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The extended concept of one health integrates biological, geological, and 

chemical (bio-geo-chemical) components. Anthropogenic antibiotics are 

constantly and increasingly released into the soil and water environments. The 

fate of these drugs in the thin Earth space (“critical zone”) where the biosphere 

is placed determines the effect of antimicrobial agents on the microbiosphere, 

which can potentially alter the composition of the ecosystem and lead to the 

selection of antibiotic-resistant microorganisms including animal and human 

pathogens. However, soil and water environments are highly heterogeneous in 

their local composition; thus the permanence and activity of antibiotics. This is a 

case of “molecular ecology”: antibiotic molecules are adsorbed and eventually 

inactivated by interacting with biotic and abiotic molecules that are present at 

different concentrations in different places. There are poorly explored aspects 

of the pharmacodynamics (PD, biological action) and pharmacokinetics (PK, 

rates of decay) of antibiotics in water and soil environments. In this review, 

we  explore the various biotic and abiotic factors contributing to antibiotic 

detoxification in the environment. These factors range from spontaneous 

degradation to the detoxifying effects produced by clay minerals (forming 

geochemical platforms with degradative reactions influenced by light, metals, 

or pH), charcoal, natural organic matter (including cellulose and chitin), 

biodegradation by bacterial populations and complex bacterial consortia 

(including “bacterial subsistence”; in other words, microbes taking antibiotics 

as nutrients), by planktonic microalgae, fungi, plant removal and degradation, 

or sequestration by living and dead cells (necrobiome detoxification). Many 

of these processes occur in particulated material where bacteria from various 

origins (microbiota coalescence) might also attach (microbiotic particles), 

thereby determining the antibiotic environmental PK/PD and influencing the 

local selection of antibiotic resistant bacteria. The exploration of this complex 

field requires a multidisciplinary effort in developing the molecular ecology of 

antibiotics, but could result in a much more precise determination of the one 

health hazards of antibiotic production and release.
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Introduction: Molecular ecology of 
antibiotics in the critical zone

The concept of “molecular ecology” was proposed in 1976 
by the biochemist Carlos Asensio as a field of investigation of 
the fate and the interactions among molecules in a local or 
global chemosphere (Asensio, 1976). In this review, 
we consider the interactions between antibiotics and inorganic 
and organic molecules in the environment, and the potential 
consequences of these interactions on the “critical zone” of 
human health and welfare: the Earth’s thin microbiosphere 
(Brantley et  al., 2007). One of these consequences is the 
emergence, selection, or spread of antibiotic resistant bacteria 
(Grenni et al., 2018). This ecological approach could help to 
predict the environmental effects of antimicrobial agents on 
the inorganic and organic composition of specific 
environments in a variety of conditions.

It has been estimated that at least one-half of all 
antibiotics used in human and animal diseases (including 
antibiotic production industry) and in farming activities are 
released into the water and soil environments (Fukahori 
et al., 2011; Dutta and Mala, 2020). There, they interact with 
a complex bio and chemosphere under the influence of 
environmental factors, such as light, temperature, and pH 
(Zhi et  al., 2019). The fate of antibiotic activity in the 
environment, and therefore the impact produced on the 
ecosystem (Cycoń et al., 2019), is a result of geochemical and 
biological interactions including geo-and bio-adsorption, 
accumulation, and degradation; most of which remain under-
investigated. For further reading, comprehensive reviews on 
antibiotics in the environment are available (Baquero et al., 
2008; Kümmerer, 2009a,b; Sodhi et al., 2021). The fate and 
effects of drugs, including antibiotics, in the environment 
should be  understood in a changing context: the global 
annual growth rate of the pharmaceutical industry is 
estimated to be  6.5% due to factors as age, life span 
expectancy, economic growth, intensified livestock practices, 
and exacerbation of diseases due to climate change (OECD, 
2019 Pharmaceutical residues in freshwater: hazards and 
policy responses. Global Chemicals Outlook. United Nations 
Environment Programme, 2019).

Natural degradation and 
mineralization of antimicrobial 
agents

Antibiotics lose their effects at varying rates due to 
spontaneous molecular alterations. The estimated half-life of 
antibiotics differs in relation with its concentration and the type 
(abiotic and biotic composition) of soil, and, certainly, also by 
sampling-analytical procedures (Parthasarathy et al., 2018). As 
an indication, fluoroquinolones have a longer half-life (more 
than 5 years), followed by macrolides (2–3 years), tetracyclines 

(2 years), sulfonamides (2–3 months), and beta-lactams (days; 
Cycoń et al., 2019). Even the more persistent antibiotics, such 
as the quinolones or macrolides, are degraded and mineralized 
over a long period of time (Topp et al., 2016). For beta-lactams, 
the cleavage readiness of their beta-lactam bonds in aqueous 
solution is dependent on the pH and on the chemical structure 
of the drug (Yamana and Tsuji, 1976). Antibiotics with a higher 
h-Woodward-Fieser value as a measure of chemical reactivity 
are more prone to hydrolysis; for example, carbapenems and 
clavulanate are easily decomposed and monobactams are less 
susceptible (Turner et  al., 2022). The final result of these 
processes is mineralization (the transformation of antibiotics 
into inorganic forms), or their transformation into smaller, 
simpler, and inactive organic compounds if mineralization is 
not complete (Bridgham and Ye, 2013; Adeyemi et al., 2021).

Antibiotics may adsorb many organic and inorganic surfaces 
due to electrostatic interactions, π-π bonding, weak Van der Waal 
forces, H-bonding, and surface complexation (Mangla et  al., 
2022). Antibiotics have variable adsorption coefficients (Kds) to 
soil materials. Biosphere proteins are ubiquitous in the soil (mostly 
originating from dead cells), and protein-binding of some groups 
of antibiotics can detoxify them. Geogenic organic carbons, also 
from anthropogenic origins (e.g., biochar and graphite), and also 
bentonite, humic and fulvic substances (the final break-down 
constituents of the natural decay of plant and animal materials) 
and clay minerals adsorb antibiotics. Consequently, these 
substances can be  used to remove antibiotics from the 
environment (Ahmed et al., 2015; Wang et al., 2018; Zethof et al., 
2019). However, given that antibiotics accumulate within these 
compounds but are not degraded, this accumulation might alter 
the structure of the associated microbiomes. These and other 
aspects will be discussed in the following sections.

Minerals and antibiotic 
detoxification and degradation

Colloidal soil particles such as clay minerals are frequent in 
the environment and they mainly form fine-grained sediments 
and rocks. They are an important component of soils and 
sediments from rivers, lakes, estuarine, delta, and oceans, which 
cover most of the Earth’s surface. Clay minerals consist of 
particulated hydrous aluminum phyllosilicates, with a 
characteristic stratified structure formed by sheets with varying 
topologies, typically tetrahedral, and octahedral sheets with a size 
slightly larger than a bacterial cell. Such structures act as 
“chemically active geochemical platforms” that influence bacterial 
metabolism (Rong et al., 2007), where inorganic (e.g., metals) and 
organic molecules (e.g., antibiotics) adsorb and interact. The 
adsorption rate can be high, with maximum adsorption capacities 
over 100 mg/g (Hacıosmanoğlu et al., 2022; Yin et al., 2022). Clay 
platforms located where water and light are available serve to 
accelerate processes influencing chemical modifications, including 
photochemical transformations of antibiotics, which can triple (in 

https://doi.org/10.3389/fmicb.2022.1062399
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Baquero et al. 10.3389/fmicb.2022.1062399

Frontiers in Microbiology 03 frontiersin.org

the case of tetracycline) the rate of modifications in pure water 
without colloids (Liu et al., 2019).

The mechanism involved in antibiotic degradation and 
detoxification in wet mineral clays mostly depends on oxidation 
and super-oxidation processes, which are accelerated by light and 
metals, in a pH-dependent process (Ahmad et  al., 2021). 
Photolysis (also known as photodecomposition, photodissociation, 
or photodegradation) is modulated by the presence of dissolved 
inorganic (e.g., nitrates) and organic matter (e.g., humic acids; 
Andreozzi et al., 2003; Zhan et al., 2006). The net result is oxidative 
modification and degradation of the antibiotic chemical structure, 
which attacks the double bonds, aromatic rings, and functional 
groups essential for antibiotic activity. A key process in this 
catalytic degradation are the Fenton/Fenton-like reactions 
associated with the iron redox cycle, in which the antibiotic plus 
an hydroxyl radical gives rise to a middle product and OH-and 
ultimately CO2 and H2O (Jiang et al., 2022). Iron-rich minerals in 
the environments (such as biotite, Fe-smectite, jarosite, magnetite, 
pyrite, hematite, amphibole, and goethite) contribute to the 
antibiotics’ and other organic compounds’ mineralization 
processes, producing simpler organic compounds if mineralization 
is not complete (Bridgham and Ye, 2013; Meyer et al., 2015). Also, 
antibiotics adsorption and degradation due to hydroxides/oxides 
of Cu2+ and by Cu+ atomic species probably occurs in nature 
(Oliveira et al., 2018). Natural and human-produced (present and 
past) vegetation fires lead to a considerable increase of charcoal 
into soils (González-Pérez et al., 2004). Most probably, part of this 
charcoal could be naturally activated into highly porous charcoal, 
very efficient in adsorbing and inactivating antibiotics (Liao et al., 
2013; Zhang et al., 2016).

Antibiotic inactivation by 
natural-organic matter in water 
and soil environments

Organic matter (particulate or dissolved) from natural waters 
is photochemically reactive (Cottrell et al., 2013), being able to 
degrade antibiotics. Direct photodegradation occurs by sunlight 
absorption, and indirect photolysis involves reactions with 
reactive photo-induced species as singlet oxygen (1O2), hydroxyl 
radicals (HO●), and the triplet excited state of chromophoric 
dissolved organic matter (3CDOM*) formed in natural waters. 
Those photochemical effects have been detected in 
aminoglycosides (Li et  al., 2016). This effect is complex; for 
example in tetracyclines indirect photolysis might be enhanced, 
but direct tetracycline photolysis (sunlight absorption) can 
be inhibited (Song et al., 2021). The effects are highly dependent 
on factors such as pH and water depth (Lastre-Acosta et al., 2019).

Antibiotics absorb to natural polymers ubiquitous in the soil 
and water. Cellulose and chitin are the most abundant biopolymer 
polysaccharides in the environment. Cellulose exposed hydroxyl 
and reduced and nonreduced end groups, facilitating reactivity 
with pollutants, is mostly found in plant cell walls, but bacteria 

and algae also biosynthesize cellulose (Sayen et al., 2018; Tao et al., 
2020; Juela, 2021). Decontamination preparations using cellulose 
derivatives adsorb a variety of antibiotics, such as tetracyclines, 
quinolones, sulfonamides, chloramphenicol, beta-lactams, and 
macrolides (in order from higher to lower absorption; Yao et al., 
2017). Chitin is present in variety of soil and water invertebrates, 
usually in the surface exoskeleton of arthropods such as 
crustaceans, and in the cuticle or extracellular matrix of insects, 
fungi, sponges, mollusks, and nematodes. Chitin is a good 
adsorber of some antibiotic agents (Tunç et al., 2020). The fact that 
soil animals constitute about one-quarter of all animals on Earth 
is frequently overlooked, but it suggests that the influence of soil 
invertebrates might play a significant, largely ignored role in the 
fate of antibiotics and, in general, in the ecosystem (Lavelle et al., 
2006; Zhu et al., 2019). Chitosan (deacetylated chitin) is not a 
known natural compound in the environment, but it can be used 
in environmental antibiotic de-contamination processes (Abd 
El-Monaem et al., 2022).

Bacterial organisms and antibiotic 
biodegradation in the environment

One of the classic proposals regarding environmental effects 
and the natural degradation of antibiotics is the publication by 
Julian Davies, suggesting that antibiotic-producing 
microorganisms probably also contain mechanisms of antibiotic 
detoxification to avoid self-suicide of the population (Davies, 
1994; Davies and Davies, 2010). Another possibility is that 
antibiotics could serve as weapons in “microbial wars,” essentially 
as defense mechanisms against competing organisms with 
antibiotic producers, to ensure permanence in their optimal niche. 
Antibiotic production is critical in sporulating microorganisms; 
their synthesis is triggered during the stationary phase of growth, 
which leads to spore formation. Ultimately, this energy-consuming 
process can require the degradation of mycelium (Streptomyces) 
or the mother cell (Bacillus; Yagüe et al., 2013; Roy et al., 2015). 
Since such self-nutrients should not be  consumed by foreign 
microorganisms, such as bacteria and probably also Protozoa 
(Ahmetagic et al., 2011); the production of antibiotics against 
these competitors could prevent such consumption. If this 
hypothesis is true, a possible reaction of the potential invaders 
would be to biodegrade these inhibitory compounds. If antibiotic-
producing microorganisms or widespread antibiotic resistant 
bacteria release a sufficient quantity of antibiotic-degrading 
molecules into the environment, this could impact the fate of 
antibiotics. However, the natural role of antibiotics in the 
environment could also be  associated with cell-to cell 
communication; that is, “antibiotics as signaling agents” (Linares 
et al., 2006; Yim et al., 2006; Fajardo and Martínez, 2008; Aminov, 
2009). By nature, signals should be ephemeral and should vanish 
after accomplishing their communication role. In fact, polymyxins 
(produced by Bacillaceae in relation with the sporulation process) 
are frequently hydrolyzed by Bacillus and Paenibacillus, but 
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peptidases from Gram-negatives might also degrade these 
antibiotics (Yin et al., 2019).

The possibility of antibiotics serving as carbon or nitrogen 
nutrients cannot be ruled out. The term “antibiotic subsistence” 
was coined to refer to microbial organisms and communities 
subsisting on antibiotics (Dantas et  al., 2008), a hypothesis 
suggested by Tony Medeiros in the 1990s (Medeiros, 1997). 
Several soil microorganisms, including Pseudomonas and 
Burkhordelia are able to grow on beta-lactams as a single carbon 
source (Jayaraman, 2009; Crofts et al., 2017). A later and broader 
study revealed that Burkholderiales, Pseudomonadales, 
Enterobacterales (mostly Serratia), Actinomycetales, Rhizobiales, 
and Sphingobacteriales from soil origin are able to subsist on 
antibiotics as a sole carbon source, and the spectrum of 
biodegraded antibiotics includes not only beta-lactams, but 
aminoglycosides, chloramphenicol, glycopeptides, quinolones and 
fluoroquinolones, sulphonamides, and trimethoprim (Dantas 
et  al., 2008). These phenomena might also occur in the gut 
microbiota, and antibiotic-subsisting organisms from sewage 
communities might contribute to environmental antibiotic 
degradation, reducing selection for resistance (Perri et al., 2020; 
Deng et  al., 2021; Lindell et  al., 2022). A mechanism of 
extracellular molecular scavenging involving putrescine and 
lipocalins protects Burkholderia cenocepacia from bactericidal 
antibiotics, perhaps via an antioxidant effect (Naguib et al., 2022). 
All these functions imply that natural antibiotics should be present 
in the environment to fulfill ecological functions. However, as 
stated earlier, anthropogenic pollution with industrial antibiotics 
is a major source of antibiotics in the environment (Dantas 
et al., 2008).

At first glance, biotransformation of antibiotics with bacteria 
could represent a challenge due to the possible effect on 
biodegrading organisms (Olicón-Hernández et  al., 2017). 
However, this effect is mitigated by non-microbial degradation 
and the typically low antibiotic concentrations in natural 
ecosystems (Bernier and Surette, 2013). In addition, antibiotic 
resistance could have evolved as a prior step to antibiotic 
catabolism with nutritional purposes, as can occur with 
aminoglycosides (de Bello González et al., 2015). On the other 
hand, we  cannot rule out the possibility that biodegradative 
pathways with nutritional or signal-effacing purposes could be at 
the root of antibiotic resistance (Dantas et al., 2008; Lindell et al., 
2022). Environmental microorganisms can degrade antibiotics in 
the environment by methyl-hydroxylation; aliphatic-aromatic 
rings hydroxylation; alcohols and amines oxidation; reduction of 
carboxyl groups; removal of methyl, carboxyl, fluoro, and cyano 
groups; addition of formyl, acetyl, nitrosyl, and cyclopentenone 
groups; opening aromatic rings, altering the loop structures, or 
removing functional chemical groups (Parshikov and Sutherland, 
2012). For example, demethylations exerted by Klebsiella or 
Stenothrophomonas maltophilia can start the degradative process 
in tetracyclines (Leng et al., 2016; Ahmad et al., 2021). In the case 
of Pseudomonas and Burkhordelia, beta-lactam degradation 
occurs by co-expression of a β-lactamase, amidase, and 

up-regulation of phenylacetic acid catabolon (Crofts et al., 2018). 
Klebsiella pneumoniae and Proteus mirabilis could degrade 
ciprofloxacin in vitro by using mechanisms of hydroxylation, 
piperazine ring substitution and cleavage, and quinoline ring 
cleavage (Yang Y. et  al., 2022). Labrys portucalensis, an alfa-
Proteobacteia, also degrades fluoroquinolones (Amorim et al., 
2014). Bacterial consortia could be more effective in antibiotic 
degradation; an ensemble of Acetobacterium, Desulfovibrio, 
Desulfobulbus, Peptococcaceae, Lentimicrobium, and Petrimonas 
might contribute to trimethoprim degradation in anaerobic 
conditions (Liang et  al., 2019). In fact, consortia have been 
constructed on the bases of their high production of oxidases to 
increase biotransformation of antibiotics (Xu et al., 2022). Soil 
bacterial consortia efficiently degrade sulfonamides (Islas-
Espinoza et  al., 2012). Complex bacterial communities can 
be  highly effective in antibiotic biodegradation, as has been 
described in the case of a consortium of Gamma, Beta-
Proteobacteria, and Bacteroidetes degrading ciprofloxacin by 
deamination, hydroxylation, defluorination, and dealkylation 
(Liao et al., 2016). In this process, coupled with photocatalysis, 
Proteobacteria are particularly critical (Li et al., 2021).

Planktonic microalgae and 
antibiotic biodegradation

Microalgae are prokaryotic and eukaryotic micro-organisms 
that can fix organic (autotrophic) and inorganic (heterotrophic) 
carbon. Cyanobacteria is probably the most common prokaryotic 
microalgae (Leng et al., 2020), and it significantly contributes to 
antibiotic removal via a process involving (as it was shown for 
tetracycline) biosorption and photodegradation (Pan et al., 2021; 
Wei et  al., 2021). Eukaryotic microalgae include diatoms and 
green algae. Diatoms produce hydrogen peroxide (H2O2), which 
modifies and detoxifies complex organic molecules including 
antibiotics. A key mechanism in this process is the bio-Fenton 
reaction, which degrades hydrogen peroxide in the presence of 
iron particles, giving rise to the degradation of antibiotics, as has 
been shown with tetracycline (Pariyarath et al., 2021). Planktonic 
green algae can also degrade antibiotics. Early studies on 
antibiotics in the environment showed that green algae (genus 
Nitella) absorbed beta-lactams, phenicols, and aminoglycosides 
(Pramer, 1955). Scenedesmus obliquus is a frequent alga found in 
fresh and brackish water, particularly under conditions of 
anthropogenic pollution (Phinyo et  al., 2017). It can degrade 
fluoroquinolones (such as levofloxacin) using a metabolic 
degrading pathway including cellular biocatalytic reactions 
including decarboxylation, demethylation, dihydroxylation, side 
chain breakdown, and ring cleavage (Xiong et al., 2017). The rate 
of antibiotic biodegradation (dissipation percentage) is variable 
among microalgae and various types of antibiotics. Selenastrum 
capricornutum and Chlorella vulgaris more efficiently degrade 
macrolides and fluoroquinolones than sulphonamides, which are 
better degraded by Scenedesmus quadricauda and Haematococcus 
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pluvialis (Kiki et al., 2020). Microalgae communities with other 
microorganisms, such as filamentous fungi, could have synergistic 
effects in antibiotic detoxification (Leng et al., 2020).

Fungi and degradation of 
antibiotics

Fungi belonging to the Basidiomycota, Ascomycota, and 
Mucoromycotina (formerly Zygomicota) subphyla can remove 
and transform antibiotic molecules. Ciprofloxacin is detoxified 
by conjugation with formyl, vinyl, or acetyl groups, or by 
hydroxylation or polymerization (Olicón-Hernández et  al., 
2017). Aspergillus and Penicillium appear to decrease the 
amount of ciprofloxacin in soil, but the underlying mechanism 
has not been elucidated; Trichoderma produce ciprofloxacin-
conjugated inactive compounds when incubated with 
fluoroquinolones. Mucoromycotina incertae sedis (formerly 
Zygomycota) are also able to detoxify fluoroquinolones in a 
process involving N-oxidation, N-dealkylation, and 
N-acetylation. White-rot fungi (as the Basidiomycota Pleurotus 
eryngii or Trametes versicolor), widespread in nature due to 
their capability to degrade ubiquitous lignin, induce the 
production of extracellular low-molecular-weight extracellular 
oxidants, including oxygen-free radicals, mainly hydroxyl 
radicals, and lipid peroxidation radicals activating O2 in the 
environment and removing pollutants (Gómez-Toribio et al., 
2009), most probably also antibiotic molecules.

Plant removal and degradation of 
antibiotics

Independently from antibiotic adsorption to plant residues 
(Balarak et  al., 2017), living plants may absorb a variety of 
antibiotics present in the soil, including anthropogenic quinolones 
(Eggen et al., 2011) This process is highly antibiotic dependent; for 
example, absorption is high for tetracyclines and low for 
macrolides (Kumar et al., 2005). Also, the type of plant determines 
absorption; oxytetracycline is accumulated in radish roots but not 
in lettuce leaves (Matamoros et al., 2022). Macrophytes such as 
duckweed and water fern absorb antibiotics by the roots and 
detoxify them by oxidation, conjugation, and storage in the plant 
(Maldonado et al., 2022). One example of such degradation is 
duckweed Spirodela polyrhiza, which degrades fluoroquinolones 
(Singh et al., 2019).

Antibiotic sequestration and 
inactivation by living cells and the 
necrobiome

After cell death, cellular components can remain for extended 
periods of time in the soil or water. Many antibiotics, particularly 

macrolides, lincosamides, fluoroquinolones, tetracyclines, 
rifamycins, chloramphenicol, trimethoprim, and sulfonamides, 
and also beta-lactams to a lesser extent, enter eukaryotic cells 
where they are sequestered and inactivated. Interestingly, 
extracellular antibiotics have more activity than intracellular ones, 
although some of them accumulate intracellularly and reach high 
concentrations. One reason for the reduced activity of intracellular 
antibiotics is a presumed “impairment of the expression of 
antibiotic activity inside the cells” (van Bambeke et al., 2006). This 
field is important but poorly explored, and we know from human 
clinical trials that a renal dipeptidase, dehydropeptidase-I, can 
hydrolyze imipenem and other carbapenems (Birnbaum et al., 
1985). Also, human and mammal liver microsomes (mimicking 
the activity of the endoplasmic reticulum) are able to biotransform 
fluoroquinolones, lincosamides, fluconazole, gentamicin, 
metronidazole, oxazolidinones, and even beta-lactams (Wynalda 
et al., 2000; Szultka et al., 2014; Szultka and Buszewski, 2016). 
Whether these results apply to other eukaryotic microsomes 
(including algae, fungi, plants, small animals, and protozoa) is not 
yet known. Nevertheless, an antioxidant defense mechanism is 
activated and glutathione S-transferase activity is significantly 
increased in aquatic plants such as Azolla caroliniana and 
Taxiphyllum barbieri exposed to tetracycline (Vilvert et al., 2017). 
Glutathione S-transferases, present in bacteria, fungi, plants, and 
animals inhibit beta-lactams sulfathiazole and tetracycline 
(Al-Mohaimeed et al., 2022).

Many antibiotics can be ultimately inactivated in matrixes 
constituted by massive amounts of dead bacteria (eventually killed 
by the antibiotics themselves; Hunt et al., 1987; Podlesek et al., 
2016). This adsorption/detoxification of antibiotics by dead 
bacterial cells might be  common in natural environments 
(Smakman and Hall, 2022). Envelopes of dead bacteria (such as 
lipopolysaccharide) and probably proteins (as in the case of 
“inoculum effect”) might bind to antibiotics (Peterson et al., 1985; 
Corona and Martínez, 2013). The same is possible with free DNA 
or RNA ribosomal fragments. Both aminoglycosides and beta-
lactams can bind to the DNA helix via a minor groove binding 
model (Arya, 2005; Shahabadi and Hashempour, 2019).

Anthropogenic environmental 
pollution and antibiotic 
detoxification

This review is oriented toward antibiotic “natural 
detoxification” in wild environments. However, human activities 
increasingly contribute to the composition of the Earth global 
environment. Most clinically-used antibiotics are released in areas 
close to densely human-populated patches, where also farming, 
agricultural, and industrial activities polluting the natural 
environment takes place. As stated before, metals are important 
agents in the detoxification of antibiotics, mostly involving 
oxidation and super-oxidation processes. Heavy (significant) 
metals pollution, involving lead, cadmium, chromium, mercury, 
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or arsenic, and also iron, copper, cobalt, and silver are released 
from metal processing and smelting, chemical and manufacturing 
activities, factory emissions, and sewage irrigation (Yang et al., 
2018). Even if metals might detoxify antibiotics, they also have 
antibacterial activities, frequently synergistic with clinical 
antimicrobial agents, and antibiotic-resistance genes are frequently 
found in antibiotic resistant bacteria, contributing to the 
evolutionary biology of these organisms (Baquero et al., 2021). 
Thus detoxification might be  compensated by an enhanced 
antimicrobial effect, resulting in a stronger selection. Oil–water 
interfaces might influence antibiotic degradation (Basáez and 
Vanýsek, 1999) but also contribute to bacterial aggregations, as 
marine bacteria in oil spill (Ahmadzadegan et al., 2019), so that 
selection for antibiotic resistance effectively occurs (Shen et al., 
2020). Water chlorination (partially?) detoxifies some antibiotics 
as azithromycin or fluoroquinolones (Jaén-Gil et al., 2020) but 
eventually have additive or synergistic effects with these drugs. 
The result is a decrease the bacterial count, which not excludes 
increased selection of resistance; in any case, this field has been 
scarcely explored. Bacteria from minerally-fertilized soils and 
crops reduce their content in antimicrobial resistance genes (Sanz 
et  al., 2022), suggesting that chemical compounds, such as 
ammonium, sodium, or potassium sulfates, or superphosphates 
might reduce the selective effect of environmental antibiotics. 
Organic fertilizers, as pig manure and sewage sludge contain 
bacterial consortia able to detoxify antibiotics (see above), but it is 
to note that this effect could be  compensated by the heavier 
pollution with antibiotic molecules originated in abusive use of 
antibiotics in humans and animals (Dong et al., 2021). Industrial 
composting (organic matter recycling) removes antibiotics and 
alters the local microbial ecology (Chen et al., 2021). Pollution by 
anthropogenic microplastics, is another aspect of anthropogenic 
pollution. Microplastics, small (less than 5 mm in length) 
fragments of any type of plastic, which also adsorb/detoxify 
antibiotics but also adhere bacterial cells and therefore contribute 
to the selection of resistance (Peng et al., 2022; Wang et al., 2022).

The process of antibiotic 
adsorption, desorption, and 
inactivation and the evolution of 
antimicrobial resistance in 
microbiotic particles

Deactivation of antibiotics in the environment should 
be beneficial for reducing selection and the environmental reservoir 
of antibiotic resistant bacteria. However, many mineral and biotic 
biomolecules deactivating antimicrobial agents are also part of soil 
and water particles that attach bacterial cells and in some cases are 
of anthropogenic origin (Baquero et al., 2022; Cydzik-Kwiatkowska 
et al., 2022). The key question is whether the adhesion of antibiotic 
molecules to these particles concentrates the antimicrobial agent, so 
that even if deactivation takes place, there could be enough selective 
power to select antibiotic resistant co-adhered cells. For example, if 

clays are able to remove antibiotics from the environment, high 
antibiotic concentrations would be found on the surface of clay 
particles, thereby contributing to the local selection of antibiotic 
resistant microorganisms (Lv et al., 2019). What we really need is to 
know better the PK/PD of antibiotics on environmental surfaces 
where bacteria might attach; in particular, if attached bacteria are 
phenotypically resistant to antibiotics, and how much of this effect 
is due to the local enrichment in persistent cells (because of the 
superoxide’s action). We cannot discard an antibiotic action on 
attached cells, but that should depend on the rates of absorption and 
desorption of the different antibiotics (Figure  1) and the local 
bacterial growth rates. The local microecological conditions as light 
and water availability, temperature, osmolarity, and pH are expected 
to modify such kinetics.

Natural and anthropogenic 
antibiotic detoxification: A One 
health multifaceted process 
requiring integrated research 
approaches

Absorption, photolysis, hydrolysis, cation-binding, 
adsorption, bioaccumulation, and biodegradation simultaneously 
contribute to the removal of antibiotics from the environment 
(Xiong et al., 2017). Most probably, the mechanisms of antibiotic 
removal that we have reviewed work in combination, perhaps in 
synergistic detoxification, as has been observed in pollution 
control studies. For example, the combination of microalgae with 
irradiation and oxidation treatment favors antibiotic degradation 
(Leng et  al., 2020). The increasingly complex anthropogenic 
influence on the environment, which releases and removes both 
antibiotics and antibiotic-resistant bacteria, is certain to influence 
the entire kinetics of antimicrobial drugs in the microbiosphere. 
However, current information on the effects of antibiotic 
detoxification in the environment is still fragmentary and a global, 
and an integrated and ecological view on the elements contributing 
to this process is needed. For example, earthworms, which change 
the exposure of soil organisms to ciprofloxacin, result in a much 
higher mineralization rate of antibiotics and illustrate the 
complexity of predicting the antibiotic detoxification processes 
(Mougin et al., 2013). We are still lacking highly efficient and 
comprehensive analytic procedures to dissect and quantify the 
chemical and biological composition of specific soil or water 
environments that are exposed to intensive antibiotic pollution. 
Such integrated analyses could help measure the hazard of 
antibiotic release in particular places at defined time-periods. 
Among the required parameters, soil volumetric water content 
(Briciu-Burghina et  al., 2022), the total organic matter (Yang 
C. et al., 2022), or the “amount of surface” in the soil (for instance, 
total surface of clay particles) can be calculated and expressed as 
“specific surface area,” the surface area/unit mass of the dry soil 
with units of m2/g (Cerrato and Lutenegger, 2002). Antibiotics 
with a high adsorption potential on clay or organic matter tend to 
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accumulate and persist in this matrix, whereas those having a 
lower adsorption potential are easily transported to the aquatic 
environment. More study of the microbial ecology of antibiotic 
molecules is needed, given that there are potential gaps between 
the analytical results obtained in the lab and the in the 
environment (Polianciuc et al., 2020). Pedological sciences should 
approach microbiology to match soil classifications with local 
environmental pharmacokinetics and the pharmacodynamics of 
antimicrobial agents. Techniques able to measure the physical and 
chemical adsorption of antibiotic and bacterial molecules taking 
up by the different types of surfaces (with different energy 
distributions; Webb, 2003) should be developed to reach such a 
goal. Everything on Earth is intertwined, and the goal of One 
health (Hernando-Amado et al., 2019) is fully dependent on the 
geochemical and biological structure of the particular 
environments and requires an interdisciplinary effort (Brantley 
et al., 2007). We need to progress toward the definition of “local 
bio-geo-chemical reactive profiles,” so that we can understand the 
reactive transport (Carrera et al., 2022) of antibiotic molecules. 
That step will be  indispensable in shaping appropriate 

environmental “One health” interventions to reduce microbial 
resistance to antimicrobial agents.
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