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Introduction: The routine clinical diagnosis of severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2) is largely restricted to real-time reverse 

transcription quantitative PCR (RT-qPCR), and tests that detect SARS-CoV-2 

nucleocapsid antigen. Given the diagnostic delay and suboptimal sensitivity 

associated with these respective methods, alternative diagnostic strategies are 

needed for acute infection.

Methods: We studied the use of a clinically validated liquid chromatography 

triple quadrupole method (LC/MS–MS) for detection of amino acids from 

plasma specimens. We applied machine learning models to distinguish 

between SARS-CoV-2-positive and negative samples and analyzed amino 

acid feature importance.

Results: A total of 200 samples were tested, including 70 from individuals with 

COVID-19, and 130 from negative controls. The top performing model overall 

allowed discrimination between SARS-CoV-2-positive and negative control 

samples with an area under the receiver operating characteristic curve (AUC) 

of 0.96 (95%CI 0.91, 1.00), overall sensitivity of 0.99 (95%CI 0.92, 1.00), and 

specificity of 0.92 (95%CI 0.85, 0.95).

Discussion: This approach holds potential as an alternative to existing methods 

for the rapid and accurate diagnosis of acute SARS-CoV-2 infection.
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Introduction

Severe acute respiratory syndrome virus type 2 (SARS-CoV-2) 
is the causative agent of coronavirus disease 2019 (COVID-19) 
and continues to spread globally despite the availability of effective 
vaccines (European Centre for Disease Prevention and Control, 
2021). Therefore, early diagnosis is crucial to identify infected 
individuals to provide therapy, if indicated, and implement 
appropriate infection control measures to prevent and limit spread. 
Real-time reverse transcription quantitative PCR (RT-qPCR) 
represents the operational gold standard for diagnosis of acute 
SARS-CoV-2 infection; however, such testing may suffer from 
long turnaround times, particularly during surges, and requires 
reagents and consumables that have been regularly compromised 
since the onset of the pandemic (Kucirka et al., 2020; Woloshin 
et al., 2020). Similarly, SARS-CoV-2 antigen testing can provide a 
rapid means to results via point-of-care testing, but typically 
requires several days from the onset of symptoms for detection, 
and sensitivity varies substantially based on the device used. 
Though SARS-CoV-2 preferentially infects upper respiratory 
epithelial cells, COVID-19 is a systemic illness that may induce 
specific amino acid alterations in the host (Sungnak et al., 2020; 
Mulay et  al., 2021). These metabolomic changes may then 
be harnessed as a diagnostic approach that detects host response 
to infection rather than the virus itself. This approach of analyzing 
amino acids in plasma or serum to diagnose of COVID-19 has 
been previously pursued, but with heterogeneous methodologies, 
largely not validated clinically (Fraser et al., 2020; Shen et al., 2020; 
Thomas et al., 2020). Furthermore, machine learning has emerged 
as a powerful tool for classification analysis in metabolomics data 
analysis (Mendez et al., 2019; Dias-Audibert et al., 2020; Shen 
et  al., 2020; Delafiori et  al., 2021). In this study, we adapted a 
clinically validated amino acid quantitation method to differentiate 
SARS-CoV-2-positive from negative samples from plasma and to 
identify the top differentiating amino acid biomarkers associated 
with classification performance by statistical and machine 
learning models.

Materials and methods

Ethics

This study was approved by the Stanford Institutional Review 
board (IRB protocol #57519).

Study population and sample collection

We identified individuals with RT-qPCR-confirmed SARS-
CoV-2 infection from a respiratory sample (nasopharyngeal, nasal, 
or oropharyngeal). Participants were selected from two academic 
tertiary care hospitals [Stanford Health Care (SHC) and Lucille 
Packard Children’s Hospital (LPCH)] and affiliated clinics and 
outpatient centers in the Bay Area, from March 2020 to November 

2020. SARS-CoV-2 testing was performed as previously described, 
using an in-house emergency use authorization (EUA) real-time 
reverse transcription PCR (RT-qPCR), or one of two commercial 
SARS-CoV-2 assays, the Panther Fusion or TMA (Hologic, 
Malborough, MA, United States; Food and Drug Administration, 
2020). Residual plasma specimens were obtained from individuals 
with confirmed SARS-CoV-2 infection and used for plasma 
metabolomics testing. Due to the requirement for a blood draw, 
sample selection was largely restricted to hospitalized individuals. 
In addition, most nasopharyngeal testing was performed on 
symptomatic individuals during the study time period. Only 
plasma samples collected within 7 days of the initial SARS-CoV-2 
infection were included to include acute COVID-19, and there was 
no additional selection based on cycle threshold (Ct) value or 
clinical severity. In addition, we identified individuals to serve as 
negative controls from the following groups: pooled donor blood 
negative for SARS-CoV-2, hospitalized individuals and outpatients 
with residual plasma from EBV or CMV viral load testing, 
hospitalized individuals with elevated C-reactive protein (CRP), 
and/or procalcitonin (PCT) and without SARS-CoV-2 infection, 
and symptomatic individuals with a confirmed respiratory viral 
infection other than SARS-CoV-2. For the latter group, respiratory 
viral testing was performed on the ePlex Respiratory Pathogen 
(RP) panel (GenMark Diagnostics, Carlsbad, CA, United States) 
at the Stanford Clinical Virology Laboratory. C-reactive protein 
(CRP) is a protein synthesized by the liver that can acutely rise in 
response to inflammation and is readily tested through routine 
testing in clinical laboratories. Procalcitonin (PCT) is the peptide 
precursor of calcitonin, which is synthesized by the thyroid gland, 
and positively correlates with bacterial infection and sepsis. Both 
biomarkers, CRP and PCT, were examined to help understand the 
specificity of the generated plasma amino acid signature. Given 
that plasma is not a routinely collected specimen for the diagnosis 
of COVID-19, we enrolled eligible individuals without matching 
for age and sex between the positive and negative groups. Plasma 
procalcitonin (PCT) and C-reactive protein (CRP) concentrations 
were measured on a Roche Cobas e801 and c702 modules, 
respectively (Roche Diagnostics, Indianapolis, IN, United States).

Underivatized amino acid analysis by LC/
MS–MS

As previously described, amino acids were quantified by LC/
MS-MS using a clinically validated method (Le et al., 2014). In 
brief, a volume of 20 μl of plasma was mixed with an equal volume 
of 6% sulfosalicyclic acid and then centrifuged at 4°C for 15 min 
at 17,000 × g. Twenty μl of the supernatant was mixed with 1.4 ml 
of an internal standard mixture in a 96-well plate, which was 
prepared as previously described (Mak et al., 2019). Testing was 
performed on an Agilent 6460 Tandem Mass Spectrometer with 
electrospray ionization (Agilent Technologies, Santa Clara, CA, 
United States). Chromatographic separation was performed using 
a series of two columns: column 1, a porous graphitic carbon 
(PGC) column (Thermo Fisher Scientific, 3 μm Hypercarb, 4.6 mm 
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ID × 50 mm), and column 2, an XBridge BEH C18, (Waters Corp, 
2.5 μm, 2.1 mm ID × 100 mm). An injection volume of 5 μl was 
used; with a runtime of 13.5 min. Compounds were analyzed in 
positive ion mode and detected by scheduled selective reaction 
monitoring (SRM). Data were acquired using MassHunter 
Workstation Acquisition version B.08.02 (Agilent), analyzed by 
MassHunter Quant software version B.07.00 (Agilent), and 
exported to Microsoft Excel version 15.0.5501.1000. Quantitative 
analysis was performed by relating chromatographic peak areas to 
those derived from externally run calibration standards as 
described above and normalized using isotopic-labelled internal 
standards (Cambridge Isotope Laboratories, Metabolomics Amino 
Acid Mix Standard MSK-A2-1.2). Calibration curves were plotted 
using a weighted regression 1/x (Le et al., 2014). This method was 
developed based on the standards of the Clinical Laboratory 
Improvement Amendments (CLIA), and is CLIA-certified.

Statistical analysis

Descriptive analysis was performed by Chi-squared test or 
Fisher’s exact test for variables with less than five data points per 
cell, and Mann–Whitney U test for continuous variables, using 
Stata v15.1 (Stata Corp, College Station, TX, United States). A 
multivariable analysis was used to investigate the significance of 
the a priori determined potential confounder’s age and sex in the 
analysis, as previously described using R version 4.0.2 (Hogan 
et al., 2021). The significance of each predictor was determined 
using the value of p from this regression.

Machine learning analysis

Machine learning analysis was performed as previously 
described (Hogan et al., 2021). The full dataset was randomly 

divided into a training set (70% of samples) used to develop 
machine learning models, and a holdout test set (30% of samples) 
used to evaluate the predictive performance of the machine 
learning models. The SHapley Additive exPlanations (SHAP) 
method was used to quantify the impact of each feature on the 
models. Analyses were performed in Python version 3.7.10, using 
the LightGBM v3.1.0 implementation for gradient boosted 
decision trees, scikit-learn v0.23.2 for random forest, stratified 
k-fold cross-validation and grid search, and SHapley Additive 
exPlanations (SHAP) v0.36.0 for computing feature importance, 
using the code shared online for reproducibility.

Results

Cohort description

A total of 200 samples were included in the study, including 70 
samples from individuals with confirmed SARS-CoV-2 infection, 
and 130 samples from negative controls (Supplementary Figure 1). 
Of these, 23 negative control samples represented pooled samples 
from blood donors for which individual-level data were not available. 
The baseline demographic and clinical characteristics of the patient 
cohort are described in Table 1. Briefly, the overall median age was 
53 years (36–67), and almost half (46.3%) of participants were female.

Targeted plasma amino acid data 
classification and feature ranking analysis

Application of statistical (Lasso, logistic regression) and 
machine learning (Random Forests, LGBM) models to the 
plasma amino acids tested features achieved a maximal area 
under the receiver operating characteristic curve (AUC) of 0.96 
(95%CI 0.91, 1.00) on the test set with the LGBM model (Table 2), 

TABLE 1 Demographic, clinical, and laboratory characteristics of the individuals included in the study.

Overall (n = 177) Negative for 
COVID-19 (n = 107)

Positive for 
COVID-19 (n = 70)

Value of p*

Median age (IQR) 53 (36–67) 56 (32.5–66.5) 49.5 (39.3–66.8) 0.8

Age

[No. (%)]

≥2–17 yo 19 (10.7) 16 (15.0) 3 (4.3) 0.03

≥18 yo 158 (89.3) 91 (85.0) 67 (95.7)

Sex

[No. (%)]

Male 95 (53.7) 63 (58.9) 38 (54.3) 0.5

Female 82 (46.3) 44 (41.1) 32 (45.7)

Elevated C-reactive 

protein

[No. (%)]

Yes 71 (40.1) 43 (40.2) 28 (40.0) 1

No 9 (5.1) 1 (0.9) 8 (11.4)

Unknown 97 (54.8) 63 (58.9) 34 (48.6)

Elevated procalcitonin

[No. (%)]

Yes 27 (15.3) 33 (30.8) 4 (5.7) 0.0001

No 113 (63.8) 4 (3.7) 23 (32.9)

Unknown 37 (20.9) 70 (65.4) 43 (61.4)

*Chi-squared test, Fisher’s exact test, or Mann Whitney U test.
Data exclude 23 samples from adults donating blood for whom individual-level data were not available.
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which was also the best performing model overall. At an 
operating cut-off optimized for sensitivity, this model achieved 
an overall sensitivity of 0.99 (95%CI 0.92, 1.00) and specificity of 
0.92 (95%CI 0.85, 0.95; Figure  1). The separate multivariable 
model adjusting for age and sex demonstrated that only model 
outcome was significantly associated with SARS-CoV-2 infection 
status (Supplementary Table 1). Feature importance ranking by 
SHAP analysis on the LGBM model revealed that arginine, 
aspartic acid, and 3-methylhistidine were the top amino acid 
biomarkers associated with model classification performance 
(Figure 2). Furthermore, although not as strongly associated with 

classification, tryptophan was decreased (34.8  in infected vs. 
45.8 in negative; p < 0.0001) in individuals with acute COVID-19. 
Median concentration levels and distribution of values revealed 
that the largest relative differences were observed in arginine 
(32.7  in infected vs. 87.2  in negative samples; p < 0.0001) and 
sulfocysteine (5.48  in infected vs. 3.37  in negative; p < 0.0001; 
Supplementary Table  2 and Supplementary Figure  2). 
Stratification of these results by CRP status revealed that arginine 
concentration was highest in the high CRP/COVID-negative 
subgroup, and that the levels across other subgroups were similar 
(Supplementary Figure  3). Similarly, the lowest sulfocysteine 

TABLE 2 Summary of area under the curve, sensitivity, specificity data for the two machine learning, and two statistical models used for the study.

LGBM Random Forests Lasso Logistic regression

AUC(95% CI) 0.96 (0.91, 1.00) 0.93 (0.88, 0.99) 0.93 (0.88, 0.99) 0.94 (0.88, 0.99)

Sensitivity(95% CI) 0.99 (0.92, 1.00) 0.87 (0.77, 0.93) 0.93 (0.84, 0.97) 0.90 (0.81, 0.95)

Specificity(95% CI) 0.92 (0.85, 0.95) 0.92 (0.86, 0.96) 0.92 (0.86, 0.96) 0.93 (0.87, 0.96)

AUC, area under the receiver operating characteristic curve; CI, confidence interval; and LGBM, light gradient boosted model

A B

FIGURE 1

(A) Area under the receiver operating characteristic curve for the top 20 amino acids based on the test set identified in plasma differentiating 
infected from uninfected individuals, and (B) Confusion matrices based on the full cross-validation for each of the four models used. AUC, area 
under the receiver operating characteristic curve; LGBM, Light Gradient Boosted Model; LR, logistic regression; Ped, pediatric; RF, random forests; 
and ROC, receiver operating characteristic curve.
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concentration was observed in the high CRP/COVID-negative 
subgroup, whereas other subgroups were similar.

Discussion

In this study, we showed that the described targeted amino 
acid method combined with machine learning could differentiate 
between SARS-CoV-2-positive and SARS-CoV-2-negative samples 

with high test performance, including AUC of 0.96 and sensitivity 
of 0.99. Of the 54 amino acids tested, 3-methylhistidine, arginine, 
and glutamine were the top differentiating amino acids. Several 
studies have investigated plasma metabolomics for the diagnosis 
of SARS-CoV-2 infection. However, testing methodologies have 
varied substantially, spanning several untargeted and targeted 
mass spectrometry approaches and with heterogeneous patient 
populations (Blasco et al., 2020; Fraser et al., 2020; Meoni et al., 
2021; Zhang et al., 2021), generating broad understanding but 

FIGURE 2

Feature importance analysis by SHapley Additive exPlanation (SHAP) values. The top 20 amino acids by percentage importance using the SHAP 
method are presented by amino acid. The colors indicate the association between feature value and positive SARS-CoV-2 classification, with 
features pushing the risk of SARS-CoV-2 higher in blue, and features pushing the risk of SARS-CoV-2 lower in orange. The axis scale represents the 
predicted SHAP output value scale. Positive SHAP values indicate positive impact on model prediction (leading the model to predict SARS-CoV-2-
positive), whereas negative SHAP values indicate negative impact on model prediction (leading the model to predict SARS-CoV-2-negative).
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limiting result comparability and generalizability. An early 
proteomic and metabolomic study in the COVID-19 pandemic 
documented suppression of over 100 amino acids and their 
derivatives in the serum of individuals diagnosed with COVID-19, 
particularly involving arginine metabolism (Shen et al., 2020). The 
current study distinguishes itself based on using a robust, clinically 
validated method. Using this approach, we showed both elevated 
(including aspartic acid and sulfocysteine) and decreased 
(including arginine, 3-methylhistidine, creatinine, and tryptophan) 
amino acid levels in the plasma of individuals with acute COVID-
19. These divergent findings may have occurred due to different 
sample processing methodologies (ethanol and drying followed by 
methanol extraction vs. sulfosalicylic acid precipitation), or testing 
methods (untargeted UPLC-MS/MS vs. targeted LC/MS–MS). 
Subsequent work has demonstrated variable amino acid findings. 
However, an interesting finding shared across several studies has 
been a decrease in tryptophan and an increase in kynurenine in 
the serum and plasma of SARS-CoV-2-infected individuals, which 
may be more pronounced in severely ill individuals (Fraser et al., 
2020; Shen et al., 2020; Thomas et al., 2020; Lawler et al., 2021; 
Lionetto et  al., 2021; Mangge et  al., 2021; Cihan et  al., 2022). 
Importantly, the current study corroborated this decrease in 
tryptophan, adding strength to the signal found in the literature. 
This study did not assess kynurenine, given that this amino acid is 
not quantified with standards in the present method.

At a cut-off selected to optimize sensitivity, this study 
documented a sensitivity of 0.99 for a specificity of 0.92. This test 
performance, combined with the employed method’s simple 
sample processing, rapid turnaround time, and potential for high 
throughput, supports the potential of this approach as a screening 
test. Indeed, one potential avenue of testing for individuals 
undergoing assessment in a hospital setting and requiring a blood 
draw would be  to screen plasma for SARS-CoV-2 using this 
targeted plasma approach as a rapid rule-out test. Suspect samples 
could undergo further SARS-CoV-2 testing by respiratory testing, 
and negative samples could be presumptively ruled-out unless 
there is high suspicion for clinical or epidemiological reasons.

The main strength of this study is the use of a clinically 
validated LC/MS–MS method for reliable amino acid quantitation. 
Data generated from similarly validated quantitative amino acid 
methods run in other laboratories would also be useful to advance 
the field. Furthermore, the study benefited from a large sample size 
and incorporated assessment of CRP level in a subset of 
individuals. Stratification of the metabolomics results by CRP 
contributed to assessment of the specificity of the biomarker 
signature in assessing viral-specific vs. general inflammatory 
response. However, there are limitations. First, only individuals 
with confirmed SARS-CoV-2 from a respiratory source and 
residual plasma samples were included; as such, we  could not 
adjust for time since infection and onset of symptoms, or 
comprehensively study other respiratory viruses, in the same 
manner as a prospective study. Second, due to the observational 
design of the study, we could not assess the effect of longitudinal 

sampling, COVID-19 disease severity, vaccination status, full CRP 
and PCT characterization, additional variants of concern, and 
treatment responses, all of which require additional study. Third, 
the direct clinical application of plasma-based testing may be more 
limited due to its more invasive nature than respiratory sampling 
and the requirement for a healthcare provider-based procedure. 
However, this specimen type is attractive given that the metabolites 
are expected to be present in much higher concentrations in the 
bloodstream than in respiratory sites, and due to the greater 
standardization of sample collection, which may enhance 
reproducibility of results. Finally, the current results do not support 
replacement of standard COVID-19 diagnostic approaches such 
as RT-qPCR. Rather, these preliminary data support the potential 
complementary value of this method, especially as a tool for 
pathway analysis, compound identification and for clinical 
prognostication, which will require further investigation.

In summary, we  demonstrated the high accuracy of a 
clinically validated LC/MS–MS analysis combined with machine 
learning for amino acid profiling in SARS-CoV-2-positive and 
negative plasma specimens. This approach holds potential for 
screening suspect cases, given its high sensitivity. Further work 
to validate this amino acid signature in other patient populations 
and in respiratory specimens, and using methods validated with 
a similar rigor in additional laboratories, will further complement 
these findings.
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Multivariable linear regression model for SARS-CoV-2 status prediction 
adjusted for age, sex, and machine learning output. Model output was 
observed to be the most significant feature associated with infection 
status prediction.

SUPPLEMENTARY TABLE 2

Median concentrations of the top 20 amino acids in COVID-19 positive 
and negative samples.

SUPPLEMENTARY FIGURE 1

Flowchart of the specimen selection for assessment of the plasma 
targeted amino acid method. SARS-CoV-2: severe acute respiratory 
syndrome type.

SUPPLEMENTARY FIGURE 2

Amino acid concentration by LC/MS–MS standard curve analysis in SARS-
CoV-2-positive vs. negative specimens for the top 20 differentiating 
amino acids.

SUPPLEMENTARY FIGURE 3

Amino acid concentration by LC/MS–MS standard curve analysis in SARS-
CoV-2-positive vs. negative specimens for the top 20 differentiating 
amino acids, stratified by C-reactive protein status. The x-axis categories 
are listed in the following left to right order: Negative/high CRP, Negative/
normal CRP, COVID/high CRP, COVID/normal CRP. CRP: 
C-reactive protein.
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