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Present study reports a novel and robust GH9 processive endoglucanase 

β-1,4-glucanase from Bacillus sp. PCH94 (EGaseBL) with thermo-alkali stable 

properties. The EGaseBL gene was cloned in pET-28b(+) and expressed in 

Escherichia coli BL21(DE3) cells. The recombinant protein was purified 94-

fold with a yield of 67.8%. The biochemical characterization revealed an active 

enzyme at a wide pH (4.0–10.0) and temperature (4–100°C). It showed a Km 

and Vmax of 1.10 mg/ml and 208.24 IU/mg, respectively, using β-glucan as a 

substrate. The EGaseBL showed dual activities for endoglucanase (134.17 IU/

mg) and exoglucanase (28.76 IU/mg), assayed using substrates β-glucan and 

Avicel, respectively. The enzyme is highly stable in neutral and alkaline pH and 

showed a half-life of 11.29 h, and 8.31 h in pH 7.0 and 9.0, respectively. The 

enzyme is also compatible with commercial detergents (Tide, Surf, Ghadi, Raj, 

and Healing tree) of the Indian market and retained > 85% enzyme activity. 

Concisely, robustness, extreme functionality, and detergent compatibility 

endorse EGaseBL as a potential bioresource for the detergent industry, in 

addition to its implications for the bioethanol industry.

Highlights

 –  Cloning, expression, and purification of putative novel GH9 family β-1,4-

glucanase.

 –  Processive endoglucanase with CBM3 domain and bi-functional (endo/

exo) activity.

 – Broad pH-temperature active and stable enzyme.

 – Compatible with commercial detergent powders.
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Introduction

The global detergent market is growing at a CAGR of 6.3% 
after an estimated value of 154.34 billion in 2021.1 The detergent 
industry has experienced a revolution with the use of enzyme 
additives such as cellulase, amylase, and protease in detergents 
(Cavaco-Paulo et al., 1997; Niyonzima, 2019). These hydrolytic 
enzymes led to detergent formulations with efficient stain removal 
properties. Among them, alkaline cellulases have been the key 
additives in detergents for fabric softening and color brightness 
(Cavaco-Paulo, 1998; Niyonzima, 2019). In addition to the 
detergent industry, microbial enzymes are the hotspot to deal with 
a global challenge in alternate energy sources (Zhu et al., 2020; 
Antar et al., 2021). Among cellulases, the endoglucanase (EG; EC 
3.2.1.4) is the key enzyme that carries out the breakdown of β-1,4-
glycosidic bonds in cellulose chains. They belong to 12 glycosyl 
hydrolase (GH) superfamilies: 5, 6, 7, 8, 9, 12, 44, 45, 48, 51, 74, 
and 124 (Kim et al., 2016; Kumar and Naraian, 2018).

Endoglucanases (EGs) are required in various industries like 
biorefinery, paper, and pulp, and detergent for applications such 
as biomass conversion, biopulping, deinking, and biopolishing, 
respectively (Bhat, 2000; Belghith et al., 2001; Chandel et al., 2007, 
2012; Kuhad et al., 2011; Kumar et al., 2018; Golgeri et al., 2022). 
The cellulolytic enzymes depolymerize the cellulosic biomass into 
simpler sugars, which are further fermented to produce bioethanol 
(Zhu et al., 2020). Also, in the detergent industry, cellulase assists 
in the softness, color brightness, and defibring of clothes 
(Miettinen-Oinonen and Suominen, 2002; Sadhu et  al., 2013; 
Kumar and Naraian, 2018; Niyonzima, 2019). Nevertheless, the 
different industrial bioprocesses need endoglucanases to work 
under different conditions. For instance, the biorefinery needs 
cellulolytic enzymes to work at elevated temperatures and the pulp 
industry requires acidic cellulases. In contrast, the detergent 
industry requires an enzyme that works in alkaline environment 
(Kuhad et al., 2011; Ladeira et al., 2015; Bagewadi et al., 2016).

The endoglucanases act on their substrates through two action 
mechanisms, processive and non-processive. Most GH9 family 
EGs are processive, containing a catalytic domain (CD) and a 
carbohydrate-binding module (CBM; Konar et  al., 2022). The 
CBMs are responsible for the processive nature of EGs (Chiriac 
et al., 2010). The processive endoglucanases (PEGs) show both 
endo- exo- bi-functional activities (Lv et al., 2021; Wu et al., 2022). 
It generates a higher diversity of hydrolysis products than 
exoglucanases (Wu and Wu, 2020). The first report of PEGs from 
Thermomonospora fusca was reported in 1993 (Irwin et al., 1993), 
followed by several others. The majority of PEGs studied so far 
belong to Clostridium sp., while Paenibacillus, Bacillus, 
Cellulomonas, Ruminococcus, and Thermobifida are among the 
other genera (Reverbel-Leroy et al., 1997; Wilson, 2004; Mejia-
Castillo et  al., 2008; Chiriac et  al., 2010; Wu and Wu, 2020; 

1 https://www.polarismarketresearch.com/industry-analysis/

laundry-detergent-market

Gavande et al., 2022). The bi-functional PEGs, combined with 
other cellulases, are more suitable for cellulose-based bioprocess 
development for bioethanol generation (Akram et al., 2018). The 
PEGs also have potential applications in deinking and biostoning 
(Wu et al., 2007; Liu et al., 2017).

PEGs are emerging as game-changing players in the cellulose-
based industries. The lower stability and incompetence to work in 
extreme conditions is the biggest bottleneck of commercial 
cellulases (Han et  al., 2020). Therefore, discovering robust 
cellulases compatible with multi-industrial applications is of 
prime necessity. Previously, we have isolated Bacillus sp. PCH94 
from compost in the Western Himalayas and studied its biomass 
hydrolysis potential on damaged rice grain waste (Thakur et al., 
2018, 2021). The current study investigated the biochemical 
characteristics of a recombinant processive EGaseBL. Here, 
we  subjected the purified EGaseBL enzyme to varied pH and 
temperature conditions to assess its compatibility with industrial 
bioprocess standards. The multi-dimensional properties of the 
enzyme are key stipulations for biorefinery, detergent, and 
textile industries.

Materials and methods

Bioinformatic analysis of β-1,4-glucanase 
sequence

The Bacillus licheniformis strain PCH94 was isolated in our lab 
and studied for its cellulolytic potential (Thakur et al., 2018, 2021). 
The gene EGaseBL was obtained from a whole-genome sequence 
of Bacillus sp. PCH94 (Thakur et al., 2021) and submitted to the 
NCBI GenBank database with an accession number OM867537. 
The NCBI ORF finder program was used to identify the open 
reading frame in the gene sequence.2 The gene sequence was 
translated using the ExPASy translate tool.3 The protein sequence 
identity was confirmed by the NCBI protein BLAST (blastp) tool 
with the protein databank (PDB) database as a reference. The 
prediction of signal peptide in protein sequence was performed 
by SignalP server 5.0. The NCBI conserved domain database 
(CDD) was used to predict the conserved domains.4 The 
physicochemical properties like isoelectric point (pI) and 
molecular weight (MW) of the protein sequence of EGaseBL were 
identified using ProtParam.5 The phylogenetic tree was 
constructed to study the evolutionary relationship of EGaseBL 
protein sequence through Mega 7.0. The protein structure analysis 
was carried out using the RaptorX Property web server (Wang 
et  al., 2016). The homology model of EGaseBL protein was 

2 https://www.ncbi.nlm.nih.gov/orffinder/

3 https://web.expasy.org/translate/

4 https://www.ncbi.nlm.nih.gov/Structure/cdd/docs/cdd_search.html

5 https://web.expasy.org/protparam/
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generated using the SWISS-MODEL server (Waterhouse 
et al., 2018).

Cloning and heterologous expression of 
EGaseBL in pET-28b(+)/Escherichia coli 
BL21(DE3)

The EGaseBL gene was amplified from genomic DNA using 
gene-specific primers, inserted with restriction enzymes sites 
(indicated with underline) for NcoI (Forward primer 5′-CATG 
CCATGG GC ATG AAA GCG CTT TGT TTG GC-3′) and XhoI 
(Reverse primer 5′-CCG CTCGAG GTA ACC GGG CTC ATG 
TCC GAA-3′). The PCR to amplify the gene was carried out 
under the following conditions: initial denaturation at 95°C for 
2 min; 35 cycles of 95°C for 30s; 58°C for 30s; 72°C for 2 min; and 
a final extension at 72°C for 7 min. The amplified gene product 
was purified using the FavorPrep PCR purification kit 
(FAVORGEN Biotech Corp, Taiwan) as per the manufacturer’s 
instructions. The final EGaseBL gene product and pET-28b(+) 
vector were further subjected to double restriction digestion with 
Fast digest NcoI and XhoI restriction enzymes. The digested 
products were purified and ligated using T4 DNA ligase. The 
ligated product was transformed into competent BL21 (DE3) cells 
using the heat-shock method. The colonies were isolated on LB 
plates with 50 μg/ml kanamycin, and positive transformants were 
screened through the colony PCR technique. The desired cloned 
gene in positive transformants was also confirmed through T7 
promoter-based sequencing in ABI PRISM™ 3,130 × l Genetic 
Analyzer (Applied Biosystems, United States).

The expression of EGaseBL gene was carried out under 
optimized conditions, i.e., 1.0 ml of overnight grown seed 
culture was inoculated in a 50 ml LB broth containing 
Kanamycin (50 μg/ml) and incubated at 37°C/200 rpm. The 
culture was grown until OD600 reached 0.4–0.6, supplemented 
with 0.1 mM Isopropyl β-D-1-Thiogalactopyranoside (IPTG), 
and transferred to 28°C/200 rpm for 24 h. The cells were 
harvested, centrifuged, and the pellet was re-suspended in lysis 
buffer containing Tris–HCl buffer (25 mM/pH 8.0), 300 mM of 
NaCl, and 5 mM imidazole. The cells were homogenized using 
an ultrasonic sonicator (Ultrasonic Processor SKL-150D) with 
10s on/off, 5 cycles. After sonication, the lysed cells solution was 
centrifuged at 12000 g for 10 min at 4°C, and cell-free 
supernatant (CFS) was used as a crude enzyme for further 
studies. The expression of the desired protein was visualized on 
a 10% SDS-PAGE.

Enzyme activity assay

The enzyme activity of the EGaseBL enzyme was determined 
using the DNSA method for reducing sugars (Miller, 1959). The 
reaction conditions were as follows: incubation temperature: 
50°C, time: 60 min, pH: 8.0/25 mM, and substrate: 1.0% (w/v) 

barley β-glucan (prepared in 25 mM pH 8.0 Tris–HCl buffer), 
enzyme: substrate ratio-1:2 (v/v). The enzyme-specific activity of 
β-1,4-glucanase was defined as μ moles of reducing sugar released 
from β-glucan per minute per mg of the enzyme under the assay 
conditions. Each reaction with its controls was carried out in 
triplicates in all the experiments. The observed values were 
subjected to standard deviation (SD), and ± 2 SD was 
considered significant.

Purification of recombinant EGaseBL and 
its proteomic analysis

The EGaseBL protein was expressed and produced in 1.0 liter 
LB broth media. The HisPur Cobalt superflow resin was used 
for the purification of recombinant EGaseBL. The 
chromatography column was equilibrated using a basic buffer 
containing 25 mM Tris–HCl pH 8.0, 300 mM NaCl, and 5 mM 
imidazole. The CFS was filtered through a 0.45 μM syringe filter 
and loaded on the pre-equilibrated column. The CFS was 
further subjected to IMAC (Immobilized metal affinity 
chromatography) resin-based purification using HisPur™ 
cobalt Superflow Agarose. The CFS was allowed to pass through 
the gravity column twice for the maximum binding. The column 
was washed twice with the basic buffer using 10 column 
volumes to remove non-specific proteins. The desired EGaseBL 
protein bound to the resin was eluted by using elution buffer, 
i.e., Tris–HCl pH 8.0, 300 mM NaCl, and 150 mM imidazole. 
The total amount of protein was estimated by using the Bradford 
assay (Bradford, 1976). The purity of the eluted fraction was 
visualized on a 10% SDS-PAGE gel.

Biochemical characterization of purified 
EGaseBL

The one factor at a time (OFAT) scheme was used to study the 
biochemical characteristics of purified EGaseBL and obtain its 
highest activity. The reaction pH range was calculated using varied 
buffer systems consisting of sodium citrate (pH 3.0–5.0), 
potassium phosphate (pH 6.0–7.0), Tris–HCl (pH 8.0–10.0), and 
sodium carbonate–bicarbonate (pH 9.0–10.0). The reaction 
conditions were as follows: temperature: 50°C, time: 60 min, and 
substrate: 1.0% (w/v) barley β-glucan. The buffer system with the 
highest specific activity was considered the optimum pH for the 
reaction. Furthermore, the optimum reaction temperature was 
assessed under optimized pH in 60 min, and 1.0% (w/v) barley 
β-glucan substrate. The reactions were incubated at a temperature 
range of 4–100°C. The enzyme concentration in the reaction was 
optimized under optimum pH and temperature conditions. The 
enzyme concentration was varied from 0.1 to 5.0 μg per reaction 
and incubated for 30 min. Finally, the incubation time was 
optimized from a varying range from 5 to 30 min under previously 
optimized conditions.
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Assessment of kinetic parameters of 
purified EGaseBL

The kinetic parameters like Michaelis constant (Km) and 
maximum reaction velocity (Vmax) were estimated on EGaseBL 
activity on β-glucan under optimized reaction conditions. The 
reactions were carried out at 60°C/ pH 7.0 buffer (25 mM 
Potassium Phosphate). The substrate concentration varied from 
0.05 to 0.5% to a constant enzyme concentration. The Michaelis–
Menten equation and double-reciprocal Lineweaver–Burk plots 
were used for calculating Km and Vmax. The multi-substrate-
specificity of EGaseBL was also studied on β-glucan, Avicel, filter 
paper, cellobiose, beechwood xylan, and starch.

pH and thermal stability of purified 
EGaseBL

The purified enzyme was incubated in various buffer systems 
for 5 h to investigate the effect of pH on enzyme activity. The three 
different buffers (25 mM), i.e., Citrate buffer pH 5.0, Potassium 
Phosphate buffer pH 7.0, and sodium carbonate–bicarbonate pH 
9.0, were used. The enzyme reaction was performed every hour, 
and the half-life (t1/2) of the enzyme at different pH levels was 
calculated. Similarly, to study the half-life of EGaseBL at different 
temperatures, the enzyme was incubated at 50, 60, 70, and 80°C.

Detergent stability of purified EGaseBL in 
commercial detergents

The stability of purified EGaseBL was studied in various 
domestic Indian detergent powders such as Tide, Surf, Ghadi, Raj, 
and Healing tree. The detergent solution concentration was kept 
at 1.0% to stimulate washing conditions. Before enzyme addition, 
detergents were pre-incubated in boiling water for 10 min to 
deactivate existing enzymes (Niyonzima, 2019). The enzyme was 
incubated in a 1.0% detergent solutions for 30 min at room 
temperature. The enzyme reaction was performed following the 
incubation, and residual enzyme activity was calculated.

Results and discussion

Genome mining and bioinformatic 
analysis of EGaseBL gene

The gene EGaseBL consisted of 1,941 bp and was mined from 
the whole-genome sequence of Bacillus sp. PCH94 (Thakur et al., 
2021). The gene’s nucleotide sequence was submitted to NCBI 
GenBank with the accession number OM867537. The ExPASy 
translate server revealed that EGaseBL protein comprises 647 
amino acids. The NCBI protein blast showed 53.08% similarity in 
the PDB database. The phylogenetic analysis of the EGaseBL 

protein sequence with the closest matches in the PDB server was 
carried out. The EGaseBL made a separate clade to its closest 
matches with protein sequences of Bacillus pumilus and Bacillus 
sp. (Figure 1). The percentage (%) similarity and phylogenetic 
analysis of the protein sequence of EGaseBL endorse it to be a 
putative novel protein. It has a molecular weight of 72.6 kDa and 
a theoretical pI of 5.34. The sequence contains 83 negatively and 
61 positively charged residues. The instability index (II) is 28.88, 
classifying this protein as stable. The protein is extracellular in 
nature, as predicted by SignalP server. Further protein sequence 
analysis revealed that the protein belongs to the Glycosyl 
hydrolase-9 (GH9) family as predicted from the SWISS-MODEL 
server (Figure  2). Also, it contains a carbohydrate-binding 
module, i.e., CBM3 (Figure 3). In fact, the presence of CBM along 
with catalytic domains is a key feature of PEGs. The PEGs act as 
traditional EGs without CBM3 (Kumar et al., 2019). Further, the 
protein sequence analysis performed by the RaptorX Property web 
server predicted 34% alpha-helix, 13% beta-sheet, and 52% coil 
regions (Supplementary Figure S1).

Cloning, heterologous expression, and 
purification of gene encoding 
β-1,4-glucanase

The β-1,4-glucanase (EGaseBL) gene was amplified from the 
genomic DNA of Bacillus sp. PCH94 using gene-specific primers. 
The pET-28b(+)-EGaseBL construct was transformed in the 
expression host E. coli BL21(DE3) (Supplementary Figure S2). The 
positive transformants with the target gene were induced with 
0.1 mM IPTG in LB media at 37°C and expressed under optimized 
conditions, i.e., 200 rpm/ 28°C. The maximum expression of 
EGaseBL was observed after 36 h at 28°C. The cell-free supernatant’s 
(CFS’s) quantitative estimation of β-1,4-glucanase activity showed 
the specific activity of 0.205 IU/mg on the β-glucan substrate. The 
use of affinity protein purification resulted in a single-step 94-fold 
purification of protein with a yield of 67.8%. Under unoptimized 
enzyme reaction conditions, the purified protein showed 19.35 IU/
mg specific activity (Table 1). The purified protein was visualized 
on 10% SDS-PAGE, which revealed a distinct ~ 72 kDa band of 
purified EGaseBL (Figure 4).

Previously, the EGs belonging to different GH families 
have been cloned from various sources. Earlier, 63.5 and 
64 kDa GH5 recombinant endoglucanases from Paenibacillus 
sp. were purified using the Ni-NTA column, resulting in 22.33 
and 44.9% yields with activities of 7.55 and 3.63 IU/mg, 
respectively (Dhar et al., 2015a,b). A 41.56 kDa GH8 EGs was 
purified using High-Q and CHT-II column chromatography 
revealed 2.2 IU/mg activity with 15.9% recovery (Na et al., 
2015). Similarly, a 59 kDa GH5 family recombinant EG from 
Bacillus subtilis was purified using the Ni-NTA column, 
giving the highest activity of 7.65 IU/mg (Guan et al., 2017). 
The purification scheme used in this study for EGaseBL has 
resulted in a higher enzyme recovery, purification fold, and 
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specific activity than in previous studies. The highly purified 
enzyme can lead to efficient substrate conversion with 
high specificity.

Biochemical characterization of purified 
EGaseBL

The buffer pH is a key parameter for optimum activity of 
enzyme. So, the enzyme activity was examined from pH 4.0 to 
10.0. The highest specific activity of 24.06 IU/mg was obtained 
at pH 7.0 in 25 mM Tris–HCl buffer (Figure 5A). The relative 
activity of 70 and 64% was observed at pH 5.0 and 9.0, 

respectively. The activity decreased to ~0.8 and 19% at pH 4.0 
and 10.0, respectively. Furthermore, the effect of temperature 
on EGaseBL activity was studied in a varied temperature range 
of 4–100°C, with the highest activity of 25.72 IU/mg observed 
at 60°C (Figure 5B). Relative activity of more than 50% was 
observed at a temperature range of 30–80°C. Also, 3.9 and 
17.8% of relative activity was observed at 4°C and 100°C, 
respectively. The enzyme load plays a significant role in 
converting substrate into products. Hence, the effect of varied 
enzyme concentrations in the reaction was studied. The enzyme 
concentrations varied from 0.1 to 5.0 μg, and 0.5 μg per reaction 
was observed as the optimum enzyme concentration to achieve 
the highest specific activity of 115.7 IU/mg (Figure 5C). Further, 
the initial reaction rate was studied by optimizing the 
incubation time of the reaction. The incubation time of 10 to 
30 min with 10 min intervals was studied. After 10 min of 
incubation, the specific activity of 130.6 IU/mg was achieved 
(Figure  5D). Concisely, biochemical characterization led to 
optimized reaction conditions, which are as follows: pH 7.0 
Tris–HCl buffer, temperature 60°C, enzyme concentration 
0.5 μg, and reaction time 10 min. Similarly, there are reports for 
the recombinant EG with a pH range of 4.0 to 9.0 and a 
temperature range of 20–70°C (Furtado et al., 2011). The rumen 
metagenome-derived EG showed a pH range of 4.0–10.0 and a 
temperature range of 20–70°C (Song et al., 2017). The EG from 
Thermotoga maritima showed a pH range of 4.0–8.0 (optimum 
pH 5.0) and a temperature range of 30–100°C (optimum 
temperature 95°C; Wang et  al., 2020). The EGaseBL in the 
present study has shown a broader window of pH and 
temperature than the earlier reported studies. Such wider pH 
and temperature range has definitive advantages in the varied 
industrial bioprocesses.

FIGURE 1

The phylogenetic analysis of the protein sequence of β-1,4-glucanase (EGaseBL) of Bacillus sp. PCH94 with the closest matches in the Protein Data 
Bank (PDB) database.

FIGURE 2

The predicted homology model of GH9 family β-1,4-glucanase 
(EGaseBL) using Endoglucanase 9G from Clostridium 
cellulolyticum as a template in SWISS-MODEL server. The 
structure depicts a catalytic domain (CD) and a carbohydrate-
binding module (CBM3).
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Investigation of kinetic parameters and 
substrate-specificity

The Lineweaver–Burk double-reciprocal plot revealed that the 
EGaseBL follows Michaelis–Menten kinetics for β-glucan 
(Figure 6A). The Km and Vmax values of purified EGaseBL were 
1.10 mg/ml and 208.24 IU/mg, respectively. The EG of Raoultella 
ornithinolytica showed Km of 8.6 mg/ml and Vmax of 74.9 IU/mg for 
β-glucan (Scapin et al., 2017). The recombinant EG of Enterobacter 
sp. had Km and Vmax of 13.5 mg/ml and 109.6 IU/mg, respectively, 
on β-glucan (Ontañon et  al., 2019). A GH8 EG from Bacillus 
subtilis was estimated for Km (1.78 mg/ml) and Vmax (50.09 IU/mg) 
on CMC as a substrate (Huang et  al., 2021). The EGaseBL has 
shown low Km and high Vmax values compared to these recent 
studies. The lower Km suggests a high affinity for β-glucan, 
representing that it would take less substrate to reach Vmax.

The substrate-specificity of purified EGaseBL was studied on 
polysaccharides like β-glucan, Avicel, beechwood xylan, starch, 
cellobiose, and filter paper. The enzyme showed a specific activity 

of 134.17 IU/mg and 28.76 IU/mg on β-glucan and Avicel, 
respectively. While, with the rest of the other substrates, no 
enzymatic activity could be detected. The results imply that the 
enzyme has dual endoglucanase and avicelase/exoglucanase 
activity. The bi-functional activity profile and presence of CBM3 
confirm the processive nature of EGaseBL.

pH and thermostability profile of purified 
EGaseBL

The EGaseBL has shown wide pH and temperature working 
range. Therefore, the prolonged effect of pH and temperature on 
the enzyme was studied. The half-life (t1/2) of 0.80, 11.29, and 
8.31 h was observed at pH of 5.0, 7.0, and 9.0 (Figure 6B). The 
enzyme could retain 90% residual activity after 1.0 h of incubation 
at pH 7.0 and 9.0. Interestingly, more than 75, and 60% activity 
at pH 7.0 and 9.0, respectively, were retained even after 5.0 h of 
incubation. The current results suggested that enzyme has the 
highest stability at neutral pH and is more stable at alkaline than 
acidic pH. The stability of EGaseBL in an alkaline environment is 
suitable for application as an additive in the detergent industry.

In addition to pH, thermal stability is a key factor for EGs, 
especially for their application in biomass saccharification. 
Therefore, thermal stability was evaluated by incubating the 
purified EGaseBL at 50, 60, 70, and 80°C. The half-life (t1/2) of 
14.41 h, 8.63 h, 27 min, and > 5 min was observed at 50, 60, 70, 
and 80°C, respectively (Figures  6C,D). The enzyme showed 
optimum activity at 60°C and retained > 80% residual activity 
after 4.0 h of incubation. Previously, a β-1,4-glucanase from 
Paenibacillus sp. revealed a half-life of 60 min at 60°C (Na et al., 
2015). The half-life of 3.0 h at 50°C was reported from the EG of 
Raoultella ornithinolytica (Scapin et  al., 2017). The glucanase 
from Bacillus sp. lost 50% residual activity after incubation at 
60°C for 10 min (Jang et al., 2021). Comparatively, the EGaseBL 
has shown much higher stability than the β-1,4-glucanases 
discussed above. Thermostability enables the enzyme to 
hydrolyze at a higher temperature more efficiently. Hence, it 
lowers the risk of contamination compared to mesophilic 
enzymes in a process (Akram et al., 2018).

Detergent compatibility of purified 
EGaseBL

The EGs are key additives to the enzyme cocktails used in the 
detergent powders. Most detergent brands instruct to keep 

FIGURE 3

The conserved domain prediction in the protein sequence of GH9 β-1,4-glucanase using the NCBI database.

TABLE 1 Protein purification of recombinant β-1,4-glucanase using 
HisPur Cobalt superflow resin.

Sample Total 
protein 

(mg)

Specific 
activity 
(IU/mg)

Total 
units 
(U)

Yield 
(%)

Purification 
fold

Crude 285 0.205 58.42 100 1

Purified 2.05 19.35 39.66 67.88 94

FIGURE 4

SDS-PAGE (10%) analysis of β-1,4-glucanase (EGaseBL) purified 
using HisPur Cobalt superflow resin. The lane 1 to 9 represents 
total lysate, flow through, wash, elute 1(10 mM imidazole), elute 2 
(50 mM imidazole), elute 3 (100 mM imidazole), elute 4 (150 mM 
imidazole), blank, and protein marker, respectively.
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A B

C D

FIGURE 5

Biochemical characterization of purified β-1,4-glucanase (EGaseBL) to obtain the optimum enzymatic conditions. The various parameters such as 
(A) optimum pH, (B) optimum temperature, (C) enzyme concentration, and (D) incubation time, were shown.

A B

C D

FIGURE 6

The figure depicts investigating β-1,4-glucanase (EGaseBL) for (A) enzyme kinetics on β-glucan substrate, (B) pH stability at pH 5.0, 7.0 and 9.0, 
(C) thermal stability at 50 and 60°C, and (D) thermal stability at 70 and 80°C.
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clothes pre-soaked in detergent water for 20–30 min before 
washing. Therefore, we  studied the compatibility/stability of 
purified EGaseBL by incubating it for 30 min in detergent powders 
available in the local market. The enzyme retained 91.1, 81.5, 
85.9, 87.7, and 94.6% activity in Tide, Surf, Ghadi, Raj, and 
Healing tree, respectively (Figure  7). Previously, the residual 
activity of 72, 65, and 57% were reported for Ariel, Surf Excel, and 
Tide; respectively (Sadhu et  al., 2013). Thermo-tolerant 
endoglucanase showed 50% residual activity in Surf Excel, Tide, 
Ariel, Wheel, and Patanjali detergent powders after 1.0 h (Joshi 
et  al., 2021). The higher stability of EGaseBL in commercial 
detergents suggested it as a potential additive in the 
detergent industry.

Conclusion

A novel thermo-alkali stable and detergent compatible 
β-1,4-glucanase (EGaseBL) was cloned, expressed, and purified. 
The sequence analysis, presence of CBM module, and 
bi-functional activity confirm the processive nature of the GH9 
family EGaseBL. The recombinant protein was highly purified to 
94 fold with a recovery of 67.7%. Also, the physicochemical 
characterization revealed the robust properties of EGaseBL 
activity and stability in broad pH and temperature ranges. The 
enzyme revealed remarkable stability (> 85%) in commercial 
detergents for 30 min. The compatibility and stability of EGaseBL 
in commercial detergents are promising for the detergent 

industry. In addition, the kinetics analysis showed a low Km 
(1.10 mg/ml) and high Vmax (208.6 IU/mg) on the β-glucan 
substrate. The ability of EGaseBL for β-glucan and Avicel 
hydrolysis and broad pH/temperature stability makes it too a 
potential player in the biorefinery industry. Therefore, the 
recombinant EGaseBL has shown promise for varied industrial 
applications, and its future explorations could lead to 
astonishing bioprocess developments.
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