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The intestinal microbial community is the largest ecosystem in the human

body, in which the intestinal flora plays a dominant role and has a wide

range of biological functions. However, it is vulnerable to a variety of factors,

and exposure to extreme environments at high altitudes, as seen on the

Qinghai–Tibet plateau, may cause changes in the structure and function of

the host intestinal flora. Conversely, the intestinal flora can help the host

adapt to the plateau environment through a variety of ways. Herein, we

review the relationship and underlying mechanism between the host intestinal

flora and the plateau environment by discussing the characteristics of the

plateau environment, its influence on the intestinal flora, and the important

role of the intestinal flora in host adaptation to the plateau environment.

This review aimed to provide a reference for maintaining the health of the

plateau population.
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Introduction

The structure and function of intestinal microorganisms has been well studied, with
most studies focusing on intestinal bacteria. This intestinal flora contains many types
of bacteria, many of which are closely associated with human health (Schroeder and
Backhed, 2016; Barko et al., 2018). High-altitude regions have low oxygen, extreme
cold temperatures, and high radiation levels, all of which having a profound impact
on the structure and function of the intestinal flora. The Qinghai–Tibet Plateau in
China is the largest plateau area in the world, and visitors experience symptoms of
discomfort, especially headache, chest tightness, nausea, and vomiting (Wen et al., 2014;
Croughs et al., 2022). Kleessen et al. (2005) reported that dysbiosis, in which pathogenic
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bacteria increase and probiotics decrease, often occurs in plateau
populations. This dysbiosis can lead to the translocation of
bacteria and endotoxins to the blood, triggering sepsis, multiple
organ dysfunction syndrome, and other diseases (Wang, 2021).
A comprehensive and in-depth understanding of the effects and
mechanisms of high-altitude conditions on human intestinal
flora is particularly important to maintain the health of high-
altitude populations. However, to the best of our knowledge,
few relevant studies have been published leading to poor
understanding of the relationship between the intestinal flora
and plateau environment and the underlying mechanisms and
their effect on host health. This paper focuses on the structure
and function of intestinal flora in humans and some mammals
at high altitudes, which hopefully will lead to further studies on
this topic, and we hope that our review will contribute to the
development of methods to alter the intestinal flora to improve
the health of people at high altitudes.

Qinghai–Tibet plateau

A flat landform elevated 3,000 meters above sea level is called
a plateau. The air pressure in plateau areas is only 50% of that
in plain areas, and the boiling point of water is below 90◦C.
With the increase in altitude, air oxygen content decreases; in
areas elevated more than 3,000 and 5,500 m above sea level, air
oxygen content decreases by 30 and 50%, respectively. Plateau
regions generally have relatively low temperatures, with large
temperature differences between day and night. For example,
the Qinghai–Tibet plateau, which is the highest plateau in
the world and is known as the “roof of the world” or the
“Asian water tower,” has an average annual daily temperature
of 3.1◦C (Xu et al., 2011). The sunshine duration is long in
the plateau region, and ultraviolet radiation is much higher
than that in the low-altitude area. The population of the
Qinghai–Tibet plateau maintains their traditional grazing diet,
comprising beef and mutton, dairy products, and less fruit and
vegetables, and their vitamin C consumption is much lower
than that of the plain population (Lan et al., 2017). Their
daily staple food is “Zanba,” consisting of plateau barley as
the main raw material, and their common drink is butter tea
(Moore et al., 1998).

The low oxygen concentration at high altitudes can inhibit
aerobic metabolism, and the insufficient energy supply results in
declining circulatory function in the body and a corresponding
reduction in nutrients and energy supply levels in tissues and
organs. In studies on high-altitude immigrants, to compensate
for oxygen deficiency, increases in heart rate and cardiac
output, red blood cell count and volume, or hemoglobin
concentration are often observed (Moore et al., 1998). In
decompensation, hypoxemia may develop into severe altitude
sickness (Luks, 2015). Hypoxia can reduce the activity of
Na+/K+-ATPase in the cell membrane, resulting in energy

metabolism disorders in brain cells, which leads to high-
altitude cerebral edema (Sun et al., 2002). Furthermore, acute
exposure to high altitudes can increase capillary pressure
and hypoxic pulmonary vasoconstriction, leading to increased
pulmonary artery pressure and high-altitude pulmonary edema
(Maggiorini et al., 2001).

Despite the negative impacts of living at high altitudes,
people who live on the Qinghai–Tibet plateau have adapted
to the plateau environment. They have a high vagal tone, and
the heart rate and heart rate variability of plateau adolescents
are lower than those of the plain adolescents. The lungs
of individuals in the plateau population grow faster during
adolescence, and the lung capacity and volume of adults
are larger than those of the plain population, increasing the
surface area of gas exchange (Weitz et al., 2016). The density
of capillaries in the muscles of individuals in the plateau
population is higher, which leads to improved perfusion and
oxygen transport and higher blood flow. These factors may
counteract the effects of the low arterial oxygen levels in
the plateau population (Hoppeler et al., 2003; Beall, 2007).
In addition, the high nitric oxide (NO) content, which is
synthesized as a vasodilator in the inner blood vessel walls,
might play a role in the pulmonary hypotension seen in the
Qinghai–Tibet plateau population (Weitz et al., 2016). Genetic
variation at the MTHFR locus, encoding a key enzyme for folic
acid metabolism, is associated with increased folic acid levels,
which helps Tibetans resist high-dose ultraviolet radiation (Yang
et al., 2017). Highly expressed HMOX2 in Tibetans is involved
in heme catabolism, and HMOX2 contributes to high-altitude
adaptation by serving as a regulator of hemoglobin metabolism
(Yang et al., 2016). Genes, such as EPAS1, EGLN1, and PPARA,
have also been reported to help Tibetans adapt better to the
harsh hypoxic environments (Simonson et al., 2010; Peng et al.,
2011).

Factors affecting the intestinal
flora in the Qinghai–Tibet plateau
population

Hypoxia

Hypoxia can damage organs, tissues, and cells and is
involved in the occurrence of various diseases (Pasha and
Newman, 2010; Taylor and Colgan, 2017). Furthermore,
a steady state of oxygen content in the intestine is crucial
for maintaining the composition and function of the
intestinal flora (He et al., 1999). After 12 days of exposure
to a hypoxic environment, the Firmicutes/Bacteroidetes
ratio and alpha diversity index decreased in the intestinal
flora of guinea pigs (Lucking et al., 2018). In addition,
after exposing mice to intermittent oxygen for 6 weeks,
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Firmicutes in the intestinal tract increased, Bacteroides
and Proteobacteria decreased, and the alpha diversity
index increased compared with those in the control group
(Moreno-Indias et al., 2015).

Typically, anaerobes dominate the intestinal tract of
their host (Suzuki et al., 2019). Under hypoxic conditions,
anaerobes in the host intestine become more competitive
and overgrow (Moreno-Indias et al., 2015). Suzuki et al.
(2019) found a positive correlation between obligate anaerobes
and altitude, and a negative correlation between facultative
anaerobes, aerobic bacteria, and aerobic bacteria and altitude.
Adak et al. (2013) found that, 15 days after reaching 3,505
m above mean sea level in a plateau area, the amount
of aerobic bacteria in the intestine of stationed soldiers
reduces 50-fold, while the amount of anaerobic bacteria
increases 115-fold. Furthermore, compared to that in the
normal oxygen control group, the intestinal flora of rats in
a hypoxic environment had a decreased amount of aerobic
bacteria and an increased amount of obligate anaerobes
(Maity et al., 2013).

Hypoxia in patients with lung disease often leads to changes
in the structure of the intestinal flora. For example, changes
in the diversity and abundance of the intestinal flora in
patients with viral pneumonia were observed (Groves et al.,
2018). Patients with chronic obstructive pulmonary disease are
deprived of oxygen for extended periods because of chronic
dyspnea, and according to a survey, 40.26% of patients with
chronic obstructive pulmonary diseases have an imbalance in
their intestinal flora (Huang et al., 2017). Moreno-Indias et al.
(2015) observed similar changes in the intestines of mouse
models that mimic sleep apnea syndrome.

Cold environment

Cold is an important factor that affects the structure of
the intestinal flora (Chevalier et al., 2015). Exposure to cold
environments can reduce the abundance of the intestinal flora.
The abundance of intestinal flora decreased after being soaked
in cold water for 1 h (Zhang et al., 2021). Furthermore, Zietak
et al. (2016) housed mice in a cold environment and observed a
decrease in the abundance of their intestinal flora.

In one study, mice were randomly divided into two groups:
the experimental group was housed at 5◦C and the control
group was housed at 21◦C. After 1 week, the intestinal
Enterobacter and Enterococcus levels in the experimental group
were more abundant than those in the control group, whereas
the abundance of Bacteroides Lactobacillus and Bifidobacterium
decreased. In the intestinal tract of mice exposed to a cold
environment, the phylum Firmicutes increased, the abundance
of Bacteroides decreased, and the phylum Verrucomicrobia
almost disappeared (Chevalier et al., 2015). Zheng et al. (2020)
housed pregnant rats on the 14th day of gestation in a cold

environment until delivery and found that the abundance of
Bacteroides Lactobacilli in the intestinal tract of the offspring
increased, whereas the abundance of Prevotella decreased.

Ultraviolet radiation

Excessive exposure of the skin to ultraviolet radiation can
affect the structure of the host intestinal flora. After three rounds
of ultraviolet radiation in a week, the alpha and beta diversities
of bacteria in the intestinal tract of females increased, and the
number of multiple bacterial genera changed (Bosman et al.,
2019). Furthermore, excessive ultraviolet radiation to the human
body can lead to the emergence of intestinal flora in the thick
wall of the phylum, increased deformation of the phylum, and a
reduction in Bacteroides (Conteville and Vicente, 2020). Ghaly
et al. (2018) found similar changes in the intestinal tract of mice
exposed to high levels of ultraviolet light.

Changes in the intestinal flora of
the Qinghai–Tibet plateau
population

The Qinghai–Tibet plateau environment can influence
changes in host oral and skin microbiota and affects and shapes
the intestinal flora (Li et al., 2019; Liu F. et al., 2021; Table 1).
The abundance of bacteria in the intestinal tract of people living
in the plains considerably decreases a few years after moving
from a low to high altitude (Li and Zhao, 2015). A high-altitude
environment can increase the abundance of pathogenic bacteria
in the host intestine. Li et al. (2016b) found that the abundance
of pathogenic bacteria, such as Enterobacter and Proteus, in
the intestinal tract of plain populations that migrated to the
plateau was higher than that of the plain populations who did
not migrate. In the intestines of seven soldiers situated in the
Himalayas at an altitude higher than 5,000 m, the abundance
of potential pathogenic gram-negative bacteria, especially of
the Enterobacteriaceae family, increased, while the abundance
of probiotics, such as Bifidobacteria, decreased. All these
individuals had different degrees of maladaptive symptoms,
such as diarrhea and infection (Kleessen et al., 2005). This is
slightly different from the results of an animal experiment by
Adak et al. (2014) in which male rats were exposed to a simulated
high altitude for 30 d. Although the abundance of Escherichia
coli in the intestinal tract increased 125-fold, Bifidobacterium
and Lactobacillus also increased several folds. This environment
also caused anorexia in rats, resulting in weight loss, negative
nitrogen balance, intestinal barrier dysfunction, and mucosal
injury, thus enhancing bacterial translocation and inducing
inflammation (Adak et al., 2014). Pan et al. (2022) reported
increases in Parabacteroides, Alistipes, and Lactococcus genera
and an increase in Bacteroides-to- Prevotella ratio in rat
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TABLE 1 Changes in the intestinal flora of the Qinghai–Tibet plateau population.

Experimental
subjects

Phylum Family Genus or order References Sequencing
method

People Firmicutes ↑ Acidaminococcus, Actinomyces,
Blautia, Butyricimonas,
Clostridium, Desulfovibrio,
Helicobacter, Leuconostoc,
Peptostreptococcaceae
Prevotellaceae uncultured,
Prevotella RC9 gut group, and
Rhodococcus ↑ Butyricimonas,
Oscillospira, and Sutterella ↓

Li and Zhao, 2015 454 sequencing

Gammaproteobacteria ↑ Porphyromonadaceae ↑ Escherichia Shigella ↑ Li et al., 2016b 454 sequencing

Profecbaciena gamma
subdivision ↑

Atopobium, Coriobacterium, and
Bifidobacterium ↓

Kleessen et al., 2005

Ruminococcaceae ↓ Prevotella and Lachnospiraseae ↓,
Faecalibacterium, Bacteroides,
and Bifidobacterium ↑

Lan et al., 2017 MiSeq
sequencing

Patients with
coronary heart
disease

Bacteroidetes, Dialiste ↓,
Firmicutes ↑

Blautia and Succinivibrio ↑ Liu F. et al., 2020 16S rDNA

Patients with liver
cirrhosis

Barnesiella, Peptococcus,
Melainabacteria ↓

Peptococcaceae,
Succinivibrionaceae ↓,
Streptococcaceae ↑

Succinivibrio ↓, Prevotella,
Streptococcus↑

Huan et al., 2021 16S rRNA

Rats Peptostreptococcus,
Bifidobacterium, Bacteroides,
Lactobacillus, and Clostridium ↑

Adak et al., 2014

Parabacteroides, Alistipes, and
Lactococcus ↑

Pan et al., 2022

Plateau pika Prevotella, Ruminococcus, and
Treponema ↑,Oscillospira ↓

Li et al., 2016a 16S rRNA

Martes zibellina Lactobacillus ↓, Pseudomonas ↑ Su et al., 2021

Rhesus macaques Firmicutes ↑,
Bacteroidetes ↓

Wu et al., 2020 16S rRNA

Tibetan antelope Firmicutes ↑ Ruminococcaceae ↑ Ma et al., 2019 16S rRNA

intestinal tract under simulated high-altitude environment.
During this period, the rats ate less, their body weights decreased
sharply, and pathological myocardial hypertrophy occurred.
After rapidly entering the plateau environment at an altitude
of 4,100 m, rats had markedly increased intestinal Bacteroides
and markedly decreased Corynebacterium, Preceptella, and
Coprococcus populations; the metabolic activities of the flora
were also weakened.

High altitude can also enhance the side effects of some
drugs and further increase the health risk of patients with basic
diseases, such as diabetes, cerebrovascular diseases, and angina
pectoris (Sun et al., 2020).

The plateau environment applies a certain selective pressure
to the intestinal flora. In an analysis of shared genes between
human plateau populations and plateau pigs, it was found that
80.5% of the bacterial genes were shared between them, which
exceeds the highest degree of gene sharing among the intestinal
microflora of humans (Zeng et al., 2020). The α- and β-diversity
of the intestinal flora in the plateau population is considerably

higher than that in the plain population, and the abundance
of most genera in the intestines of the plateau population is
higher than that of the plain population. Moreover, Weissella,
Clostridium, Butyricicoccus, Parasutterella, and Klebsiella were
more abundant in the plain population than in the plateau
population (Li et al., 2016c; Liang et al., 2021). The intestinal
flora of rhesus monkeys in high-altitude environments is mainly
composed of Sclerotinia and Rumen cocci, whereas in low-
altitude environments, this flora mainly comprises Bacteroides
and Prevotella; the ratio of Firmicutes/Bacteroidetes in high-
altitude environments is three times higher than that in low
altitude environments (Wu et al., 2020).

There are more bacteria-producing short-chain fatty acids
(SCFAs) in the host intestine in high-altitude environments.
The abundance of Archaea, Prevotella, Holdemanella, and
Methanobrevibacter in the intestinal tract of the Qinghai–Tibet
plateau population is high (Liang et al., 2021). After comparing
the intestinal flora of the plateau and plain populations
through 454 pyrosequencing, Li and Zhao (2015) found that
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FIGURE 1

Tl R4 signaling pathways and inflammatory mediators disturb the intestinal flora of the host. Mitochondrial function is inhibited by suppression
of sodium and potassium pumps at high altitude, leading to excessive production of reactive oxygen species (ROS) in the mitochondria and
increased expression of hypoxia-inducible factor 1α (HIF-1α), thus producing nitric oxide (NO) and antibacterial peptides HBD-1, HBD-2, and
LL-37. Intestines at high altitude produce excessive lipopolysaccharides (LPS) into the blood circulation, which increases the expression of TLR4
and NLRP3 in the intestinal epithelial cells. TLR4 upregulates the expression of IL-23 and downstream target IL-22, while NLRP3 upregulates the
expression of IL-1β. These factors affect the intestinal flora of populations living in Qinghai-Tibet plateau.

the abundance of Sclerotinia in the intestine of the plateau
population was notably higher than that of the plain population,
whereas the abundance of Bacteroides was lower than that in the
plain population. One study found that the plateau population
was rich in Pseudomonas and Streptococcus (Ma et al., 2021).

Some species in the intestinal tract show positive or negative
correlations with altitude. One study found that Tibetans living
at an altitude of 4,800 m were rich in Clostridia, Clostridiales,
Lachnospiraceae, Pseudobutyrivibrio, and Rikenellaceae, which
were also found in Tibetans living at an altitude of 3,600 m (Li
et al., 2016b). In plateau pika, the abundance of Bacteroides in
the intestinal tract is increased and the phylum Chlamydomonas
decreases with elevation (Li et al., 2016a). Furthermore, the
abundance of lactic acid bacteria in the intestinal tract of wild
sable decreases with altitude, whereas the relative abundance of
Pseudomonas increases with altitude (Su et al., 2021).

In some diseases, the changes in intestinal flora are
different between the plateau and plain populations. The
number of Bacteroidetes and Dialister in the intestine of
patients with coronary heart disease at high altitude was
less than that of healthy high-altitude population, while the
number of Firmicutes, Blautia, and Succinivibrio increased
(Liu F. et al., 2020). However, in plain patients, Collinsella
population increased, whereas Rothia and Eubacterium spp.
populations decreased (Karlsson et al., 2012). Clostridiaceae
_ 1, Clostridium _ sensu _ stricto _ 1, Barnesiella, Peptocucus,
Ambiguous _ Taxa, Gastran Aerophiles, Peptocococaceae,
Melainabacteria, Succinivibrio, Succinivionaceae, and
Aeromonaales were markedly decreased in the intestinal
tract of high-altitude patients with liver cirrhosis; however,
Prevotella _ 2, Streptococcus, Streptococcaceae, Lactobacilles,

and Bacilli were increased (Huan et al., 2021). Intestinal
Bacteroides and Lachnospiraceae decreased in the plain
cirrhosis population, whereas Proteobacteria, Fusarium
spp., Enterbacteriaceae, Veillonellaceae, and Streptococcaceae
increased (Chen et al., 2011).

The abundance of Prevotella was positively correlated with
the severity of high-altitude reaction. The severity of AMS
was also associated with higher fecal microbiota diversity 1
week after AMS onset. Body weight loss at high altitudes was
associated with lower relative abundances of Lactobacillus and
Turicibacter (Karl et al., 2018).

Mechanism underlying the plateau
environment-mediated alteration
of the host intestinal flora

TLR4 signaling pathways and
inflammatory mediators

For humans entering the plateau for the first time, the
environment can influence the imbalance in intestinal flora
through a variety of mechanisms (Figure 1). Hypoxia alters the
energy pathways and mitochondrial function of cells, resulting
in autoxidation and a decrease in their ability to utilize oxygen,
leading to the excessive production of reactive oxygen species
(ROS) (Loiacono and Shapiro, 2010). Excessive ROS levels lead
to oxidative stress in the body, reducing intestinal flora diversity,
promoting specific bacterial growth, and aggravating intestinal
floral imbalance (Weiss and Hennet, 2017). In addition, both
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FIGURE 2

Intestinal flora regulates blood pressure and energy metabolism. The intestinal flora of individuals living in the plateau environment can produce
a large number of short-chain fatty acids to provide energy. This promotes the expression of transcription cofactor PGC-1α, upregulates the
peroxisome proliferator-activated receptor (PPARγ), and mediates the coupling protein UCP1, thereby inducing browning of the white fat to
generate more heat to adapt to the cold plateau environment. Meanwhile, binding of SCFA to the Gpr41 and Olfr78 receptors could effectively
regulate blood pressure in the high-altitude population. Another bacterial product, TMAO, could directly inhibit the pressor effect of angiotensin
II to fight against elevated blood pressure caused by high altitude.

ROS and hypoxic conditions can lead to the accumulation of
hypoxia-inducible factor-1α (HIF-1α), which can increase the
expression of human β-defensin-1, -2 (hBD-1, -2), and human
cathelicidin-related antimicrobial peptide (LL-37). The increase
in these antimicrobial peptides further affects the intestinal
flora of the host (Shao et al., 2018). HIF-1α can increase
the expression level of nitric oxide synthase (Lu et al., 2006).
The synthesis and release of low NO levels can protect the
intestinal mucosa (Kubes, 1993). In contrast, high NO levels
can cause intestinal floral disorder, promote the reproduction
of pathogenic bacteria, reduce the abundance of probiotics, and
damage intestinal function (Leitao et al., 2011).

High-altitude environments increase the abundance of
gram-negative bacteria in the human intestinal tract and

the decomposition of lipopolysaccharide (Han et al., 2021).
Lipopolysaccharides, also known as endotoxins, enter the blood
circulation from the damaged intestinal mucosa and stimulate
the release of inflammatory mediators of different cell types
(Maldonado et al., 2016), resulting in increased expression of
TLR4 and NLRP3 in small intestinal cells (Xu et al., 2014;
Qiu et al., 2021). The high-altitude environment may affect the
intestinal microbiota by regulating TLR4/NF-κB signaling (Liu
P. et al., 2021). TLR4 upregulates the expression of IL-23 (Kang
et al., 2018), and IL-23 and its downstream target IL-22 are
involved in the regulation of the intestinal flora (Fatkhullina
et al., 2018). IL-22 controls the production of antimicrobial
peptides and can be utilized by pathogens to inhibit the
growth of competing bacteria, thereby improving pathogen
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colonization on the mucosal surface (Behnsen et al., 2014). The
intestinal NLRP3 inflammasomes increase the expression of the
downstream effector molecule IL-1β (Yao et al., 2017). IL-1β

has been shown to play an important role in regulating the
production of antimicrobial peptides (Hu et al., 2015) to regulate
the intestinal flora.

Intestinal flora regulates blood
pressure and energy metabolism

The intestinal flora has flexibility and plasticity to adapt to
changes, a variety of environments, and adverse factors (Zmora
et al., 2019; Figure 2). The cold and hypoxic environment
of the Qinghai–Tibet plateau can seriously affect the energy
balance of the human body, where the energy requirements of its
inhabitants are high (Jia et al., 2020). In the Tibetan population
living on the plateau, the abundance of bacteria producing
SCFAs in the intestinal tract is high (Li et al., 2016b). Cecal
samples of wild house mice collected from different altitudes
were subjected to 16S rRNA sequencing, which showed that
the abundance of Prevotella bacteria in the intestine positively
correlates with the altitude at which the mice were located
(Suzuki et al., 2019). Prevotella can produce a variety of SCFAs,
such as butyrate, to provide energy to intestinal epithelial cells.

The microbiota under cold conditions might promote white
adipose tissue browning to increase host tolerance toward cold
environments. The body temperature of sterile and antibiotic-
treated mice was considerably lower than that of mice colonized
by normal flora (Kluger et al., 1990). Mice transplanted
with a microbiota adapted to cold conditions showed higher
levels of brown adipose tissue markers, increased insulin
sensitivity, and decreased adipocyte levels in white adipose
tissue (Chevalier et al., 2015).

Brown adipose tissue (BAT) are mitochondria-rich and
uncoupling protein 1 (UCP1)-rich adipocytes, and a high UCP1
level can efficiently convert chemical energy into heat (Rosen
and Spiegelman, 2014). Brown adipose cells are dominated
by the sympathetic nervous system, which enables BAT to
respond to stimulation, such as the cold environment of the
Qinghai–Tibet plateau, and circulate locally generated heat
to other parts of the body (Bartness and Ryu, 2015). SCFAs
can be used as modulators of lipogenesis in the development
and differentiation of brown adipocytes (Hu et al., 2016).
The transcription cofactor peroxisome proliferator-activated
receptor-gamma coactivator (PGC)-1α is a key molecule that
stimulates the differentiation of brown adipocytes and interacts
with peroxisome proliferator-activated receptor γ (PPARγ) to
directly participate in the transcription of lipogenic genes
(Puigserver et al., 1998). PGC-1α also interacts with PPARγ

and other nuclear hormone receptors in brown adipose cells
to upregulate the expression of brown adipose-specific UCP1
(Cassard-Doulcier et al., 1994; Barbera et al., 2001). After acetate

treatment, PGC-1α expression increases in brown adipose
cells, together with mitochondrial mass and UCP1 expression,
suggesting that acetic acid induces the browning of adipose
tissues (Hu et al., 2016).

Blood pressure regulation is one of the key physiological
responses of humans and other animals that allows them to
adapt to high-altitude environments, and sympathetic nervous
system stimulation induced by hypoxia can lead to a continuous
increase in blood pressure (Wolfel et al., 1994; Ivy and Scott,
2015). Bilo et al. (2019) studied 47 healthy volunteers and found
a positive correlation between human blood pressure, elevated
altitude, and exposure time at high altitudes (Bilo et al., 2019).
The intestinal flora may be involved in the regulation of blood
pressure in high-altitude populations.

Li et al. (2017) performed fecal transplantation from
hypertensive individuals to germ-free mice. As the microbiota
shifted, blood pressure also increased in these mice, suggesting
a role for the gut microbiota in hypertension. Pluznick
et al. (2013) and Pluznick (2014) found that SCFA-mediated
activation of Olfr78, a metabolite of gut bacteria, can lead
to increased blood pressure, while propionic acid-mediated
Gpr41 activation can lead to a decrease in blood pressure.
Another metabolite, trimethylamine N-oxide, has been shown
to delay the vasopressor-boosting effect of angiotensin II
(Ufnal et al., 2014).

Conclusion and future
perspectives

The relationship between various diseases and the intestinal
flora has become a recent hot topic, but research on the effect
of Qinghai–Tibet plateau on the host intestinal flora is slightly
lagging. The interaction between the host and intestinal flora
in a plateau environment is complex. A plateau environment
can create an imbalance in the intestinal flora, which helps
the host adapt by regulating energy metabolism and blood
pressure. The TLR4 signaling pathway may play an important
role in this process. However, the mechanisms are evidently
complex, and more research is needed to elucidate them.
Future research should also aim to determine the function of
various bacteria in the adaptation of people to the conditions
on the Qinghai–Tibet plateau. Furthermore, there has been
little research on the association between the intestinal flora
and diseases under plateau conditions. The application of
procedures to alter the intestinal flora, such as probiotics and
fecal bacteria transplantation, to help with adapting to high-
altitude conditions and to fight against high-altitude diseases
may be the highlight of future research. However, owing to
the severity of high-altitude diseases and the complexity of
the intestinal flora, researchers still face challenges. This review
could provide a framework for further research, allowing future
studies to focus on utilizing the relationship between the
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intestinal flora and high-altitude environments, which will help
address these challenges.
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