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Introduction: Bodies recovered from water, especially in the late phase of 

decomposition, pose difficulties to the investigating authorities. Various 

methods have been proposed for postmortem submersion interval (PMSI) 

estimation and drowning identification, but some limitations remain. Many 

recent studies have proved the value of microbiota succession in viscera 

for postmortem interval estimation. Nevertheless, the visceral microbiota 

succession and its application for PMSI estimation and drowning identification 

require further investigation.

Methods: In the current study, mouse drowning and CO2 asphyxia models 

were developed, and cadavers were immersed in freshwater for 0 to 14 days. 

Microbial communities in the liver and brain were characterized via 16S rDNA 

high-throughput sequencing.

Results: Only livers and brains collected from 5 to 14 days postmortem were 

qualified for sequencing. There was significant variation between microbiota 

from liver and brain. Differences in microbiota between the cadavers of mice 

that had drowned and those only subjected to postmortem submersion 

decreased over the PMSI. Significant successions in microbial communities 

were observed among the different subgroups within the late phase of the 

PMSI in livers and brains. Eighteen taxa in the liver which were mainly related 

to Clostridium_sensu_stricto and Aeromonas, and 26 taxa in the brain which 

were mainly belonged to Clostridium_sensu_stricto, Acetobacteroides, and 

Limnochorda, were selected as potential biomarkers for PMSI estimation 

based on a random forest algorithm. The PMSI estimation models established 

yielded accurate prediction results with mean absolute errors ± the standard 

error of 1.282 ± 0.189 d for the liver and 0.989 ± 0.237 d for the brain.
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Conclusions: The present study provides novel information on visceral 

postmortem microbiota succession in corpses submerged in freshwater 

which sheds new light on PMSI estimation based on the liver and brain in 

forensic practice.

KEYWORDS

aquatic habitat, decomposition, internal organ, microbial community, postmortem 
submersion interval

Introduction

Human cadavers are often discovered in a range of natural 
aquatic habitats such as lakes, rivers, and oceans due to drowning, 
disasters, and accidents (Cartozzo et al., 2021b). Bodies retrieved 
from water pose difficulties to the investigating authorities, 
particularly corpses at an advanced stage of decay. A forensic 
pathologist is generally required to determine the cause of death 
and the postmortem submersion interval (PMSI; Humphreys 
et al., 2013). Many studies have been conducted to address these 
questions. Though accumulated degree-days based on the 
morphological state of decomposition has been suggested to 
determine the PMSI (Heaton et  al., 2010), it is unsuitable for 
corpses that have been submerged in very cold water (Dickson 
et al., 2011; Palazzo et al., 2020). In addition, typical macroscopic 
signs including the classic plume of white froth from the nose or 
mouth, overinflated, crepitant lungs, pulmonary edema, and water 
in the stomach have frequently been used to identify drowning as 
a cause of death, but such indicators gradually become less reliable 
with the progression of decomposition (Schneppe et al., 2021). 
Given this, novel methods for PMSI estimation and the 
identification of drowning are required for use in forensic practice.

Aquatic bacteria have recently attracted widespread interest 
from forensic experts (Uchiyama et al., 2012; Lang et al., 2016). 
Bacteria are ubiquitous in natural bodies of water, and they are small 
(0.2–2.0 μm), which facilitates their entrance into blood circulation 
and their deposition in the viscera during drowning (Oliveira and 
Amorim, 2018). A previous study indicates that various bacteria 
spread around the entire corpse after death (Wójcik et al., 2021). 
Specific genera, including Aeromonas in freshwater and Vibrio and 
Photobacterium in seawater, are indicators of drowning when they 
are detected in the blood and viscera of victims via culture-
dependent and/or PCR-based methods (Kakizaki et al., 2008; Aoyagi 
et al., 2009). Ubiquitous microbes including the internal microbiota 
of the carcass as well as those of the surrounding environment play 
an important role in the natural decomposition of carcasses in 
aquatic systems (Metcalf et al., 2016). However, these methods (i.e., 
culture-dependent and/or PCR-based methods) could provide only 
limited information. With the advancement of sequencing 
technologies, especially next-generation sequencing, it is possible to 
obtain a more comprehensive understanding of microbial 
community succession during the decay process. Many studies in 

human and animal corpses indicate the potential value of microbial 
succession for PMI or PMSI estimation (Li et al., 2021; Randall et al., 
2021). To date, microbial studies investigating aquatic ecosystems in 
this context have mainly focused on microbes that have colonized 
the surface of remains or specific body parts (e.g., bones; Wallace 
et  al., 2021; Cartozzo et  al., 2021a), which are vulnerable to 
environmental changes (Kaszubinski et al., 2022). However, there is 
a lack of studies assessing the succession pattern of microbial 
communities colonized in the internal organs, which are relatively 
resistant to environmental abiotic factors (i.e., pH and temperature) 
and biotic factors (i.e., insects and scavenger activities; Tomberlin 
et al., 2011). The liver and brain are believed to be sterile in living 
hosts (Javan et al., 2016). The microbes discovered in these organs of 
cadavers could represent those directly associated with 
decomposition, making them ideal subjects for postmortem 
microbiota investigation.

Using 16S rDNA sequencing, our previous study demonstrated 
that microbial communities in the viscera differed in drowning and 
postmortem submersion groups at 3 days postmortem (Wang et al., 
2020). In another study microbiota succession in the gut was helpful 
for estimating the PMSI (Zhang et al., 2022b). Whether microbial 
succession in other visceral organs could be  used for PMSI 
estimation and the determination of cause of death requires 
investigation. In the present study, to verify this hypothesis, mouse 
drowning and postmortem submersion models were developed, and 
corpses were maintained in freshwater for 0 to 14 days. Microbial 
communities in liver and brain were characterized by 16S rDNA 
high-throughput sequencing, and data were analyzed with machine-
learning algorithms.

Materials and methods

Sample collection and experimental 
setup

All animal experiments were approved by the Animal 
Experiment Committee of China Medical University (approval 
number CMU2021202). All experiments were performed in 
October in a natural freshwater river (Shenyang, China; N41°57′, 
E123°27′). Adult male C57BL/6 J mice (20–25 g, aged 8–10 weeks, 
n = 180) were purchased from the Experimental Animal Center of 
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China Medical University, then housed in micro-isolator cages 
under standard lighting (light/dark periods of 12 h) with free access 
to drinking water and food. Five water samples (1 l each) were taken 
from the experimental sites before the animal experiments and 
filtered through sterile 0.2-μm filters (Fisher Scientific, Hampton, 
NH). A total of 144 mice were randomly distributed into drowning 
(n = 72) and postmortem submersion (n = 72) groups. The drowning 
model was established as previously reported (Zhang et al., 2022a). 
Briefly, mice were deposited in sterile string bags and immersed in 
30-cm-deep water for 1 min before being retrieved from the water 
for 30 s. The above steps were repeated until the animals died, then 
the corpses were submerged underwater. Mice in the postmortem 
submersion group were killed by CO2 inhalation then submersed 
underwater. Nine timepoints were investigated; immediately after 
death, 6 h and 12 h after death, and 1, 3, 5, 7, 10, and 14 days after 
death. At each timepoint liver (the right lobe) and brain (the right 
hemispheres) specimens were harvested from 16 mice (8 per 
group). To assess the percentages of intestine-derived bacteria in 
liver and brain microbial communities during decomposition, 16 
cecal content samples were collected from the corpses immediately 
after death. All samples were immediately frozen in liquid nitrogen 
and stored at −80°C for subsequent sequencing. The remaining 36 
mice were processed in accordance with the above-described 
procedures (drowning group 18 mice, postmortem submersion 
subgroup  18 mice; 2 mice at each indicated timepoint) as an 
independent validation experiment. The specific grouping is 
presented in Supplementary Table 1.

16S rDNA extraction and amplification

Bacterial genomic DNA from all samples, including cecal 
content (n = 16), liver (n = 180), brain (n = 180), and water (n = 5) 
was extracted using the CTAB method. DNA concentration and 
purity were then determined via 1% agarose gels. The V3-V4 
region of 16S rDNA was amplified by PCR (98°C for 1 min, 
followed by 30 cycles of 98°C for 10 s, 50°C for 30 s, and 72°C for 
30 s, then final extension at 72°C for 10 min) using the primers 
341F (CCTACGGGNGGCWGCAG) and 806R 
(GGACTACHVGGGTATCTAAT), which were synthesized by 
Sangon Biotech (Sangon, Shanghai, China). DNA was then 
sequenced on the Illumina NovaSeq platform (Illumina, 
United States), and 250-bp paired-end reads were generated.

Sequence analysis

The 16S rRNA gene sequences were processed using QIIME 
1.9.1 (Caporaso et al., 2010), USEARCH 10.0 (Edgar, 2010), and 
in-house scripts. Paired-end Illumina reads were checked by 
FastQC (de Sena Brandine and Smith, 2019), and further 
processed by USEARCH (including joining of paired-end reads, 
relabeling of sequencing names, removal of barcodes and primers, 
filtering of low-quality reads, and finding non-redundancy reads). 

Based on high-confidence 16S representative sequences, an 
amplicon sequence variants (ASVs) table was generated. The 
taxonomy of the representative sequences was classified with the 
“RDP trainset 16” database (Cole et al., 2014) on the basis of the 
sintax algorithm in USEARCH (−sintax command). ASVs 
assigned to chloroplasts and mitochondria were removed. An 
ASV table was generated within USEARCH (−otutab command). 
For alpha and beta diversity, samples were first rarefied at minimal 
sequences by USEARCH (−otutab_norm command).

Analysis of microbial communities

Data analyses were conducted using R (v.4.1.1).1 Alpha diversity 
was measured by the Chao1 and Shannon indexes with the “vegan” 
package2 in R. The Chao1 index was used to estimate alpha diversity 
richness and the Simpson index to evaluate evenness in addition to 
richness. Analysis of the difference in alpha diversity between 
drowning and postmortem submersion groups was performed 
using Wilcoxon rank-sum tests, and corresponding p values were 
corrected for multiple tests using a false discovery rate set at 0.05. 
Differences in beta diversity metrics (unweighted UniFrac and 
Bray–Curtis) were assessed visually using principal coordinates 
analysis (PCoA) and statistically using permutational multivariate 
analysis of variance tests (PERMANOVAs), with a total of 999 
permutations (“vegan” package). Unweighted UniFrac considers 
phylogeny and taxa, while Bray–Curtis takes taxa and relative 
abundances into account. Multiple PERMANOVAs were 
performed, and the groups tested included cause of death (drowning 
and postmortem submersion), sample type (liver and brain), and 
PMSI (5, 7, 10, and 14 days). Fast expectation–maximization 
microbial source tracking (FEAST) was used to calculate the 
contributions of water and intestine bacterial communities as 
described previously (Shenhav et  al., 2019), with the “FEAST” 
package of R. FEAST can identify the origins of complex microbial 
communities based on a statistical model that assumes each sink is 
a complex combination of known and unknown sources. In this 
study, water and intestine samples were defined as “sources,” and 
liver and brain samples were defined as “sinks.”

Random forest models

Datasets derived from microbiomics have the characteristics 
of high dimensionality and large amounts of noise and redundancy 
(Li et al., 2020; Vidanaarachchi et al., 2020), and they are not 
amenable to analysis with traditional analytical methods (Zhang 
et al., 2019; Park et al., 2021). Random forest (RF) has become a 
popular tool for the analysis of microbial data, given that it is 
relatively robust with respect to outliers and noise, and is not 

1 http://www.r-project.org/

2 https://cran.r-project.org/package=vegan
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prone to over-fitting (Knights et al., 2011). RF reportedly exhibits 
satisfactory performance when used to analyze microbial data to 
address unanswered forensic questions such as cause of death and 
postmortem interval (Metcalf et al., 2013; Zhang et al., 2019).

The present study investigated the use of different organs for 
PMSI estimation and drowning determination. RF regression and 
classification models were established based on microbiota 
profiles (the abundance data of each ASV) using default 
parameters of the R implementation of the algorithm (R package 
“randomForest”; ntree = 1,000, square root of the number of 
variables for the classification model and one-third of the variables 
for the regression model). To visualize the similarity of samples 
from different groups, a multidimensional scaling (MDS) 
ordination plot was generated using the MDSplot function of the 
“randomForest” package. Final performance was assessed via the 
mean absolute error (MAE) for the regression model, and the area 
under the receiver operating characteristic (ROC) curve for 
classification. Bacterial ASVs were ranked in order of their feature 
importance (the percentage increase in the mean-squared error; 
%IncMSE) in the regression model. Biomarker sets were generated 
by selecting the minimum error using 10-fold cross-validation.

Results

Overview of liver and brain microbial 
communities during decomposition

A total of 360 viscera samples including 180 from the liver and 
180 from the brain were collected and analyzed in the exploratory 
and validation experiments at nine PMSIs spanning 14 days 
(Supplementary Table 1). Macroscopically, no significant signs of 
decomposition were observed within 5-day postmortem. Liver 
and brain showed minimal autolysis at 7 days. Mild liquefaction 
was observed in liver and brain at 10 days. At 14 days, there were 
scattered putrefactive blisters on the surface and parenchyma of 
the liver. The brain presented apparent liquefaction. After PCR 
amplification and agarose gel electrophoresis detection, almost all 
samples collected before 5-day postmortem were not qualified 
enough for use in subsequent experiments (The target region of 
16S rDNA could not be amplified efficiently after multiple PCR, 
implying the low abundance of bacteria; Supplementary Table 1). 
Accordingly, only samples with PMSIs ranging from 5 to 14 days 
were further analyzed. The V3-V4 hypervariable region of the 16S 
rDNA gene was sequenced to characterize the microbial 
community. Following quality filtering and rarefaction, a total of 
7,089,046 high-quality sequences were generated from 181 sample 
libraries, which were clustered into 3,071 ASVs. Rarefaction 
curves indicated that as sequence depth increased, species richness 
rose considerably and then reached asymptotes 
(Supplementary Figure 1), demonstrating that the tissues were 
sufficiently sequenced to observe all taxa.

After taxonomy classification, composition analysis of 
microbial communities in the liver and brain was performed at 

different levels. At the phylum level, Firmicutes and Proteobacteria 
were dominant in all samples (Figure 1A). The relative abundance 
of Proteobacteria was higher in liver samples than in brain 
samples. The opposite was true for Firmicutes. In brain samples, 
the abundance of Firmicutes was increased and reached a plateau 
at 10 days, in conjunction with a decrease in Proteobacteria. As the 
taxonomy level increased, the difference between liver and brain 
became greater. At the family level higher abundance of 
Clostridiaceae 1, Morganellaceae, and Enterobacteriaceae was 
observed in liver samples compared to brain samples during the 
decomposition process, whereas the abundance of 
Peptostreptococcaceae was lower (Figure  1B). The relative 
abundance of Aeromonadaceae declined from 5 days and became 
relatively stable after 10 days both in liver samples and in brain 
samples. At the genus level, Clostridium_sensu_stricto and Proteus 
were more prevalent in liver samples, whereas Proteocatella and 
Desnuesiella were more common in brain samples (Figure 1C). 
The abundances of Aeromonas at 10 days and 14 days were lower 
than those at 5 days and 7 days in both organs.

To assess the possible source of microbes acquired from liver 
and brain samples during decomposition, an additional 16 cecal 
content samples and 5 water samples were obtained. The 
compositions of microbial communities in the liver and brain 
were compared with those of the water and intestine. The 
microorganism compositions in different samples were distinctly 
different (Figure 1; Supplementary Figure 2). None of the top 10 
genera in the water, gut, and viscera were the same, indicating that 
great care must be taken to avoid microbial contamination from 
water or other organs during sampling in forensic practice. Given 
that water-derived bacteria may penetrate the viscera via the 
circulation during drowning, and the bacteria in the intestinal 
tract could disseminate to different parts of the body during 
decomposition, FEAST analysis was performed to assess the 
effects of water-derived and intestine-derived bacteria on viscera 
microbiota succession. For the liver samples, the contribution of 
water-derived bacteria decreased in the drowning and postmortem 
submersion groups as PMSI increased (Figure 1D). Similar results 
were observed in brain samples (Figure 1E). The contribution of 
intestine-derived bacteria to the brain microbial community was 
close to zero throughout, which was lower than that in liver (mean 
7.8% ± 1.2%).

Microbial diversity in liver and brain 
samples

Alpha diversity was estimated using the Chao1 and Shannon 
indices (Figures 2A,B; Table 1). For the liver samples, there was no 
significant difference in the Chao1 and Shannon indexes between 
drowning and postmortem submersion groups at each timepoint. 
For the brain samples, there were only marked differences at 7-day 
postmortem. To visualize similarities and dissimilarities in 
postmortem bacterial compositions in different samples, PCoA 
was performed and represented in two-dimensional space. In an 
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unweighted UniFrac distance-based PCoA plot (Figure  2C), 
principal coordinate 1 (PCo1) and PCo2 (42.5 and 12.1% of 
variance explained, respectively) axes showed that the microbial 
communities in the liver and brain were clearly separated during 
14 days of decomposition (PERMANOVA, R2 = 0.247, p = 0.001). 
PCoA2 separated the communities mainly by PMSI (5–7 days and 
10–14 days). Separation between sample types and among PMSIs 
was more notable in a Bray–Curtis-based PCoA plot (Figure 2D). 
However, no difference between drowning and postmortem 
submersion groups was observed based on unweighted UniFrac 
(p = 0.135) or Bray–Curtis distance (p = 0.275) analysis 
(Figures  2C,D). The PERMANOVA test indicated that both 
sample type and PMSI could significantly affect the microbial 
community (p < 0.05). Sample type explained more variance 
(R2 = 0.247 or 0.270) in microbial community compared to PMSI 

(R2 = 0.145 or 0.068) and cause of death (R2 = 0.013 or 0.009; 
Figures 2C,D). These results indicated that there were significant 
differences in microbial communities between the two types of 
viscera and among PMSIs.

Applicability of liver and brain microbial 
communities for drowning determination

To further assess the applicability of microbiota in different 
organs for drowning determination, cause-of-death classification 
models were established based on the relative abundance of 
microbiota at the level of ASV using the RF machine-learning 
algorithm. In MDS plots, drowning and postmortem submersion 
groups were indistinguishable both in liver and brain models 

A

D E

B C

FIGURE 1

Composition of microbial communities in internal organs and microbial source tracking. (A–C) Relative abundance of bacterial taxa at different 
taxonomic levels. Stacked bar charts of the top 6 bacterial phyla (A), top 10 bacterial families (B), and top 10 bacterial genera (C) with the largest 
mean relative abundance in the liver and brain. Percentage source contributions of water-derived and intestine-derived bacteria to microbial 
communities in liver (D), and brain (E), over time were determined using FEAST. D, drowning group; PS, postmortem submersion group.
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(Figures 3A,C). Similar results were observed in ROC curves. The 
areas under the curve (AUCs) were low (liver AUC exploratory 
0.62, AUC validation 0.62; brain AUC exploratory 0.62, AUC 
validation 0.66; Figures 3B,D), indicating the performance of the 
classification models was poor. Thus, there was no significant 
difference in the microbial communities of liver and brain 
between the drowning and postmortem submersion groups when 
the individuals at different PMSIs were taken as a whole. 
Considering that the effect of PMSI on the bacterial community 
(R2 = 0.145 or 0.068) was stronger than that of cause of death 
(R2 = 0.013 or 0.009), we  further analyzed the difference in 
microbiota between the groups at each timepoint. In PCoA 

analysis microbiomes from drowned corpses were clearly 
separated from those of postmortem submersion corpses at 5 days 
and 7 days, both in liver and brain (Supplementary Figures 3, 4). 
The same patterns were reflected in the MDS plots and ROC 
curves from RF classification models at each PMSI 
(Supplementary Figures 5, 6). Classification models were then 
generated based on the microbial communities in the brain and 
liver, which were collected at 5 days and 7 days. Overall 
performance is shown in Supplementary Figures 7 and 8 (liver 
AUC exploratory 0.94, AUC validation 0.56; brain AUC 
exploratory 0.79, AUC validation 0.94). These results 
demonstrated that the difference in microbial communities 

A

B

C D

FIGURE 2

Alpha and beta diversities of microbiota in the liver and brain. Comparisons of the Chao1 (A), and Shannon (B), indices between drowning and 
postmortem groups at each PMSI. Ordination plot for the first two PCoA axes based on unweighted Unifrac (C), and Bray–Curtis (D), distances. 
Different colors indicate different PMSIs. Different sample types (liver or brain) are represented by different shapes. D, drowning group; PS, 
postmortem submersion group.
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between drowned corpses and postmortem submersion corpses 
reduced gradually over the PMSI, and may only be helpful for 
drowning diagnosis for corpse retrieved at 5-day and 7-day 
postmortem. Overall, bacterial communities in liver and brain 

from corpses retrieved later could not be utilized for drowning 
determination. Thereafter, data from the two groups were assessed 
together to trace the common community succession for 
PMSI estimation.

TABLE 1 Comparisons of alpha diversity indexes (Chao1 and Shannon) between drowning and postmortem submersion by Wilcoxon rank-sum test.

PMSI Sample type p_Chao1 p.adjust_Chao1* p_Shannon p.adjust_Shannon*

5d Liver 0.028 0.112 0.574 0.574

7d Liver 0.083 0.166 0.195 0.574

10d Liver 0.234 0.312 0.328 0.574

14d Liver 0.442 0.442 0.442 0.574

5d Brain 0.083 0.166 0.328 0.656

7d Brain 0 0.001 0 0.001

10d Brain 0.505 0.673 0.878 0.878

14d Brain 0.721 0.721 0.721 0.878

*p-values were adjusted using Benjamini-Hochberg (BH) correction and the adjusted p value cut-off was 0.05.

A B

C D

FIGURE 3

(A,B) Performance of the RF classification model built on microbiota in the liver. (C,D) Performance of the RF classification model built on 
microbiota in the brain. (A,C) MDS plot generated by the learning algorithm RF comparing the microbial community between drowning and 
postmortem submersion groups. (B,D) ROC curves of the RF classification model on data from exploratory and validation experiments. D, 
drowning group; PS, postmortem submersion group.
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A B

C D

FIGURE 4

Successional dynamics of microbial communities in the liver and brain, and performances of regression models for PMSI estimation. PCoA of 
bacterial communities in liver (A), and brain (B). Different colors indicate different PMSIs. Predicted PMSI versus actual PMSI for liver (C), and brain 
(D), samples were plotted with a superimposed one-to-one reference line. Dots represent samples from the validation experiment (n = 4 per PMSI).

PMSI estimation based on microbial 
community succession in liver and brain

The postmortem successions of microbial communities in 
liver and brain were assessed for PMSI estimation. PCoA based 
on unweighted UniFrac distance (Figures 4A,B) revealed obvious 
chronological ordination along PCoA1 both in liver and brain. 
Samples were briefly clustered into two categories; 5–7 days and 
10–14 days. Subsequently, the relative abundance of microbiota 
at the level of ASV was analyzed with the RF algorithm to 
establish PMSI estimation models (the initial models). The 
variance explained in the liver model was 81.46%, and the 
variance explained in the brain was 82.45%. The regression 
models obtained satisfactory performances from the 
experimental data (liver MAE 1.137 d ± 0.115 d; brain MAE 
1.114 d ± 0.111 d). The validation data were used to verify the 
efficiency of the models, and the MAE ± SE values were 1.229 
d ± 0.146 d for the liver and 1.077 d ± 0.231 d for the brain 
(Figures 4C,D; Table 2). These results suggested that microbiota 
in liver and brain could be used for estimating PMSI in late-
phase submerged corpses.

Though these models demonstrated satisfactory accuracy for 
PMSI prediction, there may be some ASVs contributing less to the 
models. Hence, cross-validation was performed to select the top 
informative indicator set (Figures 5A, 6A). Eighteen ASVs with 
high PMSI-discriminatory importance were selected as potential 
biomarkers in the liver, and 26 were selected in the brain 
(Figures  5B,C, 6B,C). Some microbes decreased in relative 
abundance over the PMSI, while others increased. According to 
species annotation, Firmicutes (13 ASVs in liver and 19 in brain) 
were dominant. Significant taxa in the liver were related to 
Paraclostridium, Clostridium_sensu_stricto, Propionispira, 
Desnuesiella, Duncaniella, and Aeromonas at the genus level. The 
microbes in brain mainly belonged to Clostridium_sensu_stricto, 
Acetobacteroides, and Limnochorda. Though the compositions of 
these indicator sets differed in liver and brain, Clostridium_sensu_
stricto accounted for the dominant microbiota (10 ASVs in the 
liver and 9 in the brain). Three biomarkers (ASV 37, ASV 103, and 
ASV 1758) were shared between the two organs, which were 
assigned to Clostridium_sensu_stricto. A similar pattern in relative 
abundance for ASV 37 and ASV 1758 was observed in liver and 
brain. Lastly, the relative abundance of microbiota from the most 
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informative indicator sets was further regressed against PMSI (the 
refined models). Compared with the initial models, the explained 
variances in these refined models (liver 85.71%, brain 85.78%) 
were slightly increased. The MAEs of the refined models were 
similar to those of the initial models with respect to data from 
exploratory experiments (liver 0.906 d ± 0.114 d, brain 0.911 
d ± 0.113 d) and validation experiments (liver 1.282 d ± 0.189 d, 
brain 0.989 d ± 0.237 d; Figures 5D, 6D; Table 2). These results 
indicated that these refined models based on selected microbial 
communities in liver and brain had powerful potential for late-
phase PMSI estimation.

Discussion

Many studies have investigated carrion microbial succession 
using high-throughput sequencing in terrestrial habitats (Metcalf 
et al., 2016, 2017; Liu et al., 2021), but there are comparatively few 
studies on microbial communities in the internal organs in aquatic 
ecosystems. Thus, in the current study, we characterized shifts in 
bacterial communities in the livers and brains of mouse cadavers 
in natural freshwater, and compared differences between drowned 
corpses and those only subjected to postmortem submersion. The 
temporal succession of microbiota colonization in some liver and 
brain samples from these corpses was informative for PMSI 
estimation. Bacterial communities in the liver and brain were of 
little use for drowning identification.

Many internal organs including liver and brain are believed to 
be sterile in healthy living hosts (Javan et al., 2016). After death, 

various bacteria begin to spread throughout the entire corpse. The 
microbes discovered in these organs are mainly associated with 
decomposition. In the present study, most of the samples collected 
on days 0 to 3 postmortem were not qualified for subsequent 
detection, implying that there was little to no bacteria proliferating 
in the viscera at these timepoints. In our previous study, liver 
samples collected at 3 days postmortem could meet the 
requirements of next-generation sequencing (Wang et al., 2020). 
Because temperature is one of the most important environmental 
factors affecting the succession of microbes (Zhou et al., 2021), a 
reasonable explanation for the discrepancy between the previous 
study and the current study is that the ambient temperature in the 
present study (5 to 10°C) was substantially lower than that in the 
previous study (15 to 25°C), resulting in limited growth of 
microorganisms. This result suggests that in follow-up 
translational studies, the concept of accumulated degree-days, 
which integrates postmortem interval and ambient temperature 
(Heaton et al., 2010), should be used to minimize error caused by 
temperature fluctuation. Additionally, a previous study reported 
that liver remains sterile up to 5 days after death (Tuomisto et al., 
2013). Our experiment further supported this finding. So, it is a 
wise choice to focus on the microbial communities in other organs 
when it comes to fresh corpses.

In the present study bacterial communities in the liver and 
brain from corpses at advanced stages of decay could not be used 
for drowning determination. There are likely several reasons for 
this. First, bacteria from the external environment and gut would 
influence the microbial community in viscera. Sterile organs could 
be colonized by infiltrating bacteria, and tissues where there is a 

TABLE 2 Prediction results of validation samples derived from the initial and refined regression models.

Sample Group Observed

Predic_ Error_ Predict_ Error_ Predict_ Error_ Predict_ Error_

initial_ initial_ refined_ refined_ initial_ initial_ refined_ refined_

liver* liver* liver* liver* brain* brain* brain* brain*

V1 D 5 5.6 0.6 5.995 0.995 5.215 0.215 5.037 0.037

V2 D 5 6.01 1.01 6.246 1.246 5.357 0.357 5.216 0.216

V3 D 7 6.266 −0.734 6.257 −0.743 6.689 −0.311 6.737 −0.263

V4 D 7 6.755 −0.246 7.051 0.051 6.853 −0.147 6.997 −0.003

V5 D 10 10.223 0.223 10.09 0.09 10.8 0.8 10.873 0.873

V6 D 10 11.025 1.025 11.024 1.024 9.957 −0.043 9.876 −0.124

V7 D 14 12.251 −1.749 12.846 −1.154 12.488 −1.512 12.955 −1.045

V8 D 14 11.762 −2.238 11.433 −2.567 12.06 −1.94 12.545 −1.455

V9 PS 5 7.11 2.11 7.345 2.345 5.426 0.426 5.307 0.307

V10 PS 5 6.545 1.545 6.677 1.677 5.278 0.278 5.009 0.009

V11 PS 7 8.428 1.428 8.486 1.486 9.687 2.687 9.461 2.461

V12 PS 7 8.614 1.614 9.171 2.171 9.338 2.338 9.404 2.404

V13 PS 10 11.163 1.163 11.574 1.574 11.213 1.213 11.364 1.364

V14 PS 10 11.4 1.4 12.039 2.039 11.511 1.511 11.92 1.92

V15 PS 14 12.578 −1.422 13.463 −0.537 11.351 −2.649 11.327 −2.673

V16 PS 14 12.843 −1.157 13.187 −0.813 13.193 −0.807 13.336 −0.664

*Predict_initial and Error_initial: Prediction results of validation samples derived from the regression model based on all ASVs. Predict refined and Error refined: Prediction results of 
validation samples derived from the regression model established by selected taxa (liver 18 ASVs; brain 26 ASVs). PMSI was measured in units of days.
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FIGURE 5

Liver biomarker identification and validation for PMSI estimation. (A) Cross-validation results of the initial model established using liver microbial 
communities. (B) The top 18 ASVs were identified by the RF algorithm. Biomarker taxa were ranked in decreasing order of importance (i.e., 
%IncMSE). (C) Heatmap demonstrating dynamic changes in abundance of the top 18 PMSI-predictive biomarkers. (D) Predicted PMSI versus actual 
PMSI for liver samples obtained by the refined regression model plotted with a superimposed one-to-one reference line. The dots represent liver 
samples from the validation experiment (n = 4 per PMSI).

specific microbiota can be contaminated (Wójcik et al., 2021). The 
genus Aeromonas is ubiquitous in freshwater but absent in the 
healthy human body (Goncalves Pessoa et al., 2019), and it has 
been documented as a potential bacterial marker of freshwater 
drowning (Kakizaki et al., 2011; Huys et al., 2012; Uchiyama et al., 
2012). In the current study, however, there was no significant 
difference in the relative abundance of Aeromonas in liver between 
drowning and postmortem submersion from 5-day postmortem, 
indicating the between-group differences caused by the exogenous 
species were relatively subtle at 5 days. Due to drastic changes in 
the environment, water-derived microorganisms that entered the 
internal organs during drowning might die gradually, resulting in 
decreased contribution of water-derived bacteria. Cartozzo et al. 
(Cartozzo et al., 2021b) reported that microorganisms inherent to 
the surrounding water environment contributed little to the 
dominating bone microbial communities with respect to relative 
abundance. That report is concordant with the present study. 
These results indicated that some changes in the microenvironment 
or in the microbial community during drowning became less 
pronounced as the PMSI extended, making a drowning diagnosis 

more difficult at advanced stages of decomposition. Additionally, 
in the current study classification models based on liver and brain 
microbiota collected at 5 days and 7 days performed well in 
exploratory experiments, implying their potential usefulness for 
drowning identification. The liver model exhibited poor 
performance in validation experiments, however (AUC 0.56), 
probably due to the large individual differences. This finding 
should be viewed with caution due to the small sample size in the 
present study, and should be validated in future larger studies.

Despite its unsatisfactory performance in drowning 
identification, microbial information derived from liver and brain 
exhibited good chronological regularity conducive to use for PMSI 
estimation. Both of the models yielded satisfactory accuracy in 
independent validation samples, suggesting the usefulness of liver 
and brain microbiota for late-PMSI estimation. In the present 
study, the minimum cross-validation errors were obtained when 
using 18 ASVs for the liver and 26 ASVs for the brain. A list of 
candidate taxa, identified via analysis of cross-validation, changed 
in abundance over time. Some of the microbial taxa have also been 
reported in postmortem microbiomes in terrestrial carcass 
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decomposition studies. For example, many selected indicators 
were assigned to Clostridium_sensu_stricto, which was also the 
dominant bacteria in terrestrial carcasses at 5–14-day postmortem. 
Clostridium is a widely variable oxygen-tolerant anaerobic genus 
found in diverse environments such as soil, freshwater, and marine 
sediments (Bergogne-Berezin and Towner, 1996), and it has been 
regarded as a key contributor to the general decomposition 
process on land (Hyde et  al., 2015). The translocation and 
proliferation of Clostridium in postmortem human internal 
organs has been reported in several studies (Tuomisto et al., 2013; 
Javan et  al., 2016). Recent research has even defined a new 
scientific concept, the “postmortem Clostridium effect”—which 
refers to the ubiquitous Clostridium spp. present during human 
decomposition (Javan et al., 2017). The current study demonstrates 
that this phenomenon can also be observed in submerged corpses. 
Further, some taxa unique to aquatic systems were proposed as 
indicators of PMSI. For instance, taxa defined as Aeromonas 
which gradually decreased in the liver could be used for PMSI 
estimation. Desulfovibrio is commonly found in aquatic 

environments (Amrani et al., 2014). Methylogaea is isolated from 
the soil-water interface of rice paddy fields (Tarlera, 2016). A 
species of Limnochorda has been isolated from sediment from a 
brackish meromictic lake (Watanabe et al., 2015). Acetobacteroides 
is found in reed swamps. The abundances of ASVs related to 
Methylogaea, Limnochorda, and Acetobacteroides were higher at 
the advanced decomposition stage, implying that sediment-
dwelling bacteria may play an important role during degradation. 
This warrants further research. Lastly, these bioindicators were 
useful for PMSI estimation with high predictive accuracy (liver 
MAE 1.282 d ± 0.189 d; brain MAE 0.989 d ± 0.237 d).

Although some of the findings in the present study are novel, 
it should be  viewed as an initial investigation into microbial 
succession associated with decomposition in a natural freshwater 
environment. The study had some limitations. Bacterial is 
reportedly more resistant to harsh environmental conditions (i.e., 
chemical and physical agents) due to the wall of peptidoglycan 
matrix, which renders bacteria applicable to studies in corpses at 
advanced stages of decomposition (Tozzo et al., 2020). Further 
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FIGURE 6

Brain biomarker identification and validation for PMSI estimation. (A) Cross-validation result of the initial model established using brain microbial 
communities. (B) The top 26 ASVs were identified by the RF algorithm. Biomarker taxa were ranked in decreasing order of importance (i.e., 
%IncMSE). (C) Heatmap demonstrating dynamic changes in abundance of the top 26 PMSI-predictive biomarkers. (D) Predicted PMSI versus actual 
PMSI for brain samples obtained by the refined regression model plotted with a superimposed one-to-one reference line. Dots represent brain 
samples from the validation experiment (n = 4 per PMSI).

https://doi.org/10.3389/fmicb.2022.1052808
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Wang et al. 10.3389/fmicb.2022.1052808

Frontiers in Microbiology 12 frontiersin.org

research should monitor the entire decomposition process (e.g., 
fresh to skeletonization). The environmental conditions 
surrounding the cadaver influence the bacterial communities 
present and the stages of decomposition, but the present study was 
conducted at a single location during a single season. For broader 
application of the findings in forensic science, it would be helpful 
to develop reliable and robust databases of microbiomes obtained 
in multiple aquatic environments and seasons.

The succession of postmortem microbiota that colonize 
internal organs (including the gut, brain, liver, spleen, and heart) 
has proven useful for PMI estimation in terrestrial environments 
(Can et al., 2014; Javan et al., 2016). The present study provides 
novel and informative context for better understanding the 
decomposition processes that submerged corpses undergo, which 
have important implications for forensic practice. It also sheds 
new light on PMSI estimation based on the succession of microbial 
populations in liver and brain specimens from corpses in water.
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