini 
Kit (QIAGEN, Hilden, Germany), according to the manufacturer’s 
instructions. WGS was performed by Tianjin Novozyme 
Bioinformatics (Tianjin, China). After passing the quality control 
assessment, a library was prepared using the NEBNextUltra DNA 
Library Prep Kit for Illumina (NEB, United States) with an average 
insert size of 350 bp for sequencing on the Illumina NovaSeq 6000 
platform. The average read length was 150 bp, the minimum 
theoretical coverage was 100×, and an average of 1.2 Gb clean data 
were produced for each isolate. The data presented in the study are 
deposited in the National Center for Biotechnology Information 
(NCBI) sequence read archive (SRA) under BioProject: 
PRJNA883032.

A total of 390 genomes were analyzed in this study, including 
314 newly sequenced S. Derby genomes from Shenzhen isolates 
and 76 S. Derby ST40 genomes from 12 countries worldwide 
obtained from the EnteroBase1 (Zhou et al., 2020). Single SRA 
accession numbers of all the strains and associated epidemiological 
data are listed in Supplementary Table S1.

1 http://enterobase.warwick.ac.uk

Bioinformatics analysis

Genomic contig sequences were obtained by de novo 
sequence splicing of genomic data from each strain using Shovill 
(v. 1.0.4; Seemann, 2018). Raw data were subjected to quality 
control using Trimmomatic2 (v. 0.39; Bolger et al., 2014) to obtain 
valid data. Genome assembly quality was assessed using QUAST3 
(Gurevich et al., 2013), and the mean N50 was 313,894 bp. Ab 
initio genome assembly was performed using SPAdes4 gene 
assembly software (v. 3.9.1; Bankevich et  al., 2012). Strain 
2014LSAL02547 (NCBI no. CP029486) was used as a reference 
strain for ST40 analysis (Sevellec et al., 2018). Mapping-based 
single-nucleotide polymorphism (SNP) typing was performed 
using Snippy5 (v. 4.3.6; Olawoye et al., 2020). Gubbins6 (Croucher 
et al., 2015) with default parameters was used for core genome 
de-recombination. The resulting SNP matrix of preserved sites 
was then used to construct a phylogeny tree with FastTree (v. 
2.1.10; Price et al., 2009) software and the maximum likelihood 
method, which was embellished using ITOL7 (Letunic and 
Bork, 2021).

Analysis of antibiotic resistance genes, 
Salmonella pathogenicity islands, 
plasmid replicons, and multi-locus 
sequence typing

Resistance genes and chromosomal mutation regions in 
assembled contigs were identified using Resfinder (v 0.3.2; 
Zankari et  al., 2012) with an identity threshold of 75% and 
coverage of 75%. Salmonella pathogenicity islands (SPIs) were 
detected using SPIfinder (v. 1.0; Roer et al., 2016) with default 
settings of coverage ≥75% and identity ≥75%. PlasmidFinder (v 
0.2.0.1; Carattoli and Hasman, 2020) was applied to predict 
plasmid replicons with sequence identity ≥80% and 
coverage ≥80%.

Each MLST sequence type (MLST-ST) was obtained by 
scanning the sequences of seven house-keeping genes (aroC, 
dnaN, hemD, hisD, purE, sucA, and thrA) against PubMLST 
typing schemes using mlst.2 (Carattoli and Hasman, 2020).

Antibacterial drug susceptibility testing

The Gram-negative aerobic bacterial susceptibility panel 
(Shanghai Xingbai Biotechnology Co., Ltd.) was used according 

2 https://github.com/timflutre/trimmomatic

3 https://github.com/ablab/quast

4 https://github.com/ablab/spades

5 https://github.com/ablab/snippy

6 https://github.com/nickjcroucher/gubbins

7 https://itol.embl.de/
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to the recommendations of Clinical and Laboratory Standards 
Institute document M100-S30, using Escherichia coli ATCC25922 
as the quality control strain. The minimum inhibitory 
concentrations of 17 antibacterial drugs, ampicillin (AMP), 
ampicillin/sulbactam (AMS), tetracycline (TET), meropenem 
(MEM), polymyxin E (CT), ertapenem (ETP), ceftazidime/
avibactam (CZA), tigecycline (TGC), cefotaxime (CTX), 
ceftazidime (CAZ), ciprofloxacin (CIP), azithromycin (AZI), 
chloramphenicol (CHL), nalidixic acid (NAL), streptomycin 
(STR), trimethoprim/sulfamethoxazole (SXT), and amikacin 
(AMK), were tested for S. Derby strains.

Results

Sequence type

Two different ST profiles were identified among the 317 
studied genomes: ST40 [aroC (19), dnaN (20), hemD (3), hisD 
(20), purE (5), sucA (22), thrA (22)] and ST71 [aroC (39), dnaN 
(35), hemD (8), hisD (36), purE (29), sucA (9), and thrA (36)]. The 
most frequent profile in the collection was ST40 (n = 314 
genomes), followed by ST71 (n = 3). All ST40 isolates were 
included in this study.

Phylogenetic analysis of Salmonella 
Derby

The genomes of local S. Derby ST40 samples from Shenzhen 
(n = 314) and 76 globally prevalent representative strains from 
France (n = 6), Germany (n = 4), Italy (n = 5), United Kingdom 
(n = 6), Poland (n = 17), Vietnam (n = 10), Thailand (n = 5), 
United States (n = 5), Australia (n = 3), Brazil (n = 1), and other 
Chinese provinces (n = 14) were analyzed based on SNP 
frequencies. A total of 4,963 core-SNP loci were detected. Chinese 
isolates were found to have significant diversity and could 
be  divided into five main and several small branches, with 
distances between strains within each branch of <215 SNPs. 
Chinese isolates were mainly concentrated in Clades 2 (41.3%, 
161/390), 5 (24%, 94/390), and 4 (17.9%, 70/390), with the 
remaining isolates concentrated in Clade 1 (0.8%, 3/390). Strains 
from Shenzhen, part of the Chinese inland city of Shandong, and 
other Asian countries (Thailand and Vietnam) were closely 
related. Strains from European countries were concentrated in an 
independent branch of Clade 3 and were distantly related to the 
Chinese strains (Figure 1). During the survey, Clades 2, 4, and 5 
were dominant. Clade 5 appeared in 2013 and stabilized after 
2016; both Clades 2 and 4 persisted during the 11 sampled years, 
but the proportion of the latter was variable, with multiple 
co-existing clonal clusters appearing in 2017 (Figure 2).

A total of 5,408 core-SNP sites were detected in the 314 strains 
isolated from Shenzhen. With reference to the cutoff set for 
S. enteritidis outbreak clonal clusters, we identified clonal clusters 

in the Shenzhen S. Derby ST40 maximum likelihood evolutionary 
tree, in which there were three SNPs across strains (Taylor et al., 
2015; Jiang et al., 2020). There were 11, 4, and 2 clusters in Clades 
2, 4, and 5, respectively (Figure  3). In an evolutionary tree 
constructed using ≤3 SNPs between two strains, 18 clusters 
involved 45 strains, with 2–4 isolates per cluster, differing by 0 ~ 3 
SNPs; three clonal clusters included only human strains (C1, C2, 
and C3), three clusters had both human and food strains (C4, C7, 
and C9), and 12 clusters comprised only food-derived strains (C5, 
C6, C8, C10, C11, C12, C13, C14, C15, C16, C17, and C18; 
Figure 4). Among the 45 strains involved, 34 were food-derived 
and 11 were human-derived. Most of the 34 food-derived strains 
(13/34), and all food-derived strains on C4 and C7, were from pig 
liver. We also found that most of the strains in the same clusters 
came from the same market or supermarket and were isolated at 
similar times (Figure 4).

Drug resistance genes, plasmid replicons, 
and virulence gene assays

To characterize the AMR profile of Shenzhen S. Derby isolates, 
we  first screened the genome sequence data to identify 
AMR-associated mutations and genes. A total of 45 different AMR 
mutations/genes were detected in 11 classes, including those 
involved in resistance to aminoglycosides (13 genes), β-lactams (7 
genes), sulfonamides (3 genes), TET (4 genes), fluoroquinolones 
(3 mutations and 6 genes), CHL (4 genes), methicillin (3 genes), 
macrolides (1 gene), polymyxins (1 gene), fosfomycin (1 gene), 
and rifampicin (2 genes). Aminoglycoside aac(6′)-Iaa and 
fosfomycin fosA7-resistance genes were detected in all strains. The 
quinolone-resistance genes mainly comprised oqxA/B (42%), 
aac(6′)-Ib-cr (25.6%), and qnrD1/S1/S2 (55.5%). The plasmid gene 
qnr was dominated by qnrS1. One and eight strains were detected 
carrying the gyrA p.S83F and p.D87N mutations, respectively. The 
blaTEM-1B allele was the most common β-lactam-resistance gene 
(28.7%), followed by blaOXA-1 (25.9%), which was also plasmid-
mediated. Sulfonamide-, chloramphenicol-, and rifampicin-
resistance genes were dominated by sul2 (58.4%), floR (53%), and 
arr-3 (25.2%), respectively.

Fifty-eight strains carrying 17 incompatibility group (Inc) 
plasmid replicons were detected among the 314 S. Derby ST40 
strains; the three most common were IncI1_1 (8.28%, 26/314), 
IncHI2_1 (7.32%, 23/314), and IncHI2A_1 (7.00%, 22/314), with 
each of the 58 strains carrying 1–5 plasmid replicons. All strains 
carried six pathogenicity islands (SPI-1, SPI-2, SPI-3, SPI-4, SPI-5, 
and SPI-9) simultaneously, and one strain carried both SPI-13 and 
SPI-14 (Table 1).

Antimicrobial susceptibility

The resistance genes found in Salmonella in food and patient 
samples from the 314 strains isolated in Shenzhen were generally 
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concordant with phenotype testing results. The 314 strains of 
S. Derby ST40 were resistant to 16 antibiotics, not including TGC, 
to varying degrees (0.3–90.54%; Table  2). TET resistance was 
closely related to the presence of tet(A), with 274 (95.5%) of 287 
TET-resistant strains encoding tet(A); while resistance to TGC, 
another antibiotic in the tetracycline class, was not detected. 
Resistance to β-lactams, including AMP (68.5%, 215/314), AMS 
(14%, 44/314), CZA (0.3%, 1/314), CAZ (1.3%, 4/314), and CTX 
(1.6%, 5/314), was detected, of which 79.5% (171/215) encoded at 
least one type of β-lactamase-associated gene, with blaOXA-1 (38.1%, 
82/215) and blaTEM-1B (42.3%, 91/215) being the most common. In 
addition, resistance to the sulfonamide antibiotics SXT (62.4%, 
196/314) and CHL (75.4%, 237/314) was detected; 83.2% 
(163/196) of strains resistant to sulfonamide antibiotics encoded 
at least one sulfonamide-resistance gene, and 73.4% of 
chloramphenicol-resistant strains contained floR (70.5%, 167/237) 

and cmlA1 (60.8%, 144/237) genes. Of the two azithromycin-
resistant strains, one carried the mph(A) resistance gene. Six 
strains were resistant to the quinolone antibiotic NAL (42%, 
132/314) and carried the gyrA p.S83F or p.D87N mutations, while 
four CIP-resistant strains (40%, 126/314) carried the gyrA p.D87N 
mutation. Resistance to CTX, AMK, CZA, ertapenem, and 
meropenem was detected in one strain each. By comparison, 
we found that both food- and human-derived strains were severely 
resistant to AMP, TET, and AZI, while food-derived strains were 
more resistant to CTX, CZA, and CHL than human-derived 
strains (Supplementary Table S2).

Notably, unlike the plasmids and virulence factors, the drug-
resistance genes/phenotypes were associated with evolutionary 
branches to some extent. There were higher rates of β-lactam, 
sulfonamide, tetracycline, and quinolone-related resistance 
genes/phenotypes in Clade 2.1, 2.3, and 5 strains than those of 

FIGURE 1

Maximum likelihood phylogenetic tree of 390 Salmonella strains. The background colors of the phylogenetic branches indicate the different 
evolutionary branches. Outer circles indicate different countries and the circles at the ends of the branches indicate other cities in China (blue, 
Shandong, China; green, Yangzhou, China; yellow, Taiwan, China; red, Tibet, China).
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other evolutionary branches (Figure  3). MDR strains were 
defined as those resistant to three or more antibiotics; 6% 
(18/314) of strains were susceptible to all 17 antimicrobial drugs, 
and almost 75% (236/314) exhibited MDR, with the most 
common MDR pattern being AMP-TET-CIP-CHL-NAL-
STR-SXT (Supplementary Table S3).

Discussion

Our WGS-based reconstruction of the population structure 
of Shenzhen S. Derby ST40 isolates in the context of the global 
epidemic revealed the genomic diversity of the bacteria and the 
associations among various hosts in the Shenzhen region. This is 
the first study of the genomic epidemiology and drug resistance 
characteristics of S. Derby ST40 in China, and it was conducted 
over an extended period of time. Here, we traced the high-risk 
food and pig liver, and identified two evolutionary branches. 
Some of those strains clustered closely together indicating a 
potential foodborne outbreak with pig liver as vehicle. Isolates 
from Shenzhen showed simultaneous susceptibility to 
cephalosporins while being severely resistant to TET, CHL, and 
AMP. S. Derby is a significant serotype, but little is known about 
its genetic diversity in China. Our data expand on the publicly 
available sequence data and information on the genetic diversity 
of S. Derby in Shenzhen. At the same time, this study had some 
limitations. Because of the impact of the new coronavirus 
epidemic, FSS sampling was not continuous, resulting in a 
discontinuous collection of food-derived strains in the last 
2 years.

Shenzhen is a developed metropolis in the south of China with 
a population of over 20 million. It has little arable land and no farms 
for raising poultry or livestock; therefore, the majority of food is 

imported from other Chinese cities and other countries. According 
to the global phylogenetic evolutionary tree constructed in this study, 
Shenzhen S. Derby strains are closely related to those from the inland 
Chinese city of Shandong as well as other Asian nations, including 
Thailand and Vietnam, while strains in European nations are 
primarily concentrated in an independent branch of Clade 3 and are 
more distantly related to Chinese strains. However, fewer prevalent 
representative strains from other regions have been uploaded to the 
public database, and more representative strains need to be collected 
to construct a global evolutionary tree for a more comprehensive 
picture of their prevalence. The ubiquity of S. Derby ST40  in 
Shenzhen for 11 years has resulted in significant diversity, and strains 
in all four evolutionary branches were present, indicating that the 
serotype has undergone microevolution over the 11-year epidemic. 
In recent years, outbreaks in the area have been dominated by Clades 
2, 4, and 5, which may be  connected to their higher levels of 
adaptability and MDR. The MDR rate of Clade 2 (especially Clades 
2.1 and 2.3) and Clade 5 was 80% or more (Table 1).

Pigs have the potential to spread Salmonella infection during 
group feeding. S. Derby can also be found in the area where the 
pig carcasses are divided. According to U.S. CDC data, S. Derby is 
most frequently isolated from pig production units. S. Derby can 
cause long-term infections in pigs and can remain in several 
organs for a long time, which explains why Salmonella is easily 
isolated from pig organ parts, and this leads to contaminated pork 
at slaughter (Cevallos-Almeida et  al., 2019). In our study, 
we identified 18 clonal clusters based on a threshold of three SNPs 
for the definition of S. enteritidis outbreaks (Taylor et al., 2015; 
Jiang et al., 2020), and 15 of the 34 strains in food were isolated 
from pig liver. Three clonal clusters (C4, C7, and C9) were detected 
in both patients and food, and the food-derived strains of two of 
the clonal clusters (C4 and C7) were isolated from pig liver and 
were in Clade 4 (Figure 4). We surmised that pig liver poses a high 
risk for foodborne illness outbreaks. We also discovered that the 
majority of foods containing bacteria in the same clonal clusters 
originated from the same market or supermarket and that there 
were various food types with comparable collection times in the 
same clusters. Furthermore, our market research found that 
different meats are sold on the same counter at supermarkets or 
markets and that the same cutting board and knives are used for 
most meats, indicating that there may be cross-contamination 
during food processing and selling. Our results suggest that WGS 
and clonal cluster analysis can be used for the identification of 
high-risk food types, pointing to new avenues for subsequent 
outbreak prevention and control strategies. These actions are also 
consistent with a positive One Health vision: pathogens supplied 
by various stakeholders from many sources (including human 
clinical samples, animal, food, and environmental samples) can 
be  pooled and studied for various purposes across various 
analytical platforms (Timme et al., 2020), which provides a large 
amount of data that can be used by public health agencies for 
outbreak detection and tracking (Marc et al., 2016).

Plasmids are circular DNA molecules that can replicate 
independently from the bacterial chromosome and carry genetic 

FIGURE 2

Distribution of S. Derby ST40 evolutionary branches globally. 
Different strip colors indicate different clades, clade1 (red), clade2 
(orange), clade3 (yellow), clade4 (green), and clade5 (blue).
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FIGURE 3

Antimicrobial resistance and gene distribution of Shenzhen strains. The maximum likelihood tree of 314 Shenzhen isolates is shown on the left, 
with the evolutionary branch of ST40 S. Derby in background color (as in Figure 1); on the right, the distribution of multidrug-resistant (MDR) 
isolates (green bars), representative isolates for phenotypic testing, and the presence (black bars) or absence (white bars) of antimicrobial 
resistance-associated mutations and genes.

TABLE 1 Results of plasmid replicon and virulence gene analysis of  Salmonella Derby ST40 strains (n = 314).

S. Derby clade No. of isolates MDR Plasmid replicons SPIs

Clade 1 3 33% - SPI-1 (n = 3); SPI-2 (n = 3); SPI-3 (n = 3); SPI-4 

(n = 3); SPI-5 (n = 3); SPI-9 (n = 3)

Clade 2 159 84.9% IncHI2A_1 (n = 16); IncHI2_1 (n = 16); IncI1_1 

(n = 11); IncX1_4 (n = 6); IncFIA_1 (n = 1); IncFII-1 

(n = 3); IncL/M (pOXA-48)_1 (n = 1); IncQ1_1 (n = 11); 

IncX3_1 (n = 1); IncX4_1 (n = 1)

SPI-1 (n = 159); SPI-2 (n = 159); SPI-3 (n = 159); 

SPI-4 (n = 159); SPI-5 (n = 159); SPI-9 (n = 159); 

SPI-13 (n = 1); SPI-14 (n = 1)

Clade 2.1 15 100% IncI1_1 (n = 2); IncFIA_1 (n = 1); IncFII-1 (n = 2); 

IncHI2_1 (n = 9); IncHI2A_1 (n = 9); IncQ1_1 (n = 7)

SPI-1 (n = 15); SPI-2 (n = 15); SPI-3 (n = 15); SPI-4 

(n = 15); SPI-5 (n = 15); SPI-9 (n = 15)

Clade 2.2 43 60.5% IncX1_4 (n = 6); IncHI2A_1 (n = 6); IncHI2_1 (n = 6); 

IncQ1_1 (n = 1); IncI1_1 (n = 3)

SPI-1 (n = 43); SPI-2 (n = 43); SPI-3 (n = 43); SPI-4 

(n = 43); SPI-5 (n = 43); SPI-9 (n = 43)

Clade 2.3 90 95.6% IncI1_1 (n = 6); IncHI2_1 (n = 1); IncFII-1 (n = 1); 

IncL/M (pOXA-48)_1 (n = 1); IncX3_1 (n = 1); IncX4_1 

(n = 1); IncQ1_1 (n = 7)

SPI-1 (n = 90); SPI-2 (n = 90); SPI-3 (n = 90); SPI-4 

(n = 90); SPI-5 (n = 90); SPI-9 (n = 90)

Clade 4 58 27.6% IncHI2A_1 (n = 4); IncHI2_1 (n = 4); IncQ1_1 (n = 4); 

IncB/O/K/Z_1 (n = 1); IncI1_1 (n = 4)

SPI-1 (n = 58); SPI-2 (n = 58); SPI-3 (n = 58); SPI-4 

(n = 58); SPI-5 (n = 58); SPI-9 (n = 58)

Clade 5 94 89.4% IncI1_1 (n = 9); IncFIA_1 (n = 1); IncHI1A_1 (n = 1); 

IncX1_1 (n = 2); IncQ1_1 (n = 2); IncHI2A_1 (n = 1); 

IncHI2_1 (n = 1)

SPI-1 (n = 94); SPI-2 (n = 94); SPI-3 (n = 94); SPI-4 

(n = 94); SPI-5 (n = 94); SPI-9 (n = 94)

MDR, multidrug resistance; SPI, Salmonella pathogenicity island.
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material such as virulence and drug-resistance genes. Through 
horizontal gene transfer, mobile plasmids can spread drug 
resistance and virulence rapidly among bacteria of the same or 
other species, increasing the challenge of treating clinical 
infectious illnesses (Liu et  al., 2009). The propagation of 
β-lactamase- and quinolone-resistance genes is directly related to 
the detection of both IncI1- and IncHI2-type plasmids 
(Sukmawinata et al., 2020). SPIs are located on chromosomes and 
code virulence-associated proteins that help Salmonella to invade, 
reproduce, and spread within its complex environment 
propagation. There are 23 known SPIs, of which SPI-1 to SPI-5 
are shared by all S. enterica serovars, while the others are scattered 
among other serotypes. In our analysis, all strains had six 
pathogenicity islands (SPI1 to SPI5 and SPI9), while SPI13 and 
SPI14 were recognized in only one strain. SPI-9 is strongly related 
to biofilm development (Latasa et al., 2005), as it encodes proteins 
that share sequence similarity with members of the Bap family. 
In Staphylococcus aureus, Bap is a cell wall protein that strongly 
encourages biofilm development and has the potential to 
stimulate the emergence of drug-resistant strains (Cucarella et al., 
2001). Prior research found SPI-13 and SPI-14 only in 
S. typhimurium and S. enteritidis (Shah et  al., 2005), and the 
current study was the first to identify these islands in S. Derby. 
However, their mechanisms of action are still unclear and need 
further study.

Clarification of the antibiotic susceptibility profile of S. Derby 
will inform researchers on how to develop more effective clinical 
treatments. Unsurprisingly, strains from food sources had higher 
levels of resistance to antibiotics, such as TET, AMP, CHL, 
sulfonamides, and NAL, than those from human sources, as these 
drugs are frequently included in animal feed to treat illness or boost 
growth. Because of worries over the emergence of antibiotic 
resistance and the transmission of antibiotic-resistance genes from 
animals to people, EU countries began to outlaw the use of 
antibiotics as growth promoters in 2006 (Castanon, 2007). Recently, 
numerous other nations have documented significant S. Derby drug 
resistances to these widely used medications. In Sichuan and 
Guangzhou, China, TET is frequently used in feed for poultry 
livestock, and the food-derived strains identified in this study were 
primarily isolated from livestock meat. Because people in China 
consume a lot of pork, there is a chance that the increasing antibiotic 
resistance in farmed animals will spread to humans through the food 
chain and result in the failure of clinical antibiotics. NAL is a first-
generation quinolone that bacteria have quickly developed resistance 
to. We discovered that the rate of NAL resistance of bacteria in food 
(67.4%) in China was significantly greater than that in Europe (10%; 
Jong et  al., 2009). We  concluded that to prevent the further 
emergence and spread of antibiotic resistance and to ensure food 
safety in China, intervention measures must be developed to manage 
food sources and restrict the use of antibiotics in animal husbandry.

FIGURE 4

Maximum likelihood phylogenetic tree and strain information for 18 clonal clusters. The maximum likelihood tree of 18 clonal clusters is shown on 
the left; the color of the strip reports the origin of the strain: patients (blue), livestock meat (red), poultry meat (green), frozen food (earthy yellow), 
pastries (bright yellow), ready-to-eat food (brown), and aquatic products (lake blue); the red stars indicate that the strains were isolated from pig 
liver; and the contents of the line table contain the clades position, no. of isolates, and collection date.
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Finally, this study reconstructed the WGS-based population 
structure of S. Derby ST40 in Shenzhen in the context of globally 
endemic representative strains. The kinship evolutionary tree 
formed five evolutionary branches, revealing that S. Derby ST40 
strains in this region have closer affinities with endemic strains 
in other Asian countries than those in European countries. By 
constructing an evolutionary tree of relatedness, we discovered 
multiple epidemic clonal turnovers in the region over the 11 years 
of sampling. Notably, this study identified three currently 
prevalent evolutionary branches with high-resistance and high-
transmission risk, Clades 2, 4, and 5, and we identified a high-risk 
food, pig liver. This information has important implications for 
salmonellosis prevention, source tracing, and risk-factor analysis, 
as well as laying the groundwork for future S. Derby studies.
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TABLE 2 Drug-resistant phenotypes of S. Derby ST40 strains (n = 314).

Antibacterial drug 
types Antimicrobial agent

R I S

No. of isolates Rate (%) No. of isolates Rate (%) No. of isolates Rate (%)

Penicillin AMP 215 68.5 2 0.63 97 30.9

AMS 44 14 161 51.3 109 34.7

Tetracycline TET 287 90.54 0 0 27 8.6

TGC 0 0 0 0 314 100

Polymyxins CT 1 0.32 313 99.68 0 0

Carbapenems ETP 1 0.32 0 0 313 99.68

MEM 1 0.32 0 0 313 99.68

Cephalosporins CZA 1 0.32 0 0 313 99.68

CTX 5 1.6 0 0 309 98.4

CAZ 4 1.3 0 0 313 99.7

Quinolones CIP 122 38.9 16 5.1 176 56.1

NAL 132 42 0 0 182 58

Aminoglycosides AMK 1 0.32 0 0 313 99.7

STR 107 34.1 0 0 207 65.9

Macrolides AZI 2 0.63 0 0 312 99.36

Amido alcohols CHL 237 75.4 0 6.31 57 18.2

Sulfonamides SXT 196 62.4 0 0 118 37.6

R, antibiotic resistance; I, antibiotic intermediary; S, antibiotic sensitivity; AMP, ampicillin; AMS, ampicillin-sulbactam; AZI, azithromycin; AMK, Amikacin; CT, Polymyxin E; CZA, 
ceftazidime/avibactam; CTX, cefotaxime; CAZ, Ceftazidime; CIP, ciprofloxacin; CHL, chloramphenicol; ETP, ertapenem; MEM, meropenem; NAL, nalidixic acid; STR, Streptomycin; 
SXT, trimethoprim/sulfamethoxazole; TET, tetracycline; TGC, tigecycline; Breakpoints (in milligrams per liter) are as follows: AMP, S ≤ 8, I = 16, and R ≥ 32; AMS, S ≤ 8, I = 16, and 
R ≥ 32; AZI, S ≤ 16 and R ≥ 32; AMK, S ≤ 16, I = 32, and R ≥ 64; CT, S = 2, I ≤ 4, and R ≥ 8; CZA, S ≤ 2 and R ≥ 4; CTX, S ≤ 1, I = 2, and R ≥ 4; CAZ, S ≤ 4, I = 8, and R ≥ 16; CIP, S ≤ 1, I = 2, 
and R ≥ 4; CHL, S ≤ 8, I = 16, and R ≥ 32; ETP, S ≤ 0.5, I = 1, and R ≥ 2; MEM, S ≤ 1, I = 2, and R ≥ 4; NAL, S ≤ 16 and R ≥ 32; STR, S ≤ 8, I = 16, and R ≥ 32; SXT, S ≤ 2/38 and R ≥ 4/76; TET, 
S ≤ 4, I = 8, and R ≥ 16; TGC, S ≤ 2, I = 4, and R ≥ 8.
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