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Coral reef ecosystems are one of the most diverse and productive habitats 

on Earth. Microbes in the reef-overlying waters are key players in maintaining 

this ecosystem through regulating biogeochemical and ecological processes. 

However, the composition structure and assembly mechanism of microbial 

community in the reef-overlying waters remain largely unknown. In the 

present study, the bacterial communities from the overlying waters of atolls 

and fringing reefs as well as the surface waters of the adjacent open ocean 

of the Xisha Islands in the South China Sea were investigated using 16S rRNA 

high-throughput sequencing combined with a size-fractionation strategy. 

The results showed that environments of all sampling stations were similar, 

characterized by an almost complete lack of inorganic nutrients such as 

nitrogen and phosphorus. Proteobacteria, Cyanobacteria and Bacteroidetes 

were the dominant phyla, and Synechococcus was most abundant at the genus 

level in both large fraction (LF; 1.6–200 μm) and small fraction (SF; 0.2–1.6 μm) 

communities. Only a slight difference in community composition between LF 

and SF samples was observed. The bacterial communities among the three 

habitat types showed noticeable differences, and the bacterial composition 

among the atoll reefs was more varied than that among the fringing reefs. The 

similarity of bacterial communities significantly declined with the increasing 

geographic distance, and stochastic processes were more important than 

deterministic processes in bacterial community assembly. This study sheds 

lights on the bacterial biodiversity of coral reefs and the importance of 

stochastic process in structuring bacterial communities.
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Introduction

Coral reefs represent only a small fraction of marine 
ecosystem, but they support the highest marine biodiversity on 
earth, harboring 25% of global marine species and approximately 
one-third of marine fish (Pendleton et al., 2016). Furthermore, 
coral reefs are extremely important for nutrient cycling in shallow 
oligotrophic tropical waters. Reef productivity is largely dependent 
on the capture and recycling of nutrients by reef-associated 
microbial communities (Bourne and Webster, 2013). Planktonic 
microorganisms are abundant but invisible members of the coral 
reef community, which play important roles in the efficient cycling 
of internal nutrient through their essential functions, including 
primary production, nitrogen fixation and nutrient recycling 
(Ainsworth et al., 2010; Rädecker et al., 2015; Brandl et al., 2019). 
Photoautotrophic phytoplankton are the major contributors to the 
biomass and primary productivity of oligotrophic reef waters 
(Charpy, 2005). For example, Synechococcus is abundant in many 
coral reef waters (Charpy et al., 2012; Furby et al., 2014; Ke et al., 
2018). Meanwhile, bacterioplankton generally account for a large 
fraction of carbon biomass and are responsible for high organic 
matter recycling rates within coral reefs (Ferrier-Pagès and 
Gattuso, 1998; Nelson et al., 2011). Furthermore, benthic coral 
reef communities exhibit strong dependency on bacterioplankton 
of the overlying waters as an important source of nutrition 
(Sorokin and Sorokin, 2010).

Research efforts have been devoted to comparing the bacterial 
composition of reef seawater with host-associated microbes, and 
the composition of coral-associated microbes have showed them 
to be  distinct from microbial communities in surrounding 
seawater (de Voogd et al., 2015; Webster et al., 2016; Cleary et al., 
2018; van Oppen et al., 2018). However, few studies have been 
directly assessed the diversity and phylogenetic composition of 
bacteria in coral reef seawater. The stability of both coral-
associated microbial communities and habitat seawater microbial 
communities affects environmental adaptation and ecological 
function of corals, nevertheless, we know little about the diversity, 
composition, and geographic patterns of bacteria in coral reef 
waters as well as the assembly mechanism of bacterial 
communities, especially in South China Sea because of the 
rigorous protection of coral habitats.

Community similarity versus geographic distance displays a 
distance–decay relationship for microbial communities in many 
habitats (Soininen et al., 2007; Hanson et al., 2012; Wang et al., 
2017), and both deterministic and stochastic processes could give 
rise to such a negative pattern (Sloan et al., 2006; Zhang et al., 2014; 
Wu et al., 2020). The deterministic processes, including species 
traits, interspecies interactions (e.g., competition, predation, 
mutualisms, and trade-offs), and environmental conditions (e.g., 
pH, temperature, salt, and moisture), largely control the patterns 
of species composition, abundance and distribution (Chesson, 
2000). However, the stochastic processes including dispersal 
limitation, water mass effect and random demographics also 
regulate assembly of bacterial communities (Chave, 2004; Zhou 

and Ning, 2017). The relative importance of different deterministic 
and stochastic processes always shows different trends in mediating 
communities, and the environmental selection tends to produce a 
distance–decay relationship while dispersal counteracts it (Hanson 
et  al., 2012). Therefore, understanding community assembly 
process can enable us to explore the underlying mechanisms 
shaping microbial biogeographic patterns.

Microbial communities are also structured over much smaller 
spatial scales, and the composition of microbial assemblages 
exhibit differences among different size fractions in different 
marine ecosystems (Ganesh et al., 2014, 2015; Liu et al., 2018; 
Suter et al., 2018). The large size fraction ranging from 1.6 to 
200 μm retains a wide range of microorganisms, including 
particle-attached prokaryotes, microeukaryotes and zooplankton, 
while the small size fraction ranging from 0.2 to 1.6 μm 
predominantly contains free-living prokaryotes and 
picoeukaryotes (Ganesh et  al., 2014; Chen et  al., 2021). 
Furthermore, they have different dispersal potential, metabolic 
capability and ecological roles in marine ecosystems. Although 
much effort has been devoted to bacterial communities from 
different size fractions of marine plankton (Rusch et al., 2007; 
Sunagawa et al., 2015; Salazar et al., 2016), our knowledge on 
bacterial diversity and biogeographic patterns of different size 
fractions in the coral reefs is limited.

The Xisha Islands in the central South China Sea consist of 
different types of coral reefs with important ecological and 
biodiversity value (Wang et al., 2011; Yang et al., 2015; Zuo et al., 
2017), providing an ideal area to study microbial biodiversity. 
Previous studies have shown that many coral reefs of the Xisha 
Islands are being threatened or have already degraded over the 
past few decades (Shi et al., 2012; Hughes et al., 2013; Ding et al., 
2019). However, the diversity and composition of bacteria are 
generally understudied in the Xisha Islands, which greatly 
impedes our understanding, protection and remediation of coral 
reefs. With the aim of gaining a more comprehensive 
understanding of microbial biodiversity in the coral reefs of the 
Xisha Islands, in the present study, we adopted a size fractionation 
strategy to collect both large fraction (1.6–200 μm) and small 
fraction (0.2–1.6 μm) of bacterial communities living in the 
overlying waters of the coral reefs, and investigated the 
composition and structure of bacterial communities using high-
throughput sequencing of the 16S rRNA gene. This study therefore 
provides new insights into the bacterial diversity and composition 
of different coral reef habitats, offering guidance for further 
exploring the mechanisms shaping the bacterial community 
structure and geographic distribution in the Xisha Islands.

Materials and methods

Sample collection

The survey was conducted in the Xisha Islands of the South 
China Sea from May 13th to 24th in 2019. Three atolls (Beijiao, BJ; 
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Yuzhuojiao, YZJ; Huaguangjiao, HGJ) which usually contain a 
central open lagoon, three fringing reefs (Beidao, BD; Zhaoshudao, 
ZSD; Jinqingdao, JQD) which grow directly from a shore of island, 
and three open ocean stations (O1; O2; O3) were selected for the 
study. Duplicate biological samples were collected from the 
surface layer (approximately 0.5 m depth) in locations of lagoon, 
reef flat and outer reef in three atolls (BJ, YZJ and HGJ); reef flat 
and outer reef in three fringing reefs (BD, ZSD and JQD), and 
three open ocean stations (O1; O2; O3).Surface seawater samples 
(100 l) were collected from each location using Niskin bottles, 
each sample was pre-filtered through a 200-μm polyethylene sieve 
to remove large-sized plankton, then was sequentially filtered 
through a GF/A membrane (pore-size of 1.6 μm, Waterman) and 
a polyethersulfone membrane (pore-size of 0.2 μm, Millipore) to 
collect the large-fraction (LF) and small-fraction (SF) bacterial 
samples, respectively. All samples were immediately frozen with 
liquid nitrogen and stored at −80°C for further processing.

Environmental parameters measurement

The latitude and longitude of the sampling stations were 
determined by a portable global positioning system (GPS Jisibao 
G330, Beijing, China). Salinity, temperature and dissolved oxygen 
were measured using a SeaBird 911 plus CTD instrument. 
Chlorophyll a concentration was determined using a Turner 
TrilogyVR fluorometer. Nutrients, including silicate, phosphate, 
ammonium, nitrate and nitrite were analyzed using a continuous 
flow analyzer (SAN11, Skalar, The Netherlands). Filtrate passing 
through GF/A filter was fixed with 2% glutaraldehyde for bacterial 
cell numeration. After staining with SYBR Green I (Invitrogen, 
Thermo Fisher Scientific, Waltham, MA, USA), bacterial 
abundance was estimated using a BD FACSAria Flow Cytometer 
(Becton Dickinson, Franklin Lanes, NJ, USA) (Marie et al., 1999).

DNA extraction, PCR analysis and 
Illumina sequencing

For each sample, DNA was extracted from the membranes 
using FastDNA SPIN extraction kit (MP Biomedicals, Santa Ana, 
USA), following the manufacturer’s instructions. The 
concentrations and purity of extracted DNA were examined using 
a Scientific Nano Drop2000 spectrophotometer (NanoDrop 
Technologies Wilmington, USA). The V4 hypervariable region of 
prokaryotic 16S rDNA was amplified with primers of 515FmodF 
(5’-GTGYCAGCMGCCGCGGTAA-3′) and 806RmodR 
(5’-GGACTACNVGGGTWTCTAAT −3′) (Parada et al., 2016). 
All PCR reactions were performed in a 30 μl volume with 15 μl of 
Phusion® High-Fidelity PCR Master Mix (New England Biolabs); 
0.2 μM of forward and reverse primers, and approximately 10 ng 
template DNA. The PCR thermal cycle was performed as follows: 
denaturation at 95°C for 5 min, 34 cycles of 94°C for 1 min, 57°C 
for 45 s, 72°C for 1 min, and a final extension at 72°C for 10 min. 

PCR products were purified using a GeneJET Gel Extraction Kit 
(Thermo Fisher Scientific, USA) and paired-end sequenced 
(2 × 250 bp) on an Illumina® MiSeq (PE300) platform.

Low-quality raw reads were filtered using fastp (v.0.23.1, Chen 
et al., 2018) with following criteria: (1) reads were truncated at any 
site with an average quality score < 20 over a 50 bp sliding window, 
and reads shorter than 50 bp after truncated, reads containing 
ambiguous characters were removed; (2) 1 or more mismatch in 
barcode; (3) > 2 nucleotide mismatch in primers. Paired-end reads 
were merged using FLASH (v.1.2.11, Magoč and Salzberg, 2011) 
with the parameter that overlap was longer than 10 bp and its 
mismatch rate was lower than 0.2. Paired-end reads were then 
sorted by sample-specific barcodes and clustered into operational 
taxonomic units (OTUs) using Uparse (v.7.1, Edgar, 2013) at 97% 
identity. The phylogenetic classification was analyzed by RDP 
Classifier with confidence threshold of 70% based on the Silva 
(SSU r138) database (Cole et al., 2009; Quast et al., 2013). The 
sequencing data are available in the China National GeneBank 
DataBase1 with project number CNP0002755.

Statistical analysis

To reduce the bias of sequencing coverage and ensure inter-
sample comparability for our taxonomic diversity, the singleton 
OTUs were discarded and only the reads belonging to bacteria 
were retained for analysis. All samples were normalized based on 
the minimum of the sequencing depth (39,588 reads), and the taxa 
with relative abundance < 0.01 in all samples were classified as 
“others.” For alpha-diversity analysis, indices of Sobs, Shannon, 
Simpson, ACE, Chao1 and coverage were calculated with the 
vegan R package (Oksanen et  al., 2020), and the subsequent 
computations were also performed using R (v.4.0.2, R Core Team, 
2014). For beta-diversity analysis, Bray–Curtis dissimilarity 
matrices were calculated and non-metric multidimensional 
scaling (NMDS) analysis was applied based on Bray–Curtis 
dissimilarity using the Vegan package. Analysis of similarities 
(ANOSIM) was used to evaluate the difference between groups. 
The Mantel test was used to determine correlations between 
environmental factors and the bacterial community (based on 
Bray-Cutis distance).

The Spearman’s rank correlations were used to determine 
the relationship between the Bray–Curtis similarity of bacterial 
community and the geographical distance of sampling stations. 
To explore the potential factors regulating the community 
composition, the phylogenetic bin-based null model analysis 
(iCAMP) was selected to reveal the ecological drivers of 
bacterial community assembly (Ning et al., 2020), and quantify 
the contribution of each ecological process to microbial 
community assembly, including homogeneous selection (HoS), 
heterogeneous selection (HeS), dispersal limitation (DL), 

1 https://db.cngb.org/
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homogenizing dispersal (HD), drift and others (DR). HoS and 
HeS belong to deterministic processes, whereas DL, HD, and 
DR are classified as stochastic processes. Furthermore, the 
neutral community model (NCM) was used to predict the 
relationship between OTU detection frequency and their 
relative abundance across the wider metacommunity to 
determine the potential importance of stochastic processes on 
community assembly (Sloan et al., 2006; Stegen et al., 2013), the 
R code used for the NCM was obtained from Chen et al. (2019). 
In this model, R2 indicates the fit to the neutral model; when R2 
is close to 1, the community assembly is considered to be fully 
consistent with stochastic processes. Dispersal between 
communities was estimated by the Nm value, representing the 
metacommunity size (N) multiplied by the immigration 
rate (m).

Results

Overview of the investigation area

Surface seawater samples were collected from six coral reef 
sites and three adjacent open ocean stations in the Xisha Islands 
(Figure 1). The spatial variations of physical environments among 
the sampling locations were very small, with temperatures ranging 
from 30.4°C to 31.9°C, salinity from 33.2 to 34.29 PSU, and 
dissolved oxygen from 4.63 to 5.68 mg/l (Supplementary Table S1). 
The concentrations of inorganic nitrogen were less than 
2.48 μmol/l and phosphorus was below the detection limit of the 
analyzer in most of the sampled locations. The primary production 
and bacterial biomass indicated by chlorophyll a concentration 
(0.07–0.28 μg/l) and bacterial cell density (1.42–5.38 × 108 cells/ L) 
were also similar among locations.

Diversity and distribution of bacterial 
communities

A total of 11,118,121 sequences were generated and were 
clustered into 13,734 OTUs. To minimize the bias caused by the 
sequencing depth and allow for comparison of sequencing 
results among samples, the sequences were normalized by 
minimum sample sequence numbers (39,588 reads) respectively, 
and the rarefaction curves of all samples were showed in 
Supplementary Figure S1. Shannon index did not vary across 
different habitats (Figure 2A), with the lowest index observed 
in the samples of BJ. The Shannon index of each reef region in 
the atoll was quite different, whereas the differences among the 
fringing reefs were small in both LF and SF samples (Figure 2B). 
To explore whether the difference of bacterial structure and 
composition was correlate with sampling location, we computed 
the sample diversity using Bray-Curtis distance (Figure 2C). The 
close clustering of samples indicated similar community 
composition. Although the stress values were below 0.2, 

indicating an acceptable fit of the data to the clusters in the 
NMDS ordinations, the samples from different reef habitats and 
open ocean surface waters showed different patterns. 
Comparison of the atoll and open ocean samples showed that 
the atoll samples formed well-defined groups in both LF and SF 
samples, while the fringing reef and open ocean samples were 
clearly distinct, which were generally clustered together and 
even some samples of the different stations showed overlapping 
(Figure  2C). ANOSIM results also indicated that the 
communities of the atoll and open ocean samples were 
significantly separated, while there were small R values among 
the fringing reef and open ocean samples. Thus, the bacterial 
community presented greater difference between the atoll and 
open ocean samples than that between the fringing reef and 
open ocean samples.

Venn diagram displaying the OTU richness distribution 
among habitats and sites showed that the unique OTU numbers 
in coral reef surface waters were higher than that in adjacent open 
ocean surface waters, and the highest unique OTU numbers were 
detected in YZJ (Supplementary Figure S2). Relatively abundant 
bacterial phyla in the adjacent coral seawater included 
Proteobacteria (49.72%), Cyanobacteria (22.11%) and Bacteroidetes 
(19.79%) (Figure 3). Highly abundant Proteobacteria groups were 
concentrated in Alphaproteobacteria and Gammaproteobacteria. 
In the LF samples, Alphaproteobacteria was most abundant 
(50.48%) in the reef flat of JQD and the lowest (11.93%) in the 
lagoon of BJ, while Gammaproteobacteria had the highest 
proportion (40.83%) in the reef flat of YZJ. In the SF samples, 
Alphaproteobacteria showed the highest abundance (57.89%) in 
the reef flat of JQD and Gammaproteobacteria was abundant in 
the reef flat of YZJ, accounting for 63.73%. Cyanobacteria was 
abundant in the LF samples in the reef flat of BJ (50.20%) and in 
the SF samples in the lagoon of BJ (55.13%). At the genus level, the 
most abundant group was Synechococcus in both LF and SF 
samples (Supplementary Figure S3). Only a weak but significant 
variance was found between the LF and SF samples by ANOSIM 
analysis (R = 0.09, p < 0.001; Supplementary Figure S4), but the 
bacterial communities among the three habitat types showed 
more noticeable differences (R = 0.23, p < 0.001; 
Supplementary Figure S5). Furthermore, the difference of 
bacterial community composition among three atoll reefs (BJ, 
HGJ, and YZJ) was significantly larger than that in the fringing 
reefs (BD, JQD, and ZSD; Table 1), displaying a consistent trend 
with the NMDS results. Therefore, the samples were distributed 
according to the sampling location rather than according to the 
sample size fractions in the following analysis.

Spatial and environmental factors 
influencing bacterial community 
composition

Community similarity versus geographic distance for each 
pairwise set of samples displayed a significant distance–decay 
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relationship for bacterial communities. Although our 
investigation was conducted over a small geographic scale, a 
significant negative correlation was observed between Bray-
Cutis community similarity and geographic distance (p < 0.01; 
Figure  4). Furthermore, the results based on the iCAMP 
analysis implied contributions of different ecological processes 
to the assembly of bacterial community. For example, HoS 
processes accounted for more than 20% in each habitat, while 
stochastic process of DL and DR contributed approximately 
50% to the community assembly (Figure  5; 
Supplementary Figure S6). The neutral community model that 
is particularly useful for quantifying the importance of neutral 
processes, successfully estimated a large fraction of the 
relationship between the occurrence frequency of OTUs and 
their relative abundance variations, explaining 66.8, 64.3, 55.9, 
and 71.8% of the community variance for the entire survey 
region, atoll, fringing reef and open ocean surface seawaters, 
respectively (Figure 6). The Nm-value for bacterial taxa was 
higher in the open ocean than in the coral habitats, indicating 
that species dispersal of bacteria was higher in the open ocean 
than in the coral habitats. These results indicated that neutral 
process played important roles in the bacterial assembly in each 
habitat, especially driving the variations of community 
compositions between atoll and open ocean or between fringing 
reef and open ocean (Supplementary Figure S7). However, 
bacterial community variation between atoll and open ocean 
were significantly driven by environmental factors (p < 0.01), 
but not to the significantly variation between the fringing reef 
and open ocean communities (Supplementary Table S3).

Discussion

Physicochemical and microbial features 
of the over-lying waters in the Xisha 
Islands

Nutrient concentrations of the over-lying waters in the coral 
reefs were very low and even undetectable, which is consistent 
with the results reported in other coral reef areas, suggesting rapid 
nutrient turnover by microorganisms (Kleypas et al., 1999; Weber 
et al., 2020). The bacteria of local over-lying waters are closely 
related to the diversity and adaptation of reef corals, and play an 
important role in nutrient cycling (Ferrier-Pagès and Gattuso, 
1998; Nelson et al., 2011; Brandl et al., 2019). In this study, the 
bacterial communities of the over-lying waters in the Xisha Islands 
had high diversity and were dominated by Proteobacteria, 
Cyanobacteria and Bacteroidetes, consistent with other coral reef 
environments (Somboonna et  al., 2014; Kemp et  al., 2015). 
Although the major compositions of bacterial community were 
similar at phylum level among samples collected from water areas 
with a small environmental gradient, but we could still observe a 
high variation in the reef overlying waters across regions at the 
OTU level (Supplementary Figure S2). The number of unique 
OTUs in the reef-overlying waters was higher than that in the 
open ocean surface waters, indicating the presence of differences 
in term of bacterial diversity between coral reef ecosystem and the 
open ocean. Previous studies have shown that the microbial 
community richness of the surface-waters varies significantly 
among reef categories (Nelson et al., 2011; Frade et al., 2020; Laas 

FIGURE 1

Investigation region and sampling sites in the Xisha coral reef areas.
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et  al., 2021). A distinctly different pattern observed among 
samples from different habitats in both LF and SF samples 
(Figure  2), indicating that a noticeable dissimilarity among 
community composition of different reef. Both the bacterial 
community diversity and composition of the over-lying waters in 
three atolls differed obviously, but there was no notable difference 
in the over-lying waters of three fringing reefs. Only a weak but 
significant difference existed between the LF and SF samples, 
small bacteria could be  retained in the LF samples as a 
consequence of blocking during the filtration (Padilla et al., 2015).

It is reported that annual mean Chlorophyll a concentration 
in the lower range (< 0.3 μg/l) has been shown to be beneficial 
to maintain the operation of coral reef ecosystems (Bell, 2010). 
The low concentrations of nutrients and the low range of 
Chlorophyll a in the Xisha Islands surface waters indicated that 
the stability of the system was not markedly disturbed. The 
maintenance of complex coral reef shared ecosystems might 
result from the interactions between the autotrophs (e.g., 
planktonic and benthic algae) and associated heterotrophs. 
Synechococcus and Prochlorococcus showed relatively high 
abundance in both LF and SF samples, which are known to 
constitute a substantial proportion of planktonic biomass and 
primary production (Ferrier-Pages and Furla, 2001; Flombaum 
et  al., 2013). Furthermore, Synechococcus had the highest 
abundance in the lagoon of BJ, and was more abundant than 
Prochlorococcus in most of the atoll stations sampled, which 

were characterized by relatively high nutrients. This supports 
the previous findings that Synechococcus is abundant in a 
relatively more nutrient-enriched condition such as the coral 
reef lagoonal environment while Prochlorococcus dominates 
more nutrient-depleted environments (Campbell et al., 1994; 
Crosbie and Furnas, 2001; Charpy, 2005). These results 
indicated that bacteria communities of the over-lying waters 
presented a habitat-specific distribution pattern in the 
Xisha Islands.

The key processes shaping bacterial 
community assembly

The environmental heterogeneity and dispersal limitation 
can generate a negative correlation between community 
similarity and geographic distance (Tuomisto et  al., 2003; 
Soininen et al., 2007), and the biogeographic patterns are mainly 
dictated by the spatial scale of the investigation (Rahbek, 2005; 
Clark et al., 2021). Although our investigation was performed 
over a relatively small geographic scale and the environmental 
parameters were similar across sampling sites, we still found a 
clear and significant distance–decay relationship between the 
bacterial community similarity and geographic distance for each 
pairwise set of samples. Deterministic and stochastic processes 
are important in structuring bacterial communities, and 

A

B

C

FIGURE 2

Alpha and beta diversity analyzes of bacterial composition. (A) Difference significance of average Shannon index among habitat types in each size 
fraction, (B) Shannon index difference of different reefs and different fraction sizes. Error bars represent ± SD. (C) Non-metric multidimensional 
scaling ordinations (NMDS) for bacterial communities (The statistic R represents the separation degree of between-group mean rank similarities 
used the ANOSIM method.).
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we found that stochastic process appeared to be more important 
than the deterministic process in the Xisha Islands surface 
waters. Our results indicated that both DR and DL processes, 

which are stochastic assembly mechanisms, played more 
important roles than other ecological processes either in a single 
habitat type, or in different habitat types (Figure 5). Furthermore, 
the bacterial community had a good fit to the neutral community 
model which further confirmed the important role of stochastic 
process. These findings are consistent with the previous 
conclusions that the stochasticity is the dominant process under 
stable local-scale conditions (Dini-Andreote et al., 2015; Bahram 
et al., 2016).

Drift, homogenizing dispersal and homogeneous selection can 
result in community differences and counteract the distance–decay 
relationship (Ning et al., 2020), and these three ecological processes 
showed large relative importance contributions to the bacterial 
community of each habitat sampled in this study (Figure 5). The 
surface water in the Xisha Islands is very dynamic, facilitating high 
dispersal and homogenization of the bacterial communities. The 
bacterial community structure of the surface layer at different 
sampling sites within the same reef region was similar, which might 
be caused by the limited dispersal, resulting in individuals tending 
to disperse to nearby regions. However, the community difference 
was greater between the atoll and open ocean samples than that 
between the fringing reef and open ocean samples, suggesting roles 
for both the dispersal limitation and environmental selection. 
Studies have demonstrated that both environmental factors and 
geographical distance play important roles in driving community 
structure on a small scale (Horner-Devine et al., 2004; Bell, 2010). 
Inorganic nutrients are essential for the growth and development 
of microbes and are considered to be important factors in shaping 
the microbial community (Follows and Dutkiewicz, 2011). The 

FIGURE 3

Community composition of bacterial groups that are specific to a given number of samples.

TABLE 1 ANOSIM of bacterial communities among different type 
reefs.

LF SF

R P R P

Atoll 0.416 0.001 0.633 0.001

Fringing reef 0.063 0.191 0.079 0.859

FIGURE 4

Distance-decay patterns based on the Bray–Curtis similarity for 
the bacterial communities.
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Mantel test showed that the influence of inorganic nutrients was 
relatively small when stochastic processes played the dominant role 
in the homogeneous surface waters. The temperature of Xisha 

Island surface waters ranged from 30.4°C to 31.9°C in this study, 
even a small rise in temperature can lead to coral bleaching and 
death because the majority of coral reefs are surviving at their 

FIGURE 5

Relative importance of different ecological processes in different habitat types. HeS, Heterogeneous selection; HoS, Homogeneous selection; DL, 
Dispersal limitation; HD, Homogenizing dispersal; DR, Drift and others.

FIGURE 6

Fitting of the neutral model of bacterial community. R2 indicates the fit to this model, Nm indicates the metacommunity size times immigration.
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upper thermal limit (Frieler et  al., 2013; Hughes et  al., 2017). 
Temperature is an important factor that may alter community 
composition and diversity and is also a stronger driver than other 
environmental factors in shaping microbial community 
composition (Fuhrman et al., 2008; Sunagawa et al., 2015). The 
high abundance group Cyanobacteria which has a high optimal 
growth temperature, a major contributors to the primary 
productivity that enters the food web through microbial 
consumption processes (Sorokin and Sorokin, 2010; Visser et al., 
2016). Thus, understanding the interactions between 
bacterioplankton and other microorganisms (e.g., microeukaryotes) 
is a longstanding challenge in microbial community ecology. It is 
noteworthy that environmental factors explained a significant 
portion of the community variance in the atoll and open ocean 
samples (Supplementary Table S3), and the variation of community 
turnover might also be strongly related to the variability of spatial 
structure between habitat types and dispersal limitation (Soininen 
et al., 2007). Environmental differences increase with the increasing 
geographical distance, and the difference of the community 
composition will enlarge with environmental changes (Huber 
et al., 2020).

It is important to note that other uninvestigated environmental 
and biological factors, such as tides, upwelling, surface wind and 
biotic interactions, along with different methodology, might lead 
to variations in microbial communities (Stachowicz, 2001; 
Monismith and Genin, 2004; Hancock et al., 2006; Falter et al., 
2013; Payet et  al., 2014). Previous studies suggest that the 
deterministic process is stronger at a larger scale and various 
environmental factors can influence bacterial diversity and 
communities (Shi et al., 2018; Huber et al., 2020; Wu et al., 2020). 
Microbes in adjacent sea areas are an indispensable part of the 
coral reef shared ecosystems, their species composition, richness, 
evenness, and interactions influence ecosystem properties 
(Hooper et al., 2005). Overall, to comprehensively understand 
bacterial community assembly mechanisms, the sampling scale 
effects (spatial extent and time scale), other potentially important 
explanatory deterministic factors (e.g., unmeasured 
environmental factors and species interactions), and other 
possible stochastic factors should be considered in future studies 
(Chen et al., 2019).

Conclusion

Our study showed that the photoautotrophic bacteria 
Synechococcus and Prochlorococcus were relatively abundant in the 
overlying water of the coral reef in the Xisha Islands, indicating 
their importance in the coral reef ecosystem. A distance-decay 
relationship for bacterial communities was observed in the study 
area, and the larger difference among atoll sites indicated that each 
atoll had its own individual characteristics even in bacterial 
community. Stochasticity played a more important role in bacterial 
community assembly in high homogeneous surface waters in the 
Xisha Islands. Collectively, the findings from this study contribute 

to gaining a deeper understanding of bacterial diversity and 
assembly in the coral reefs, and provide a valuable reference for 
further investigation of microbial biodiversity in coral reefs. In the 
future, state-of-the-art techniques—such as metagenomics, 
metaproteomics, as well as other meta-omics approaches—should 
be applied to investigate coral reef microbes to comprehensively 
explore species, genetic, and functional biodiversity. Such 
approaches will help to further advance our understanding of coral 
reef systems to enable their appropriate protection 
and remediation.
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