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Agricultural application of plant-beneficial bacteria to improve crop yield 

and alleviate the stress caused by environmental conditions, pests, and 

pathogens is gaining popularity. However, before using these bacterial strains 

in plant experiments, their environmental stress responses and plant health 

improvement potential should be  examined. In this study, we  explored the 

applicability of three unsupervised machine learning-based data integration 

methods, including principal component analysis (PCA) of concatenated 

data, multiple co-inertia analysis (MCIA), and multiple kernel learning (MKL), 

to select osmotic stress-tolerant plant growth-promoting (PGP) bacterial 

strains isolated from the rice phyllosphere. The studied datasets consisted of 

direct and indirect PGP activity measurements and osmotic stress responses 

of eight bacterial strains previously isolated from the phyllosphere of drought-

tolerant rice cultivar. The production of phytohormones, such as indole-

acetic acid (IAA), gibberellic acid (GA), abscisic acid (ABA), and cytokinin, were 

used as direct PGP traits, whereas the production of hydrogen cyanide and 

siderophore and antagonistic activity against the foliar pathogens Pyricularia 

oryzae and Helminthosporium oryzae were evaluated as measures of indirect 

PGP activity. The strains were subjected to a range of osmotic stress levels by 

adding PEG 6000 (0, 11, 21, and 32.6%) to their growth medium. The results 

of the osmotic stress response experiments showed that all bacterial strains 

accumulated endogenous proline and glycine betaine (GB) and exhibited an 

increase in growth, when osmotic stress levels were increased to a specific 

degree, while the production of IAA and GA considerably decreased. The three 

applied data integration methods did not provide a similar grouping of the 

strains. Especially deviant was the ordination of microbial strains based on 

the PCA of concatenated data. However, all three data integration methods 

indicated that the strains Bacillus altitudinis PB46 and B. megaterium PB50 

shared high similarity in PGP traits and osmotic stress response. Overall, our 

results indicate that data integration methods complement the single-table 
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data analysis approach and improve the selection process for PGP microbial 

strains.
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osmotic stress, rice phyllosphere, plant growth-promoting bacteria, data 
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Introduction

Global food production has been significantly affected by 
climate change and the evolution of pests and pathogens (FAO, 
2022). Rice is one of the world’s most important food crops, but it 
is highly vulnerable to numerous abiotic and biotic stresses 
(Sandhu et al., 2020). Plants have several mechanisms to adapt to 
and establish tolerance and resistance to stress (Vats, 2018; 
Chauhan et al., 2022; Hidangmayum et al., 2022; Sachdev and 
Ansari, 2022). One such mechanism is symbiosis, wherein 
beneficial microorganisms living in or on plant organs directly 
and/or indirectly support plant growth and protect them from 
biotic and abiotic stresses (Shinwari et  al., 2019). Given this 
beneficial effect, more attention has been paid to rice microbiome 
to increase crop yield and achieve sustainable agricultural goals. 
The microbial community composition of the rice rhizosphere has 
been extensively investigated using both culture-dependent and 
-independent approaches (Ding et al., 2019). Although the role of 
rhizobacteria in crop health improvement under abiotic stress has 
been widely reported (Ayuso-Calles et al., 2021; Saxena et al., 
2021), the contribution of rice phyllosphere and spermosphere 
microbial communities and populations to this process is only 
partially understood (Kim and Lee, 2020).

The phyllosphere refers to a plant’s total aboveground surface, 
representing an unstable habitat, where microbes are subjected to 
extreme and highly variable environmental factors, such as light 
intensity, ultraviolet (UV) radiation, temperature, and dryness. 
Bacteria dominate this habitat, and their number estimated either 
by cultivation or direct microscopy can be up to 107 cells per cm2 
on plant leaf surfaces (Vorholt, 2012; Remus-Emsermann and 
Schlechter, 2018). Microbial genetic and metabolic competence 
has been shown to help bacteria overcome and survive extreme 
environments (Sessitsch et  al., 2012; Shu and Huang, 2022). 
Venkatachalam et al. (2016) demonstrated that the adaptability 
and functionality of culturable rice microbial communities were 
related to their diversity and abundance in the phyllosphere, while 
their ability to stimulate plant growth was strongly influenced by 
the rice cultivation method. Bacillus species can be highly resistant 
to extreme abiotic stress factors, such as UV radiation, high and 
low temperatures, and dryness, by forming resistant endospores 
and having higher survival rates than other bacterial species in the 
phyllosphere (Setlow, 2014; Saleem et al., 2017).

Under high temperatures and desiccation stress, 
microorganisms regularly encounter osmotic stress in the 

phyllosphere habitat. Under osmotic stress, most bacteria produce 
compatible osmolytes, such as proline, glycine betaine (GB), 
ectoine, trehalose, and sucrose (Santos and Da Costa, 2002). 
Proline reduces osmotic stress by acting as a chemical chaperone 
that directly breaks down the reactive oxygen species produced 
during stress and by means of an indirect mechanism that 
activates the signaling pathways that promote cell survival (Liang 
et al., 2013). In contrast, quaternary ammonium compounds, such 
as GB and choline, serve as osmoprotectants. Choline is a 
precursor of GB, and during osmotic stress, a certain level of 
choline is oxidized to GB by choline oxidase and betaine aldehyde 
dehydrogenase (Fitzsimmons et  al., 2012). It has been 
demonstrated that plant growth-promoting bacteria (PGPB) that 
accumulate osmolytes reduce plant salinity stress (Upadhyay et al., 
2011, 2012). Therefore, to understand the osmotic stress tolerance 
of microorganisms, it is essential to investigate their osmolyte 
production potential.

The levels of phytohormones in plants significantly affect their 
growth by regulating metabolism and defense mechanisms 
(Egamberdieva et al., 2017). Many plant-associated bacteria can 
produce beneficial phytohormones, mainly indole-acetic acid 
(IAA), gibberellic acid (GA), cytokinin, and abscisic acid (ABA; 
Belimov et al., 2014; Nutaratat et al., 2017; Baliyan et al., 2022; 
Mekureyaw et al., 2022). Some microbes support host plants 
indirectly by preventing the growth and infestation of pests and 
pathogens. Such microbes produce a variety of compounds that 
inhibit the growth of competing organisms. Some of the most 
important antagonistic mechanisms involve the production of 
hydrogen cyanide (HCN), which affects cellular respiration and 
siderophore production, leads to iron chelation, and limits iron 
accessibility to pathogens (Sayyed et al., 2013; Muthukumar et al., 
2022; Singh et  al., 2022). Such behavior of beneficial bacteria 
against host pathogens can suppress diseases in in vitro and in 
planta (Ramakrishna et al., 2019; Mahmud et al., 2021). Therefore, 
the application of phyllosphere bacteria that can produce 
phytohormones, have antagonistic activity against pathogens, and 
tolerate osmotic stress can be greatly beneficial in improving rice 
health through the alleviation of biotic and abiotic stress.

To select the most promising strains for plant applications, the 
phenotypic and, less often, the genomic data related to PGP 
characteristics of microbial strains are explored by applying 
statistical and exploratory analyses. The data obtained for microbial 
strains are most often examined using univariate statistical methods 
including t-tests, ANOVA, and linear models. Less frequently, 
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univariate data analysis methods are complemented with 
multivariate approaches, such as cluster analysis or principal 
component analysis, which allow the elucidation of patterns among 
strains and relationships with their properties (da Costa et  al., 
2014). When several types of datasets, such as PGP traits and 
abiotic and biotic stress response parameters, are generated to 
characterize the potential of PGP-microbial strains for improving 
plant growth and health, an integration of these datasets is needed 
to facilitate the simultaneous identification of important phenotypic 
and genomic features during strain selection.

If the properties of microbial strains are assessed using 
different measurement methods and experimental conditions, the 
data produced by a particular method can be considered single-
view data. It is possible to fuse microbial strain data from different 
perspectives using multi-view learning (MVL), which utilizes the 
consensual and complementary information between different 
views of the same set of microbial strains. MVL, also known as 
data fusion or integration from multiple feature sets, is an 
emerging direction in multi-view machine learning that can 
be used to improve generalization performance (Zhao et al., 2017; 
Li et  al., 2018). Picard et  al. (2021) recently delineated data 
integration methods into five different integration strategies (early, 
mixed, intermediate, late, and hierarchical). Data integration can 
be  applied in two ways, depending on the nature of datasets: 
horizontal integration, which studies the same parameters across 
different microbial strains, and vertical integration, which 
examines multiple sets of variables on the same set of strains. 
Generally, machine learning methods are highly effective in data 
integration when datasets are appropriately transformed and 
combined (Picard et al., 2021; Cai et al., 2022).

Thus far, data integration methods have been applied to multi-
omics datasets, where the combination of different layers of molecular 
information obtained for plant-related microbial communities has 
been analyzed (Kaul et al., 2016). The suitability of this data analysis 
approach for characterizing and selecting PGP microbial strains 
using various types of datasets has not yet been explored. 
We hypothesized that the application of data integration methods can 
enhance the selection of PGP microbial strains for plant application 
if multiple PGP-related datasets are measured for these strains.

The main aim of this study was to test the applicability of three 
unsupervised machine learning-based data integration methods 
for simultaneous grouping and trait evaluation of osmotic stress-
tolerant PGP bacterial strains isolated from the rice phyllosphere. 
In addition, a set of univariate and multivariate data analysis 
methods conventionally used for this purpose was implemented.

Materials and methods

Study design

To assess PGP traits and osmotic stress responses in eight 
bacterial strains isolated from the phyllosphere of drought-
tolerant rice varieties grown in Paramakudi, Tamil Nadu, India 

(Arun et al., 2020; Devarajan et al., 2021), two sets of different 
assessments were conducted. The following strains (genbank1 
accession numbers in brackets) were included in this study: 
Bacillus endophyticus PB3 (MK969113), B. australimaris PB17 
(MK979279), B. pumilus PB18 (MK979280), B. safensis PB23 
(MK979280), Staphylococcus sciuri PB24 (MK994020), 
B. altitudinis PB37 (MK994020), B. altitudinis PB46 (MK979282), 
and B. megaterium PB50 (MK979284). The flowchart shows the 
study design in detail (Figure 1).

Assessment of PGP traits

Production of phytohormones
To estimate the production of bacterial phytohormones, the 

strains were inoculated in triplicate into tryptic soy broth (TSB) 
and allowed to grow at 37°C for 24 h. The growth temperature for 
bacterial strains in TSB broth was set at 37°C for all studies. This 
temperature was selected based on the air temperature (42°C) in 
this region and the fact that the crop leaf surface temperature is 
expected to be 5°C lower (37°C) than the atmospheric temperature 
(Deva et  al., 2020). Extraction, purification, and quantitative 
determination of IAA, GA, zeatin, and ABA from different strains 
were carried out using the methods described by Karadeniz et al. 
(2006). Briefly, phytohormones were extracted from the bacterial 
supernatant using ethyl acetate and thin-layer chromatography 
(TLC) was developed using a mixture of isopropanol/ammonia/
distilled water (10:1:1 v/v/v). IAA, GA, zeatin, and ABA bands and 
Rf (retardation factor) values of the samples were visualized under 
254 nm of UV light according to the standards of IAA, GA, zeatin, 
and ABA. The detected bands were scraped from TLC plates and 
dissolved in methanol. The purified samples were analyzed by 
ultra-high-performance liquid chromatography (UHPLC) using 
an evaporative light scattering detector (ELSD) system with 
reversed phase C-18 column (Shimadzu, Japan) at an isocratic 
flow rate of 0.5 min ml−1 at 40°C. The wavelengths were 280, 208, 
254, and 265 nm for IAA, GA, zeatin, and ABA, respectively 
(HiMedia, India), and the total duration for the detection of each 
hormone was approximately 15 min. The results of all 
phytohormone concentrations are expressed as μg ml−1.

Production of siderophores
Siderophores production was evaluated in all bacterial strains. 

Briefly, the chrome azurol sulfonate (CAS) medium was prepared 
by adding the CAS solution to melted King’s B agar medium at a 
1:15 ratio, and 10 μl of rice phyllosphere bacterial strains actively 
grown in TSB at 37°C for 24 h were spot inoculated on the center 
of the CAS plate. Colonies with a yellow-orange halo after 3 days of 
incubation (28 ± 2°C) were considered positive for siderophore 
production (Schwyn and Neilands, 1987). For siderophore 
quantification, 100 μl of fresh culture was inoculated into 100 ml of 

1 www.ncbi.nlm.nih.gov/genbank/
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iron-free succinic broth medium and incubated in a rotary shaker 
at 30°C for 24 h (120 rpm). Subsequently, the broth culture was 
centrifuged at 10,000 rpm for 10 min. The absorbance of the 
supernatant was measured at 400 nm using a spectrophotometer 
(LAMBDA 365 UV–Vis spectrophotometer, PerkinElmer, 

Mumbai, India), and siderophore production was calculated using 
the molar extinction coefficient (ε = 20,000 M−1  cm−1). The 
hydroxamate- and catecholate-type siderophores were 
characterized using Arnow’s and tetrazolium tests, respectively 
(Arnow, 1937). The quantification of siderophores is represented 

FIGURE 1

The flow chart depicts the basic workflow used in the current study to select the best phyllosphere bacterial strains for use in rice drought 
alleviation by screening the plant growth-promoting traits and osmotic stress response of bacterial strains. Obtained datasets were analyzed first 
using univariate and multivariate exploratory analyses. In the next step, the obtained datasets were integrated and analyzed using three 
unsupervised machine learning techniques: principal component analysis, multiple kernel learning, and multiple co-inertia analysis.
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as μM, and the presence or absence of siderophore type is expressed 
by the signs “+” and “−,” respectively.

Production of HCN
The production of HCN by the bacterial strains was measured 

using the alkaline picric acid method described by Wei et  al. 
(1991). For the qualitative measurement of HCN production, a 
change in the color of the filter paper strips from yellow to light 
brown, brown, or brick red was recorded as a mild (+), moderate 
(+ +), or strong (+ + +) reaction, respectively, whereas no color 
shift was considered as a negative (−) reaction. The color in the 
paper was eluted using 10 ml of distilled water, and the filter paper 
in a sterile medium blank was used as a control. HCN 
quantification was performed by measuring the absorbance of the 
eluted samples at 625 nm, and the results are presented as optical 
density (OD) units.

Evaluation of antagonistic activity
The biocontrol activity of all bacterial strains was tested against 

two fungal pathogens (Pyricularia oryzae and Helminthosporium 
oryzae) obtained from the Department of Plant Pathology, Tamil 
Nadu Agricultural University, Coimbatore, India, following the 
protocol proposed by Ji et al. (2013). In brief, the mycelial disks 
(5 mm diameter) of each rice pathogenic fungus were placed on the 
edge of potato dextrose agar media (30 mm), and each bacterium 
was streak inoculated close to the center of the plates that were 
incubated for 5–6 days at 25°C. Subsequently, the mycelial growth 
inhibition percentage of P. oryzae (PO.IP) and H. oryzae (HO.IP) 
by each bacterial strain was calculated as follows:

Inhibition percentage = [(growth of pathogen in control − 
growth of pathogen with bacterial strains)/growth of pathogen 
in control] × 100

Evaluation of osmotic stress effect on 
bacterial strains

Estimation of bacterial growth and sample 
preparation

Phyllosphere bacterial strains were inoculated in 100 ml of 
TSB in side-arm flasks with different concentrations of PEG 6000 
(0, 11, 21, and 32.6%) and incubated at 37°C for 24 h. The optical 
density (OD) of the broth cultures was estimated at 600 nm, and 
the growth results were expressed as OD units. The cells were then 
centrifuged at 10, 000 rpm for 5 min and the supernatant was 
collected to assess IAA and GA production. Cell pellets were used 
to measure the accumulation of endogenous proline and GB.

Estimation of IAA and GA production
To determine IAA concentration, 2 ml of the supernatant was 

mixed with 4 ml of Salkowski reagent (2% of 0.5 M FeCl3 in 35% 
HClO4), and sterile TSB was used as a control (Meudt and Gaines, 

1967). Subsequently, the mixtures were incubated in the dark at 
25°C for 24 h. The absorbance of IAA was measured at 520 nm using 
a spectrophotometer. The concentration of IAA in the samples was 
determined using the IAA standard curve and expressed as μg ml−1.

To determine GA concentrations, 2 ml of the supernatant was 
mixed with 2 ml of zinc acetate solution and 2 ml of potassium 
ferrocyanide solution before centrifugation at 8,000 rpm for 
10 min (Holbrook et al., 1961). A 5-ml aliquot of supernatant was 
added to 5 ml of 30% hydrochloric acid and incubated at 27°C for 
75 min. The absorbance was measured at 254 nm, and the GA 
concentration in the samples was determined using a standard GA 
curve and expressed as μg ml−1.

Estimation of proline and GB production
The endogenous production of proline and GB was measured 

using the protocol described by Qurashi and Sabri (2013). The 
harvested cells were boiled and centrifuged to collect the supernatant. 
For proline estimation, 150 μl of the supernatant was mixed with 
100 ml of water and 1 ml of ninhydrin reagent (0.35% ethanol), and 
150 μl of sterile water was used as a control. This mixture was heated 
for 20 min, and then the absorbance was measured at 520 nm. The 
concentration of proline was calculated using a standard curve 
prepared with L-proline and expressed as μg ml−1.

To estimate the endogenous accumulation of GB, the extracted 
supernatant was diluted (1:1) in boiled 2 N H2SO4, and sterile 
water was used as a control (Qurashi and Sabri, 2013). The 
mixture (0.50 ml) was cooled for 60 min in ice water, and 200 μl of 
cold KI-I2 reagent was added with gentle vortexing. The mixture 
was incubated for 16 h at 4°C and gradually centrifuged for 15 min 
at 10,000 rpm. After carefully removing the supernatant, the 
resulting pellet was dissolved in 9 ml of 1,2-dichloroethane, and 
the absorbance was measured at 365 nm. The concentration of GB 
was calculated using a standard curve and expressed as μg ml−1.

Statistical analysis

All experiments were conducted in triplicate, and the results 
are expressed as means with standard deviations. The obtained 
data were checked for normality and outliers and log-transformed 
prior to data analysis, if necessary. The following data analysis 
methods were used for analysis of direct and indirect microbial 
PGP traits: one-way ANOVA and multivariate ANOVA 
(MANOVA) with strain type as a single factor. Two-way ANOVA 
and MANOVA was applied to the set of microbial parameters 
(growth, production of indole-acetic acid, gibberellic acid, proline, 
and glycine betaine) with two factors—strain type and stress level. 
One-way ANOVA test was followed by Tukey’s post-hoc test. The 
significance level was set to 0.05 for all tests. Multivariate 
exploratory analyses included principal component analysis 
(PCA), heatmaps, k-means clustering, and spectral clustering. 
PCA was performed separately for two datasets (direct and 
indirect PGP traits and osmotic stress data). Heatmaps, k-means 
clustering, and spectral clustering were used as additional 
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methods for analysis of osmotic stress dataset. The details of 
software packages used for the data analysis are provided in 
Supplementary Table S1 (Paradis et al., 2004; Lê et al., 2008; R 
Core Team, 2013; Meng et al., 2014; Mariette and Villa-Vialaneix, 
2018; Kolde, 2019; John et  al., 2020). In the case of PCA, the 
variables contributing significantly to the principal component 
(PC) axes were determined using the PCAtest package with 
random permutation, a bootstrap replication value of 1,000, and 
an alpha level of 0.05 (Camargo, 2022). The importance of the 
variable was ranked from each principal component axis using the 
total loading values.

Data integration

We used horizontal integration of the datasets to compare 
multiple treatment factors on similar variables and samples. 
We applied unsupervised machine learning techniques and 
implemented them using three integration techniques: early 
integration (PCA), mixed integration (multiple kernel 
learning, MKL), and intermediate integration (multiple 
co-inertia analysis, MCIA). Supplementary Table S10 contains 
information on the dataset combinations used for the 
integration methods.

In the case of the PCA analysis, the datasets were first 
combined and transformed, and then the PCA function from the 
factomineR package was applied to the obtained dataset 
(Supplementary Table S10). MCIA is a mixed integration 
technique in which the dataset is dimensionally reduced and 
transformed using ordination methods, such as PCA, 
correspondence analysis (COA), or non-symmetric 
correspondence analysis (NSCA), before being combined for 
analysis. In this study, the MCIA was performed on the data list 
(Supplementary Table S10) using the omicade4 package 
(Supplementary Table S1). Data dimension reduction, 
transformation, and analysis were performed using a single-
function MCIA with singular value decomposition. The output 
was saved as a MCIA class object, and from that object, the 
variables from each dataset were visualized with regard to the 
sample relationship using the plotVar function.

The same data list was used in the R package mixKernel to 
perform MKL (Supplementary Tables S1, S10), wherein each 
dataset was first converted into a kernel object using the compute.
kernel function with a linear kernel, thereby converting a linearly 
inseparable space object into a linearly separable one. The fully 
unsupervised MKL (UKML) method was used to combine all 
kernel objects, and the resulting kernels were subjected to PCA 
and an important variable analysis using the kernel.pca and 
kernel.pca.permute functions, respectively.

The results of different data integration techniques were 
compared using the congruence among distance matrices 
(CADM) approach (Campbell et al., 2011) implemented in the 
CADM.global function using the R package ape: analyses of 
phylogenetics and evolution (Supplementary Table S1).

Results

Direct and indirect PGP activities of 
phyllosphere bacterial strains

The analysis of direct PGP activities showed significant 
differences (one-way MANOVA, p < 0.001) in the production of 
phytohormones by the studied bacterial strains (Table  1; 
Supplementary Table S2). Bacillus megaterium PB50 showed the 
highest production of all four phytohormones, followed by 
B. endophyticus PB3, which produced the highest levels of IAA, 
GA, and ABA, and B. altitudinis PB46, which produced high levels 
of GA and cytokinin. The lowest levels of IAA and GA were 
produced by B. australimaris PB17 and those of cytokinin and ABA 
were produced by B. safensis PB23 and S. sciuri PB24, respectively.

Similarly, the studied strains significantly differed in their 
indirect PGP trait values (one-way MANOVA, p < 0.001, 
Table 2; Supplementary Table S2). Siderophore production was 
found to be the highest in B. megaterium PB50, followed by 
B. pumilus PB18. The characterization of siderophores revealed 
that only B. megaterium PB50 produced hydroxamate-type 
siderophores, whereas the remaining strains produced 
catecholate-type siderophores (Table 2). The analysis of HCN 
production results showed that B. pumilus PB18 produced the 
highest amount of HCN, while B. safensis PB23 and S. Sciuri 
PB24 produced the least amount of HCN. The assessment of 
the antagonistic activity of phyllosphere bacterial strains 
against the rice foliar pathogens revealed that only 
B. endophyticus PB3 and B. australimaris PB17 had an 
antagonistic activity against P. oryzae, and only B. megaterium 
PB50 inhibited the growth of H. oryzae (Table  2; 
Supplementary Figure S1).

Bacterial growth and production of 
phytohormones and osmolytes under 
different osmotic stress levels

Analysis of bacterial growth under different osmotic stress 
levels showed that under non-stressed conditions, B. pumilus PB18, 
B. safensis PB23, S. sciuri PB24, and B. megaterium PB50 reached 
the highest OD, with no significant difference between them. No 
significant difference was observed among B. australimaris PB17, 
B. altitudinis PB37, and B. altitudinis PB46, which had the lowest 
OD values (Table  3; Supplementary Table S6). The maximum 
growth values were achieved by B. altitudinis PB46 at 11 and 21% 
PEG 6000 concentrations and by B. megaterium PB50 at 32% PEG 
6000 (Figure 2A). The lowest growth was observed in B. altitudinis 
PB37 at 11 and 21% PEG 6000 concentrations and in 
B. australimaris PB17 and B. altitudinis PB37 at 32.6% PEG 6000, 
with no significant difference between them.

As the PEG 6000 concentration increased, IAA and GA 
production decreased in all strains (Table 4; Figures 2B,C). 
The strain B. megaterium PB50 produced the highest IAA 
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amount under almost all stress conditions, except for PEG 
6000 at the 21% level, when this value was the highest for 
B. altitudinis PB46. The strain B. megaterium PB50 also 
exceeded the other studied strains in the production of GA at 
all stress levels, followed by B. endophyticus PB3 at 11% PEG 
6000 and B. altitudinis PB46 at 21 and 32.6% PEG 6000.

All studied strains showed a gradual increase in proline and 
GB production from non-stress to stress conditions at 21% PEG 
6000, but at 32.6% PEG 6000, the production dropped below the 
non-stress level for both osmolytes (Table  5; Figures  2D,E). 
Nevertheless, substantial differences were observed for the 
different strains in osmolyte production at different stress levels. 

TABLE 2 Mean and standard deviation values of the indirect plant growth-promoting traits, such as siderophore (Sid.) production, qualitative 
(Qual.), and quantitative (Quant.) assessment of hydrogen cyanide (HCN) production, and growth inhibition of Pyricularia oryzae and 
Helminthosporium oryzae measured for each rice phyllosphere bacterial strain (number of replicates, n = 3).

Strains
Sid. 

production 
(μM)

Arnow’s 
test

Tetrazolium 
test

Qual. HCN 
production

Quant. HCN 
production 

(OD625)

Inhibition percentage (%)

Pyricularia  
oryzae

Helminthosporium 
oryzae

Bacillus endophyticus PB3 46.1 (2.2)c + − ++ 0.083 (0.002)b 71.2 (4.2)b 0

B. australimaris PB17 38.4 (1.5)d + − ++ 0.062 (0.004)c 0 0

B. pumilus PB18 65.5 (1.5)b + − +++ 0.128 (0.003)a 79.7 (2.7)a 0

B. safensis PB23 14.8 (0.6)f + − − 0.013 (0.003)f 0 0

Staphylococcus sciuri PB24 37.1 (0.6)d + − − 0.009 (0.001)f 0 0

B. altitudinis PB37 17.3 (0.5)f + − + 0.041 (0.003)e 0 0

B. altitudinis PB46 20.7 (0.8)e + − ++ 0.089 (0.004)b 0 0

B. megaterium PB50 72.2 (3.2)a − + + 0.049 (0.004)d 0 44.4 (5.2)a

Parameter values with different letters are significantly different according to Tukey’s test, p < 0.05.

TABLE 1 Mean and standard deviation values of the direct plant growth-promoting traits [indole-acetic acid (IAA), gibberellic acid (GA), cytokinin, 
and abscisic acid (ABA) production] measured for each rice phyllosphere bacterial strain (number of replicates, n = 3).

Strains
IAA GA Cytokinin ABA

(μg ml−1) (μg ml−1) (ng ml−1) (ng ml−1)

Bacillus endophyticus PB3 32.5 (0.73)b 34.8 (1.2)b 148.4 (4.1)c 239.8 (7.8)b

B. australimaris PB17 7.57 (0.37)g 9.2 (0.3)f 63.3 (1.5)e 74.5 (2.3)f

B. pumilus PB18 15.1 (0.39)f 14.7 (0.4)d 78.2 (0.6)d 92.8 (3.4)e

B. safensis PB23 20.4 (0.32)d 19.8 (0.4)c 28.9 (0.5)g 59.3 (1.6)g

Staphylococcus sciuri PB24 18.4 (0.44)e 13.8 (0.4)d 52.6 (1.9)f 34.4 (3.3)h

B. altitudinis PB37 19.5 (0.46)de 10.3 (0.4)e 80.2 (0.9)d 124.4 (3.6)d

B. altitudinis PB46 26.4 (0.35)c 35.7 (0.3)b 178.1 (1.0)b 147.2 (2.0)c

B. megaterium PB50 38.9 (0.86)a 46.6 (0.4)a 410 (5.2)a 311.7 (30.7)a

Parameter values with different letters are significantly different according to Tukey’s test, p < 0.05.

TABLE 3 Mean and standard deviation values of growth of each rice phyllosphere bacterial strain (number of replicates, n = 3) measured under three 
different osmotic stress conditions and a non-stress condition.

Strains
Growth (OD)

Non-stress PEG 6000 (11%) PEG 6000 (21%) PEG 6000 (32.6%)

Bacillus endophyticus PB3 0.638 (0.007)b 0.886 (0.01)d 0.464 (0.003)f 0.267 (0.003)e

B. australimaris PB17 0.553 (0.008)c 0.838 (0.01)e 0.590 (0.003)e 0.228 (0.005)f

B. pumilus PB18 0.693 (0.009)a 0.924 (0.01)c 0.624 (0.003)d 0.285 (0.007)d

B. safensis PB23 0.680 (0.01)a 0.924 (0.01)c 0.658 (0.003)c 0.333 (0.009)c

Staphylococcus sciuri PB24 0.681 (0.01)a 0.760 (0.01)f 0.594 (0.003)e 0.272 (0.01)de

B. altitudinis PB37 0.539 (0.008)c 0.696 (0.01)g 0.395 (0.004)g 0.217 (0.003)f

B. altitudinis PB46 0.533 (0.009)c 1.177 (0.01)a 0.715 (0.004)a 0.399 (0.005)b

B. megaterium PB50 0.673 (0.01)a 1.083 (0.01)b 0.701 (0.004)b 0.420 (0.007)a

Parameter values with different letters are significantly different according to Tukey’s test, p < 0.05.
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FIGURE 2

Results of two-way ANOVA showing the mean differences of dependent variables according to two independent variables (strain and stress) and 
their interaction. Shown are mean and standard error values for two grouping variables. Plots (A) growth; (B) indole-acetic acid (IAA); 
(C) gibberellic acid (GA); (D) proline; and (E) glycine betaine. The strain codes refer to the following strains: Bacillus endophyticus PB3, B. 
australimaris PB17, B. pumilus PB18, B. safensis PB23, S. sciuri PB24, B. altitudinis PB37, B. altitudinis PB46, and B. megaterium PB50. AIC, akaike 
information criterion; BIC, Bayesian information criterion; and η2, effect size. Individual p values are given in Supplementary Table S5.

Bacillus pumilus PB18 accumulated the highest proline content 
under non-stress conditions, whereas B. megaterium PB50 
accumulated the lowest amount under these conditions. 
Furthermore, under 11, 21, and 32.6% PEG 6000 concentrations, 
the bacterial strains B. pumilus PB18 and B. safensis accumulated 

the maximum amount of proline, with no significant difference 
between them. The strains B. australimaris PB17 and B. altitudinis 
PB37 accumulated the lowest amount of proline at all three stress 
levels, with no significant differences between them. Different 
strains showed different GB production patterns under variable 
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stress conditions. Under non-stress conditions, the bacterial 
strain B. australimaris PB17 produced the highest GB, whereas 
B. altitudinis PB46 and B. megaterium PB50 produced the highest 
GB at 11 and 21% PEG 6000 levels. Bacillus megaterium PB50 
produced the maximum GB at 32.6% PEG 6000. Under 
non-stress conditions as well as 11, 21, and 32.6% PEG 6000 
levels, B. altitudinis PB37 had the lowest GB.

Two-way MANOVA revealed the significance of the 
interaction effect (strain–osmotic stress interaction) and the main 
effects (strains and osmotic stress level) in the examined 
parameters (Supplementary Table S3). The results of one-way 
MANOVA revealed that the impact of bacterial strains on 
microbial parameters was statistically significant at each stress 
level (Supplementary Table S4), except for bacterial growth, which 
was not significant in the non-stress conditions 
(Supplementary Tables S6–S9). The two-way ANOVA results 
showed significant (p < 0.05) differences in all traits tested among 
bacterial strains and osmotic stress levels, as well as their 
interaction effects (Supplementary Table S5).

The response pattern of the studied strains based on 
biochemical properties and growth under various osmotic stress 
levels was revealed by the PCA plot (Figure 3). The PCA first 
(PC1) axis captured 68.4% of the overall data variation, and all 

variables significantly contributed to the PCA first axis 
(Supplementary Table S11). All strains had a generally similar 
response pattern that consisted of a gradual change along the PCA 
second (PC2) axis in the case of 11 and 21% stress levels of PEG 
6000, followed by a shift in the same direction along the PC1 axis 
when strains were exposed to 32.6% PEG 6000 (Figure 3C). The 
gradual change along the PC2 axis was related mainly to the 
increase in GB and proline production with the increase in PEG 
6000 level to 21%, while the application of 32.6% PEG 6000 was 
characterized by a reduction in strain growth values (Figure 3D).

The heatmap based on PGP traits showed that the strains 
could be divided into two main groups based on their response to 
osmotic stress levels. At the 32% PEG 6000 level, the strains 
formed one group, and the strains at other stress levels formed 
another cluster (Supplementary Figure S4). The results of k-means 
clustering indicated four optimal clusters, of which two (stress 
levels 0 and 32.6%) were partially homogenous 
(Supplementary Figure S5A). Moreover, these results indicated 
that B. altitudinis PB46 and B. megaterium PB50 were the most 
deviant in their responses to different stress levels. Spectral 
clustering identified two strain groups with similar response 
patterns to increasing PEG 6000 stress levels. The first group 
consisted of four strains (B. endophyticus PB3, B. pumilus PB18, 

TABLE 4 Mean and standard deviation values of indole-acetic acid (IAA) and gibberellic acid (GA) production (μg ml−1) by each rice phyllosphere 
bacterial strain (number of replicates, n = 3) measured under three different osmotic stress conditions and a non-stress condition.

Strains
Non-stress PEG 6000 (11%) PEG 6000 (21%) PEG 6000 (32.6%)

IAA GA IAA GA IAA GA IAA GA

Bacillus endophyticus PB3 33.0 (0.4)c 47.0 (0.8)b 21.3 (0.4)c 31.4 (0.42)b 11.7 (0.4)c 20.7 (0.17)b 1.07 (0.08)ef 2.47 (0.77)c

B. australimaris PB17 28.8 (0.6)d 12.6 (1.7)g 17.0 (0.2)e 8.99 (0.17)e 9.7 (0.3)e 1.93 (0.17)e 0.89 (0.04)fg 0.64 (0.09)d

B. pumilus PB18 18.1 (0.4)f 15.9 (1.0)f 13.2 (0.4)g 5.87 (0.51)f 6.7 (0.2)f 1.23 (0.18)f 0.63 (0.03)g 0.52 (0.18)d

B. safensis PB23 27.6 (0.6)d 25.0 (0.5)d 19.0 (0.2)d 19.3 (0.49)d 9.4 (0.2)e 15.0 (0.29)c 1.74 (0.03)c 3.46 (0.26)c

Staphylococcus sciuri PB24 17.4 (0.3)f 22.1 (1.2)e 18.2 (0.3)de 5.5 (0.34)f 10.9 (0.2)cd 3.1 (0.34)d 1.27 (0.06)de 0.86 (0.23)d

B. altitudinis PB37 22.6 (0.7)e 13.1 (0.3)fg 15.7 (0.4)f 9.31 (0.17)e 10.3 (0.6)de 1.86 (0.17)e 1.46 (0.36)cd 0.47 (0.25)d

B. altitudinis PB46 45.3 (0.9)b 35.9 (0.9)c 34.4 (0.6)b 29.9 (0.93)c 19.1 (0.6)a 21.2 (0.34)b 3.46 (0.30)b 7.93 (0.13)b

B. megaterium PB50 60.1 (0.7)a 69.0 (0.9)a 28.6 (0.7)a 49.0 (0.45)a 13.7 (0.3)b 24.3 (0.51)a 4.72 (0.16)a 10.4 (0.63)a

Parameter values with different letters are significantly different according to Tukey’s test, p < 0.05.

TABLE 5 Mean and standard deviation values of proline and glycine betaine (GB) accumulation (μg ml−1) by each rice phyllosphere bacterial strain 
(number of replicates, n = 3) measured under three different osmotic stress conditions and a non-stress condition.

Strains
Non-stressed PEG 6000 (11%) PEG 6000 (21%) PEG 6000 (32.6%)

Proline GB Proline GB Proline GB Proline GB

Bacillus endophyticus PB3 534 (15)ab 135 (7)c 614 (19)c 278 (20)d 638 (22)c 354 (18)c 334 (14)c 89 (5)e

B. australimaris PB17 510 (16)b 275 (18)a 535 (17)e 287 (11)d 560 (19)d 363 (15)c 261 (9)d 86 (5)e

B. pumilus PB18 571 (15)a 162 (12)bc 767 (14)a 325 (9)c 792 (15)a 405 (23)bc 488 (16)a 123 (5)c

B. safensis PB23 541 (13)ab 190 (18)b 766 (24)a 343 (13)ab 781 (17)a 421 (19)ab 494 (18)a 91 (5)d

Staphylococcus sciuri PB24 526 (18)b 186 (14)b 608 (25)c 289 (19)d 632 (32)c 369 (21)c 332 (12)c 92 (3)d

B. altitudinis PB37 534 (10)ab 129 (23)c 537 (13)e 223 (7)e 562 (11)d 301 (12)d 259 (6)d 68 (5)f

B. altitudinis PB46 539 (15)ab 162 (8)bc 664 (24)b 360 (9)a 690 (29)b 440 (15)a 384 (11)b 137 (5)b

B. megaterium PB50 384 (14)c 198 (11)b 585 (22)d 352 (12)a 610 (24)cd 431 (17)a 313 (18)c 143 (4)a

Parameter values with different letters are significantly different according to Tukey’s test, p < 0.05.
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B. altitudinis PB46, and B. megaterium PB50), and the second 
group consisted of three strains (B. australimaris PB17, B. safensis 
PB23, and S. sciuri PB24; Supplementary Figure S5B). Bacillus 
altitudinis PB37 was not included in either group. The main 
difference between the response dynamics of the two groups was 
related to a more profound stress response in the first group than 
in the second group and the strain B. altitudinis PB37. This higher 
stress response was more reflected at the stress levels of 11 and 
21% PEG 6000 when the relative stress response magnitude was 
1.5–2-fold higher in the first group than in the second group.

Integration of different datasets

Early integration approach
A PCA was used to explore the variation among strains based 

on a joint dataset of direct and indirect PGP variables (Figure 3). 
The PC1 axis explained 54.6% of the data variance, and the 
statistically significant variables in PCA were siderophore, IAA, 
GA, GB, ABA production, and H. oryzae inhibition percentage 
(Supplementary Table S11). The PC1 axis separated B. megaterium 
PB50, B. altitudinis PB46, and B. endophyticus PB3 from the other 

A B

C D

FIGURE 3

Results of principal component analysis (PCA) based on the plant growth-promoting (PGP) trait data of rice phyllosphere bacteria (number of 
replicates, n = 3). (A) Score plot and (B) loading plot of variables according to first two principal component axes. Bacterial strains are indicated by 
95% confidence ellipses. The plots correspond to 79.2% of the total data variance and variance proportions are shown along each principal 
component axis. (C) Score plot and (D) loading plot of variables along first two principal component axes based on microbial dataset [indoleacetic 
acid (IAA), gibberellic acid (GA), proline, glycine betaine, and growth] of rice phyllosphere bacterial strains measured at different PEG 6000 
concentrations (number of replicates, n = 3). The plots correspond to 89.9% of the total data variance, and variance proportions are shown along 
each principal component axis. Variables with asterisk in plot B and D are significant along the first principal component axis. Abbreviations used in 
plot (B) are, abscisic acid (ABA), hydrogen cyanide (HCN), Helminthosporium oryzae inhibition percentage (HO_IP), and Pyricularia oryzae 
inhibition percentage (PO_IP). The codes of the strains in plots (A,C) refer to the following strains: Bacillus endophyticus PB3, B. australimaris PB17, 
B. pumilus PB18, B. safensis PB23, Staphylococcus sciuri PB24, B. altitudinis PB37, B. altitudinis PB46, and B. megaterium PB50.

https://doi.org/10.3389/fmicb.2022.1058772
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Devarajan et al. 10.3389/fmicb.2022.1058772

Frontiers in Microbiology 11 frontiersin.org

strains (Figures 3A,B). The PC2 axis emphasized the variation 
among strains in P. oryzae inhibition percentage and HCN 
production ability, indicating that strain B. pumilus PB18 exhibited 
the highest P. oryzae inhibition percentage and HCN production 
potential among the studied strains. A heatmap based on direct 
and indirect PGP traits was used to assess similarities among the 
studied bacterial strains (Supplementary Figure S2). Based on the 
intensity of the PGP response, the strains were separated into one 
large group of seven strains with two subclusters, whereas the 
B. megaterium PB50 strain formed a separate cluster. The large 
cluster comprised two sub-clusters, with B. endophyticus PB3, 
B. pumilus PB18, and B. altitudinis PB46 grouped together as 
moderate-performance strains, and B. australimaris PB17, 
B. safensis PB23, S. sciuri PB24, and B. altitudinis PB37 grouped 
separately because of their poor performance in PGP activities. 
Furthermore, k-means clustering led to the identification of six 
optimal clusters in this dataset, with B. australimaris PB17 and 
B. altitudinis PB37 and B. safensis PB23 and S. sciuri PB24 
clustered together, and both clusters were close to each other, as 
shown in the PCA ordination plot (Supplementary Figure S3).

In addition to PCA on the joint PGP trait dataset 
(Figures 3A,B), PCA was performed by combining all osmotic 
stress datasets (datasets 3–6; Supplementary Table S10) and all six 
datasets (datasets 1–6; Supplementary Table S10). The results for 
PCA on all osmotic stress datasets are provided in 
Supplementary Figure S6, and these data were used as input later 

in the congruence among the distance matrices approach. The 
PCA results for all six datasets are shown in Figure 4. PC1 was 
significant (p < 0.05), accounting for 56% of the total variance, 
whereas PC2 accounted for only 12.5% of the total variance. Most 
variables had a significant impact on PC1 
(Supplementary Table S11). The maximum variance was attributed 
by the variables measured at a stress level of 32.6% PEG 
6000 32.6%.

Multiple co-inertia analysis
Multiple co-inertia analysis was applied to jointly analyze 

the six datasets (Supplementary Table S10). The graphical 
outputs of this analysis are shown in Figure  5; 
Supplementary Figure S7. The MCIA first axis captured the 
highest variance (78.3%) in the datasets and separated three 
strains, B. endophyticus PB3, B. altitudinis PB46, and 
B. megaterium PB50, from the remaining strains (Figure 5A). 
The MCIA second axis, explaining 16.0% of the data variation, 
emphasized the distinction between the strains B. pumilus PB18 
and B. altitudinis PB37 and the other studied strains. The 
pseudo-eigenvalue space of six datasets (Figure 5D) indicates 
that three datasets (direct PGP traits as well as stress at PEG 
6000 levels of 0 and 11%) contributed the most to the MCIA 
first axis, while the contribution of indirect PGP parameters was 
small. The datasets of the stress at PEG 6000 levels of 21 and 
32.6% contributed to the MCIA second axis. Correlations 

A B

FIGURE 4

Results of principal component analysis (PCA) based on the integration of plant growth-promoting traits data and osmotic stress response 
parameters datasets. (A) Score plot and (B) loading plot of variables according to first two principal components. The plots correspond to 68.5% of 
the total data variance, and variance proportions are shown along each principal component axis. Variables with asterisk in the plot (B) are 
significant along the first principal component axis. Abbreviations used in plot (B) are, indoleacetic acid (IAA), gibberellic acid (GA), glycine betaine 
(GB), abscisic acid (ABA), hydrogen cyanide (HCN), Helminthosporium oryzae inhibition percentage (HO.IP), and Pyricularia oryzae inhibition 
percentage (PO.IP). The codes of the strains in plot (A) refer to the following strains: Bacillus endophyticus PB3, B. australimaris PB17, B. pumilus 
PB18, B. safensis PB23, Staphylococcus sciuri PB24, B. altitudinis PB37, B. altitudinis PB46, and B. megaterium PB50.
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FIGURE 5

Multiple co-inertia analysis (MCIA) results based on six datasets [direct plant growth-promoting (PGP) traits, indirect PGP traits, microbial 
parameters under osmotic stress at PEG concentrations 0, 11, 21, and 32.6%]. (A) A plot of the first two components in the sample space. Each 
sample is represented by a shape where lines connect the six datasets for each sample to a center point (MCIA global score). (B) Variable space for 
each dataset. (C) A scree plot of absolute eigenvalues (bars) and the proportions of variance for the eigenvectors (line). (D) A plot of data weighting 
space that shows the pseudo-eigenvalues space of all datasets indicating the variance of an eigenvalue contributed by each dataset. The codes of 
the strains in plot (A) refer to the following strains: Bacillus endophyticus PB3, B. australimaris PB17, B. pumilus PB18, B. safensis PB23, 
Staphylococcus sciuri PB24, B. altitudinis PB37, B. altitudinis PB46, and B. megaterium PB50.

between datasets were the highest at the stress levels of 11, 21, 
and 32.6% PEG 6000 (RV = 0.71–0.76) and lowest in the case of 
the datasets of indirect PGP traits and stress levels of 0, 11, and 
21% of PEG 6000 (RV = 0.35–0.51). Projections of all variables 
onto the first two MCIA axes space indicated that the strains 
B. altitudinis PB46 and B. megaterium PB50, and to a lesser 
extent, B. endophyticus PB3, were associated with higher IAA 
and GA values (Supplementary Figure S7). The concentration 
of GB was an important variable for the separation of strains 

under non-stress conditions, and it coincided with higher 
siderophore and cytokinin production. The dataset correlation 
plot based on the RV coefficient value showed that the dataset 
of intermediate stress level (21% PEG 6000) was highly 
positively correlated with the datasets of 11 and 32.6% PEG 
6000 datasets (Supplementary Figure S8A). The positive 
correlation of the stress and non-stress datasets of 11% PEG 
6000 with the datasets of PGP traits was higher than that of the 
other two stress levels, indicating that the stress level influenced 
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the function of all studied strains. Indirect PGP traits did not 
positively correlate with other dataset types.

Multiple kernel learning
The MKL technique was applied to the same six datasets 

(Supplementary Table S10), and the combined kernel principal 
component analysis (KPCA) was used in further exploratory 
analysis. The results of these analyses revealed that the majority of 
the overall variance in the data was captured by the first axis of 
KPCA, which clearly separated the two strains, B. altitudinis PB46 
and B. megaterium PB50, from the rest of the strains (Figure 6A). 
To identify the influence of the variables on KPCA, an important 
variable plot was computed (Figure 6B), which showed that GA 
and HCN production were the most important direct and indirect 
PGP traits, respectively. The production of IAA and GA was 
important in the non-stress conditions, whereas GA was also 
relevant at the 11% PEG 6000 stress level. Proline production was 
found to be an important variable in both 21 and 32.6% PEG 6000 

stress levels. The kernel correlation plot showed that the dataset 
correlation followed a pattern similar to that observed with the 
MCIA analysis, indicating that the dataset correlation was heavily 
influenced by stress levels (Supplementary Figure S8A).

Comparison of data analysis results
The CADM test indicated that some of the obtained distance 

matrices were similar (CADM global test, p < 0.001). The most 
congruent were strain groupings according to the PCA based 
on all datasets and the PCA based on osmotic stress data 
(Mantel r = 0.54, p < 0.001). In addition, the MCIA and KPCA 
results correlated (Mantel r = 0.46, p < 0.01). The similarities 
among the studied data integration methods were visualized 
using a dendrogram based on the Mantel test correlation values 
(Supplementary Figure S9). The posteriori test indicated that 
the strain distance matrices of the KPCA and PCA based on 
osmotic stress data were incongruent with the rest of the 
distance matrices.

A B

FIGURE 6

Results of multiple kernel learning analysis (MKL). (A) A plot of kernel principal component analysis (KPCA) based on six datasets (direct plant 
growth-promoting (PGP) traits, indirect PGP traits, microbial parameters under osmotic stress at polyethylene glycol (PEG) concentrations 0, 11, 
21, and 32.6%). (B) A plot for important variables in each dataset assessed using the Crone-Crosby distance. The codes of the strains in plot 
(A) refer to the following strains: Bacillus endophyticus PB3, B. australimaris PB17, B. pumilus PB18, B. safensis PB23, Staphylococcus sciuri PB24, B. 
altitudinis PB37, B. altitudinis PB46, and B. megaterium PB50. Abbreviations used in plot (B) are indoleacetic acid (IAA), gibberellic acid (GA), 
abscisic acid (ABA), hydrogen cyanide (HCN), Helminthosporium oryzae inhibition percentage (HO_IP), and Pyricularia oryzae inhibition 
percentage (PO_IP).
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Discussion

Estimating strains difference using 
univariate and multivariate analysis

Among the eight strains included in this study, seven were 
spore-forming gram-positive Bacillus strains that were 
generally resistant to the effects of dryness, heat, UV radiation, 
and various other environmental stressors (Nicholson et al., 
2000; Tortora et al., 2019). However, the measured biochemical 
and microbiological indicators revealed significant differences 
in osmotic stress tolerance and PGP properties among 
the strains.

Based on the univariate analysis results, B. endophyticus PB3, 
B. altitudinis PB46, and B. megaterium PB50 stood out with their 
phytohormone production ability, with B. megaterium PB50 
producing the highest amounts of all four phytohormones. The 
production of these phytohormones by B. megaterium species has 
been reported previously (Karadeniz et al., 2006), and this ability 
has been associated with the stimulation of growth and stress 
alleviation in plants (Shahzad et al., 2017; Sun et al., 2017; Kang 
et  al., 2019; Zerrouk et  al., 2020) by a direct effect on 
phytohormone levels (Vejan et al., 2016).

The production of HCN and siderophores in bacterial cells 
serves as a defense mechanism against other microbes. While 
known to be good siderophore producers that inhibit the growth 
of several plant pathogens, Bacillus species have been shown to 
possess moderate HCN production ability (Muthukumar et al., 
2022). In this study, all Bacillus strains could produce 
siderophores; however, B. megaterium PB50 was the most 
effective siderophore producer among the studied strains and 
was the only strain that produced hydroxamate-type 
siderophores (Ferreira et  al., 2019). Bacillus megaterium is a 
dominant rice phyllosphere bacterial species that has shown 
antagonistic activity against several predominant rice fungal 
pathogens in vitro (Islam and Nandi, 1985; Gowdu and 
Balasubramanian, 1988). Moreover, B. megaterium PB50 was 
among the three Bacillus strains that showed antagonistic 
activity against rice fungal pathogens in this study. However, 
another strain, B. pumilus PB18, also exhibited antagonistic 
activity against fungal pathogens and had the highest 
siderophore production activity among the strains examined in 
this study.

In all strains, a decrease in IAA and GA production was 
observed under more pronounced osmotic stress conditions; 
however, the production was again the highest in B. megaterium 
PB50 at different stress levels. Similarly, a higher production of 
IAA by B. megaterium at the 15% PEG level was detected by 
Armada et  al. (2014). In addition, decreased IAA, GA, and 
cytokinin production under stress conditions (20% PEG 6000) 
compared to non-stress conditions was observed in Azospirillum 
brasilense and B. subtilis (Ilyas et  al., 2020). In addition, to 
B. megaterium PB50, B. altitudinis PB46 stood out from the other 
strains in responding to stress levels. Similar to earlier reports for 

different Bacillus species (Paul et al., 2015; Lee et al., 2018), the 
growth of the two aforementioned strains was faster at 11% PEG 
6000 than under non-stress conditions.

Bacterial growth and proline and GB accumulation 
increased with increasing osmotic stress levels of up to 21% 
PEG 6000 in all strains. Phytohormone production decreased 
with increasing proline and GB concentrations. In contrast to 
B. megaterium PB50, which showed the lowest proline 
accumulation and highest phytohormone production under 
stress, B. pumilus PB18 showed the highest osmolyte 
accumulation and lowest phytohormone production under 
stress. Although all studied strains were gram-positive bacteria 
that could synthesize endogenous proline under osmotic stress 
conditions by boosting the synthesis process and then 
degrading proline for another metabolism (Tempest et  al., 
1970; Deutch, 2019), and the GB is transported from an 
external source or converted from imported choline during 
stress (Onyango and Alreshidi, 2018), the results of this study 
suggest that osmolyte accumulation is balanced. Each 
bacterium uses a specific osmolyte synthesis mechanism to 
overcome abiotic stress (Bremer and Krämer, 2019). It has 
been shown earlier that under non-stress conditions, bacteria 
favor phytohormone synthesis rather than osmolyte 
accumulation, whereas the opposite occurs under stress 
conditions. Such a shift in metabolic activity is common in 
bacterial cells, allowing them to maintain homeostasis when 
there is an increase in osmotic pressure in the extracellular 
medium (Varela et  al., 2004; Lahtvee et al., 2014; Cesar 
et al., 2020).

Integration of bacterial strain datasets

Complementary information from several types of datasets 
produced for microbial strains can be exploited to obtain better 
insights into microbial strain grouping and to elucidate factors 
behind strain clustering using machine-learning-based data 
integration methods. We  applied three data-integration 
approaches to obtain microbial datasets: early, intermediate, and 
mixed integration.

In the early integration approach, several microbial 
datasets were combined into a single table and processed using 
PCA. This approach highlighted two strains, B. altitudinis 
PB46 and B. megaterium PB50, which were the most distinct 
from the other strains. At the same time, the PCA of the 
concatenated data did not clearly indicate the variables 
important for the separation of microbial strains in the PCA 
plot. Although the early integration approach is appealing 
owing to its simplicity and easy implementation, the 
complexity, data imbalance, and possible noise in the 
underlying matrix may complicate learning. As a linear 
dimension reduction method, PCA is the most commonly 
used approach for concatenated data, whereas nonlinear 
methods (t-distributed stochastic neighbor embedding, 
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t-SNA; uniform manifold approximation, and UMAP) may 
provide better performance depending on the dataset 
properties (Xiang et al., 2021).

For mixed data integration, we utilized the MKL technique, 
in which a linear kernel was first computed for each microbial 
dataset and then the obtained kernels were combined to 
produce a global similarity matrix that describes microbial 
strains across all included datasets (Mariette and Villa-
Vialaneix, 2018). The resulting similarity matrix was used as the 
input for the PCA. The results of this method also emphasized 
the separation of the two strains, B. altitudinis PB46 and 
B. megaterium PB50, from the other studied strains. In addition, 
the analysis outcome provided estimates of the variable 
importance. Direct PGP traits, such as GA and proline 
production at stress levels of 21 and 32% of PEG 6000, were 
highlighted by this analysis. The MKL technique has the 
advantage of preserving the original properties of the data and 
combining different data types by applying appropriate 
transformations (Zampieri et  al., 2019). However, the MKL 
analysis results may be  challenging to interpret because the 
interactions and correlations among different datasets are not 
always well determined.

The third method, MCIA, is an intermediate strategy of 
data integration, where multiple microbial datasets are jointly 
integrated without prior transformation. Similar to MKL, the 
MCIA reduces the dimensionality and complexity of datasets. 
The MCIA results clearly showed the distinction of strain 
B. megaterium PB50 from the other strains. The direct PGP 
trait data set (particularly GA and IAA production) and stress 
level 11% (GA production) were the most important indicators 
of the variation among the microbial strains. MCIA is 
considered one of the best-performing algorithms for the 
benchmarking of joint multi-omics dimensionality reduction 
approaches in the case of cancer datasets and provides an 
effective elucidation of relationships among the studied 
datasets (Cantini et al., 2021). Moreover, it can be considered 
a variation of the canonical correspondence analysis (CCA) 
method (Vahabi and Michailidis, 2022). The applicability of 
other CCA extensions could also be tested for simultaneous 
feature selection and classification in microbial datasets in 
the future.

The three applied data integration methods did not provide a 
similar grouping of the studied strains, except for the ordination 
of microbial strains based on the PCA of concatenated data. 
However, all three data integration methods indicated that the 
strains B. altitudinis PB46 and B. megaterium PB50 had high 
similarity in their biochemical properties and osmotic stress 
response. However, when applied together with B. endophyticus 
PB3 in a rice growth experiment under drought conditions, these 
two strains had variable effects on plant growth, biochemical 
properties, and gene expression (Devarajan et al., 2021). Strain 
B. megaterium PB50, and to a lesser extent B. altitudinis PB46, 
induced elevated drought tolerance in rice plants, while 

B. endophyticus PB3 had no effect. Simultaneously, the MCIA 
method placed the strain B. endophyticus PB3 close to B. altitudinis 
PB46 and B. megaterium PB50. Both MCIA and MKL indicate 
that GA production is one of the main features of microbial 
strains. In addition, MCIA emphasized IAA and MKL proline 
production at higher osmotic stress values. Several studies have 
reported the importance of microbial IAA, GA, and proline 
production in mitigating drought stress in crops (Ashry et al., 
2022; Fadiji et al., 2022; Uzma et al., 2022).

One option for improving strain selection and feature 
identification in the future is to apply a combination of 
unsupervised and supervised data integration methods (Singh 
et  al., 2019). In such cases, the outcome of plant inoculation 
experiments could be included in the process of data integration. 
It could also be that the microbial parameters included in the 
current data analysis did not completely cover the microbial traits 
required for successful plant application. In addition to 
biochemical properties, different omics (genome, transcriptome, 
proteome, and metabolome) datasets could be  produced for 
microbial strains. The analysis of such datasets could 
be  challenging, although there are several data integration 
methods specifically designed for the analysis of different 
omics layers.

Conclusion

Overall, our findings suggest that when selecting bacterial 
strains to improve crop resilience under field drought 
conditions, various aspects of the PGP activity and osmotic 
stress tolerance of microbial strains should be  considered 
simultaneously. Data integration methods could complement 
the single-table data analysis approach and may provide 
better insight into the microbial strain selection process. In 
addition, data integration allows for the exploration of 
complex microbial strain datasets within a single analytical 
framework. Currently, there are no general rules for selecting 
the most efficient data integration method for biological 
datasets. Thus, additional benchmarking of different joint 
data analysis methods with larger microbial strain datasets is 
advisable for PGP microbial strains. Another aspect of the 
data integration of PGP microbial strains, which needs 
further exploration, is related to the joint analysis of microbial 
biochemical and omics datasets. The integration of microbial 
biochemical and omics datasets may provide better insights 
for producing mixtures of PGP microbes that perform better 
than a single strain.

In this study, we used only joint data analysis to combine 
diverse datasets related to microbial strain properties. In the 
future, supervised data integration methods could be applied 
to combine greenhouse experiments and field trial data with 
PGP strain characterization data to improve the strain 
selection process.
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