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Introduction: Considering the rapid growth and high biomass productivity, 

Moso bamboo (Phyllostachys edulis) has high carbon (C) sequestration 

potential, and different management practices can strongly modify its C 

pools. Soil microorganisms play an important role in C turnover through 

dead plant and microbial biomass degradation. To date, little is known about 

how different management practices affect microbial carbohydrate-active 

enzymes (CAZymes) and their responses to dead biomass degradation.

Methods: Based on metagenomics analysis, this study analyzed CAZymes in 

three comparable stands from each Moso bamboo plantation: undisturbed 

(M0), extensively managed (M1), and intensively managed (M2).

Results: The results showed that the number of CAZymes encoding plant-

derived component degradation was higher than that encoding microbe-

derived component degradation. Compared with the M0, the CAZyme 

families encoding plant-derived cellulose were significantly (p < 0.05) high in 

M2 and significantly (p < 0.05) low in M1. For microbe-derived components, 

the abundance of CAZymes involved in the bacterial-derived peptidoglycan 

was higher than that in fungal-derived components (chitin and glucans). 

Furthermore, M2 significantly increased the fungal-derived chitin and 

bacterial-derived peptidoglycan compared to M0, whereas M1 significantly 

decreased the fungal-derived glucans and significantly increased the bacterial-

derived peptidoglycan. Four bacterial phyla (Acidobacteria, Actinobacteria, 

Proteobacteria, and Chloroflexi) mainly contributed to the degradation of C 

sources from the plant and microbial biomass. Redundancy analysis (RDA) 

and mantel test suggested the abundance of CAZyme encoding genes for 

plant and microbial biomass degradation are significantly correlated with soil 

pH, total P, and available K. Least Squares Path Modeling (PLS-PM) showed 

that management practices indirectly affect the CAZyme encoding genes 

associated with plant and microbial biomass degradation by regulating the 

soil pH and nutrients (total N and P), respectively.
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Discussion: Our study established that M2 and M1 impact dead biomass 

decomposition and C turnover, contributing to decreased C accumulation and 

establishing that the bacterial community plays the main role in C turnover in 

bamboo plantations.

KEYWORDS

CAZyme, plant-derived components, microbial-derived components, forest 
management, carbon sequestration

Introduction

Forest ecosystems are the most important carbon (C) pools 
and sinks in terrestrial ecosystems (Ameray et al., 2021), and store 
approximately two-thirds of the soil organic C (SOC) in terrestrial 
ecosystems (Canadell Josep et al., 2007). The forest soil C pool 
mainly comprises C allocated to the soil by tree roots and C 
contained in dead plant biomass (López-Mondéjar et al., 2020; 
Feng et  al., 2022). Plant residues mainly consist of cellulose, 
hemicelluloses, and lignin, which form a complex and recalcitrant 
matrix (Mansora et al., 2019). Microbial biomass (e.g., bacterial 
and fungal cell walls) represents another important organic C pool 
(Wang et al., 2021; Patoine et al., 2022). The biomass of fungal 
residues mainly contains polysaccharides, which account for 
80–90% of the total cell wall (Baldrian et  al., 2013; Gow and 
Lenardon, 2022). Although bacterial cell wall composition can 
vary substantially (Silhavy et al., 2010), peptidoglycan is typically 
the main component (Egan et al., 2017; Apostolos and Pires, 2022).

Soil microorganisms are an important link between soil C 
input and output (Liang et al., 2017; Bhattacharyya et al., 2022), 
playing a critical role in C balance through dead biomass 
decomposition (López-Mondéjar et al., 2018). Žifčáková et al. 
(2017) suggested that the dead biomass turnover can be traced by 
studying the microbial carbohydrate-active enzymes (CAZymes) 
that mediate their C cycle. Among the CAZymes, glycoside 
hydrolases (GHs) and auxiliary activities (AAs) are associated 
with the decomposition of polysaccharides and lignin, respectively 
(López-Mondéjar et  al., 2018; Lladó et  al., 2019). Cellulases, 
β-glucosidases, and hemicellulases from GH families have been 
reported as the main enzymes degrading plant biomass (Bomble 
et al., 2017), whereas lysozymes and chitinases from GH families 
are linked to dead biomass degradation from microbial 
communities (Žifčáková et al., 2017). Ren et al. (2021) showed 
that the bacterial phyla Actinobacteria, Proteobacteria, and 
Acidobacteria dominated plant and microbial dead biomass 
decomposition through their corresponding CAZyme families. 
Members of Chloroflexi taxa are related to the degradation of 
plant compounds, such as cellulose, starch, and long-chain sugars 
(Li et al., 2020). Although CAZymes have been previously studied 
in forest soils, the mechanisms of C degradation driven by 
microbial communities are yet to be elucidated.

Moso bamboo (Phyllostachys edulis) is a typical representative 
forest resource in China, occupying 4.68 million hectares and 
accounting for approximately 72.96% of all the bamboo forests in 

the forested areas of China (Li and Feng, 2019). This bamboo 
species is an important non-wood forest product in China (Fei, 
2021) due to its rapid growth, strong regeneration ability (Song 
et al., 2016), and C sequestration potential (Yen and Lee, 2011). A 
previous study confirmed that Moso bamboo forests are 
characterized by a higher C sequestration rate (8.13 Mg ha−1 year−1) 
than Chinese fir forests (3.35 Mg ha−1 year−1). Two management 
practices are used in Moso bamboo plantations: intensive 
management (such as fertilizer application, tillage, and removal of 
understory vegetation) and extensive management (including 
selective and regular harvesting of bamboo stems and shoots) 
(Yang et al., 2019). Previous studies have also found a relationship 
between different management approaches and soil C dynamics 
in Moso bamboo plantations (Li et al., 2013; Yang et al., 2019; 
Zhang et al., 2022). Specifically, Li et al. (2013) indicated that long-
term intensive management practice decreases SOC storage and 
alters SOC chemical compositions, such as increased alkyl C and 
carbonyl C contents and decreased O-alkyl C and aromatic C 
contents. In contrast, extensive management can promote the 
accumulation of recalcitrant organic materials while decreasing C 
mineralization rates (Yang et  al., 2019). However, the 
characteristics of the CAZymes in bamboo forests remain unclear.

This study describes an enzymatic toolbox that aids in the 
microbial decomposition of various biomass types. Soil samples 
from three different management practices were collected, and 
metagenomics was used to analyze the enzymatic tools of 
microbial decomposers. Moreover, we hypothesized that there 
were categories of CAZyme families involved in plant- and 
microbial-derived biomass decomposition and that the bacterial 
community contributes more to the dead biomass degradation in 
the Moso bamboo plantations. This study aimed to: (i) elucidate 
the distribution of the microbial CAZyme pool, (ii) characterize 
microbial taxa contribution to CAZyme genes related to the 
degradation of plant- and microbe-derived components, and (iii) 
examine the relationships between environmental parameters and 
specific CAZyme families.

Materials and methods

Experimental site and sample collection

The soil samples and their physiochemical properties used 
in this study were recently published (Zhang et  al., 2022).  
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The study area was Anji County (30°31′–30°14′N, 119°37–
119°15′ E) in Zhejiang Province, China. A previous study 
presented meteorological data for the study area (Yang et al., 
2019). Moso bamboo plantations under three different 
management strategies were selected: unmanaged (M0), 
extensively managed (M1), and intensively managed (M2). The 
M0 bamboo plantation had not been managed for >60 years 
(recoded by the Anji County Forestry Bureau), and had 
gradually developed into a mixed forest; the M1 bamboo 
plantation had been subjected to some management practices 
including selective and regular harvest of bamboo trunks, and 
shoots every 2 years; the M2 practices included selective 
harvesting, understory vegetation removal, and annual 
fertilization (nitrogen [N], 300–500 kg·ha−1; phosphorus [P], 
50–200 kg·ha−1; and potassium [K], 100–250 kg·ha−1) during 
mid-to-late June. More information regarding the Moso 
bamboo plantations can be  found in a study by Yang 
et al. (2019).

Three sites in the study area (3 × 2 km) were chosen for 
investigation in May 2021 based on similarities to the initial site 
conditions found in previous studies (Yang et al., 2019; Zhang 
et al., 2022). At each site, three comparable stands (M0, M1, and 
M2) with similar forest-land characteristics, such as soil type, 
elevation, slope gradient, and other features, were chosen. Three 
20 × 20 m plots were established in each selected bamboo stand for 
sampling. A composite sample within each plot was obtained from 
five different points at depths of 0–20 cm. Fresh soil samples were 
sieved (mesh size of 2 mm) to remove stones, roots, and large 
organic residues. Subsequently, they were divided into two parts: 
one part was stored at −80°C for metagenomics, and the other was 
air-dried to analyze physicochemical properties.

Soil chemical analysis

A glass electrode was used to measure the soil pH at a soil/
water ratio of 1:2.5. SOC was determined using a total organic C 
(TOC) analyzer (Multi N/C 3100; Analytik Jena, Germany). Soil 
total N (TN, the Kjeldahl method), total P (TP, ammonium 
molybdate method), and available K (AK, extracted using 
1 mol·L−1 ammonium acetate acid); were determined according to 
Lu (2000). Detailed information on the soil factors at these 
sampling sites is shown in Supplementary Table S1.

DNA extraction and sequencing

Soil DNA was extracted using the FastDNA SPIN kit (MP 
Biomedical, Santa Anna, CA, United States), according to the 
manufacturer’s instructions. The quality and concentration of the 
DNA extracts were assessed using a NanoDrop  2000. Library 
construction and Illumina NovaSeq  6,000 sequencing were 
conducted at the Shanghai Majorbio Bio-Pharm Technology 
Co., Ltd.

Metagenome sequencing and analysis

Raw reads (about 12  Gb nucleotides for each sample) 
from the metagenome sequencing were processed to obtain 
quality-filtered reads for further analysis. The adaptor 
sequences and low-quality reads were removed using fastp 
version 0.20.0 (Chen et al., 2018) on the online platform of 
Majorbio Cloud Platform1 (Ren et al., 2022). Subsequently, 
contigs were assembled using the MEGAHIT assembler (Li 
et  al., 2015) (parameters: kmer_min = 47, kmer_max = 97, 
step = 10), which uses succinct de Bruijn graphs. Contigs with 
a minimum size of 300 base pairs (bp) were selected for the 
final assembly. The open reading frames (ORFs) were 
identified using MetaGene (Noguchi et  al., 2006), and the 
predicted ORFs over 100 bp in length were translated into 
amino acid sequences using the National Center for 
Biotechnology Information (NCBI) translation table. All 
predicted genes with an identity and coverage ≥0.9 were 
clustered using the CD-HIT program (Fu et  al., 2012). 
SOAPaligner (Li et al., 2008) was utilized to map the reads 
after quality control to non-redundant gene sets with 95% 
identity, and to calculate gene abundance. Representative 
sequences of non-redundant gene catalogs were annotated 
based on the NCBI NR database using the Basic Local 
Alignment Search Tool for Proteins (BLASTP), as 
implemented in DIAMOND v0.9.19, with an e-value cutoff of 
1e−5 using Diamond (Buchfink et al., 2015) for taxonomic 
annotations. Carbohydrate-active enzyme annotation was 
conducted using hmmscan2 against the CAZyme database3 
with an e-value cut-off of 1e−5.

Statistical analyses

The abundance values in metagenomes normalized by 
transcripts per kilobase per million mapped reads (TPM). 
Non-metric multidimensional scaling (NMDS), permutational 
multivariate analysis of variance (PERMANOVA) and redundancy 
analysis (RDA) were performed in the ‘Vegan’ (Dixon, 2003) 
package based on Bray-Curtis distance. The circos plots were 
generated using the ‘circlize’ package (Gu et  al., 2014). The R 
package‘ggcor’was used for Spearman’s correlation test and the 
Mantel test (Huang et al., 2020). Least Squares Path Modeling 
(PLS-PM) were performed with the R package ‘plspm’ (Sanchez 
et al., 2017). Contribution analysis was conducted on the Majorbio 
Cloud Platform4 (Ren et al., 2022). The significance of differences 
among soil samples was tested by One-way ANOVA followed by 
least significant difference (LSD) post hoc test.

1 https://cloud.majorbio.com/

2 http://hmmer.janelia.org/search/hmmscan

3 http://www.cazy.org/

4 http://www.majorbio.com
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Results

Changes in glycoside hydrolases and 
auxiliary enzyme families

In total, 7,759,044 CAZymes were identified from 13,509,440 
predicted proteins in the metagenome. Of these, > 98% was 
assigned to bacteria (Supplementary Table S2). Moreover, of the 
total CAZyme pools, GHs and AAs represented average values of 
29.38 and 10.69%, respectively (Supplementary Table S3). Most 
GHs were mainly attributed to Proteobacteria (56.95%), 
Acidobacteria (19.72%), Actinobacteria (12.30%), Chloroflexi 
(3.90%), and Verrucomicrobia (1.42%; Figure 1A), whereas AAs 
were largely attributed to Proteobacteria (36.48%), Acidobacteria 
(29.75%), Actinobacteria (13.84%), Chloroflexi (6.50%), 
Verrucomicrobia (3.71%), Candidatus Rokubacteria (1.69%), and 
Gemmatimonadetes (1.55%; Figure 1B). Compared to M0 and 
M1, M2 significantly increased GHs abundance, whereas there 
was no significant difference between M1 and M0 
(Supplementary Table S3). In addition, no differences in AAs 
among the three groups were identified (Supplementary Table S3). 

The NMDS further revealed significant differences in GHs 
(PERMANOVA: R2 = 0.859, p = 0.005) and AA (PERMANOVA: 
R2 = 0.826, p = 0.01) families among the different management 
approaches (Figures 1C,D).

Changes in specific CAZyme families 
involved in the degradation of plant, 
fungal, and bacterial biomass

The genes were assigned to the enzymatic activities involved 
in the degradation of plant- and microbial- compounds according 
to Ren et  al. (2021). For plant biomass (Figure  2; 
Supplementary Table S4), M2 significantly increased the 
abundance of CAZyme families involved in plant-derived cellulose 
than M0 (p  < 0.05), whereas it significantly decreased in M1 
(p < 0.05); Among the three groups, no significant differences 
(p > 0.05) were observed in the CAZyme families involved in 
plant-derived hemicellulose and lignin. Additionally, M2 exhibited 
a significantly (p < 0.05) higher abundance of CAZyme families 
involved in fungi-derived chitin within fungal biomass than M0 

A B

C D

FIGURE 1

The abundance of microbial glycoside hydrolases (GHs) and auxiliary activities (AAs) in the bamboo plantations under different management 
practices. (A,B) contribution of microbial phyla to the GHs and AAs families; (C,D) Non-metric multidimensional scaling (NMDS) of the GH and AA 
families. M0, M1, and M2 indicates undisturbed, extensively managed, and intensively managed bamboo plantations, respectively.
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and M1 (Figure  2; Supplementary Table S4). No significant 
difference (p > 0.05) was observed between M0 and M1. Moreover, 
M1 exhibited a significantly (p < 0.05) lower abundance of 
CAZyme families involved in fungi-derived glucans than M0 and 
M2 (Figure 2; Supplementary Table S4). There was no significant 
difference (p > 0.05) between M0 and M2 (Figure  2; 
Supplementary Table S4). Furthermore, M2 and M1 significantly 
increased (p < 0.05) the abundance of CAZyme families involved 
in bacteria-derived peptidoglycan than M0 (Figure  2; 
Supplementary Table S4).

The CAZyme families associated with the degradation of 
plant- and microbe-derived components were mainly assigned to 
four bacterial phyla: Acidobacteria, Actinobacteria, 
Proteobacteria, and Chloroflexi (Figure  3). In particular, 
Actinobacteria, Chloroflexi, and Proteobacteria exhibited 
significant differences among the three groups 
(Supplementary Table S5). The analysis of microbial phyla 
contribution to plant-derived biomass decomposition revealed 
that Actinobacteria was significantly increased in M2 than in M0 
and significantly decreased in M1 (Supplementary Table S5). 
Chloroflexi exhibited a lower number of transcripts per million 
(TPM) in M1 and M2 than in M0, whereas Proteobacteria 

exhibited a significant difference among the three groups (plant-
derived cellulose, M1 > M2 ≈ M0; plant-derived hemicellulose, 
M2 > M0; plant-derived lignin, M2 ≈ M1 > M0) 
(Supplementary Table S5). The three phyla were identified 
according to the contribution of microbial phyla to fungi-derived 
biomass decomposition in the following order: fungi-derived 
chitin (Actinobacteria, M2 > M0 > M1; Chloroflexi, M0 ≈ M1 > M2; 
and Proteobacteria, M2 > M0 ≈ M1) and fungi-derived glucans 
(Actinobacteria, M2 ≈ M0 > M1; Chloroflexi, M0 > M1 > M2; and 
Proteobacteria, M2 ≈ M1 ≈ M0) (Supplementary Table S5). 
Regarding the contribution of microbial phyla to bacteria-derived 
peptidoglycan decomposition, Actinobacteria was significantly 
higher in M2 than in M0 and M1, and Chloroflexi (M0 > M1 > M2) 
and Proteobacteria (M1 > M2 > M0) exhibited significant 
differences among the three groups (Supplementary Table S5).

Management practices altered specific families related to the 
degradation of plant- and microbe-derived components 
(Supplementary Table S6). For the plant-derived components, 
GH3 (β-glucosidase, 797.31 TMP, M2 > M0 > M1), GH74 
(xyloglucanase, 1910.99 TMP, M1 > M2 ≈ M0), and AA3 (oxidase, 
1390.84 TMP, M2 ≈ M1 ≈ M0) were the most abundant families 
involved in plant-derived cellulose, hemicellulose, and lignin 

A B C

D E F

FIGURE 2

The abundance of selected GHs and AAs related to the degradation of the plant- and microbial- derived biomass in the bamboo plantations under 
different management practices. (A–C) plant-derived biomass decomposotion; (D) bacteria-derived biomass decomposition; (E,F) fungi-derived 
biomass decomposition.
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decomposition, respectively (Supplementary Table S6). For the 
microbe-derived components, GH18 (chitinase, 210.26 TMP, 
M2 > M1), GH55 (exo-β-1, 3-glucanase/endo-1, 3-β-glucanase, 
190.05 TMP, M0 ≈ M2 > M1), and GH23 (lysozyme, 840.24 TMP, 
M0 ≈ M1 ≈ M2) were the most abundant families involved in 
fungi-derived chitin and glucans, and bacteria-derived 
peptidoglycan decomposition, respectively 
(Supplementary Table S6).

Relationship between the CAZymes 
involved in the degradation of dead 
biomass and soil properties

RDA showed that the first two RDA axes accounted for 83.70 
and 79.66%, respectively, of the total variation of CAZyme families 
related to plant and microbial biomass degradation (Figure 4). Soil 
pH, TOC, TN, TP, AK significantly affected the CAZyme families 
associated with plant and microbial biomass degradation 
(Figure 4). Furthermore, the Mantel test revealed that soil pH, TP, 
and AK were significantly correlated with the CAZyme families 
involved in the decomposition of plant and microbial biomass; soil 
TOC and TN were also significantly correlated with CAZyme 
families involved in the decomposition of microbial biomass 
(Table 1).

PLS-PM was implemented to assess the direct and indirect 
effects of management practices and soil properties on the 
CAZyme families (Figure 5). PLS-PM with a Goodness-of-Fit 
(GoF) index of 0.833 explained 82.2 and 73.5% of the variation for 
CAZyme families in plant and microbial biomass decomposition, 
respectively. The PLS-PM analysis indicated that the management 

practices had an indirect positive effect on the plant and microbial 
biomass degradation by changing soil nutrients (TN and TP) 
(path coefficient = −0.881) and pH (path coefficient = −0.993), 
respectively. Management practices also indirectly affected the soil 
nutrients (TN and TP) via altering soil TOC (path 
coefficient = −8.129).

Discussion

Effects of management practices on 
microbial CAZyme genes in the bamboo 
plantations

Our findings suggest that soil microbes contain numerous 
CAZymes which are involved in plant and microbial biomass 
degradation, and facilitates C utilization in bamboo plantations. 
This result supports previous findings on soil microbes as the 
primary consumers of simple and recalcitrant substrates (Kramer 
et  al., 2016; López-Mondéjar et  al., 2018). Furthermore, the 
number of CAZymes associated with plant-derived component 
degradation was greater than that associated with microbe-
derived components (Figure 2). This indicates that dead plant 
biomass contributes more to the soil C pool in bamboo 
plantations. This finding is consistent with previous findings that 
plant biomass is rich in C and can enrich the soil through above- 
and underground litter, which is the primary source of soil organic 
matter (SOM) (Castellano et al., 2015). Our findings also showed 
that the forest management practices influenced soil microbial 
CAZyme families involved in plant-derived cellulose but not 
plant-derived hemicellulose and lignin. These results suggest that 

A B C

D E F

FIGURE 3

Contribution of the microbial phyla to microbial CAZyme genes for the dead biomass decomposing in the bamboo plantations. (A–C) plant-
derived biomass decomposotion; (D,E) fungi-derived biomass decomposition; (E,F) bacteria-derived biomass decomposition.
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plant-derived cellulose is a key factor determining SOC 
accumulation in bamboo plantations. Moreover, microbial 
CAZyme families involved in plant-derived cellulose were 
significantly increased in M2 than in M0 but decreased in M1, 
indicating that more disturbance promotes the degradation of 
plant-derived cellulose. A significant correlation was discovered 
between soil pH and AK in CAZyme families associated with 
plant-derived cellulose degradation. Therefore, the soil pH and 
AK variations partially contributed to the changes in the CAZyme 
families associated with plant-derived cellulose degradation.

Our results revealed that the abundance of genes involved in 
the decomposition of bacteria-derived biomass was greater than 
that of fungi-derived biomass. This indicates that bacteria-derived 
biomass degradation for C cycling is more important than fungi-
derived biomass. Our findings are consistent with Gunina et al. 
(2017), who reported that dead bacterial biomass had a higher 
turnover rate than fungal biomass. Egan et  al. (2017) also 
demonstrated that bacterial-derived peptidoglycan is the main 
and universal component of the cell wall that changes rapidly. This 
study found that M2 and M1 significantly increased the abundance 
of soil microbial CAZyme families involved in bacterial-derived 

peptidoglycan, indicating that forest management can increase the 
decomposition rate of bacterial-derived peptidoglycan. Ren et al. 
(2021) suggested that the soil environment and substrates 
influence the decomposition of microbe-derived components in 
forest soils. In this study, CAZyme families involved in bacteria-
derived peptidoglycan degradation were negatively correlated 
with soil TOC, TN, and TP. Thus, the changes in soil properties 
(especially TOC, TN, and TP) contributed to the variations in the 
CAZyme families involved in bacteria-derived 
peptidoglycan degradation.

M1 exhibited a lower abundance in the CAZyme families 
involved in fungi-derived biomass than M2. According to 
Clemmensen et  al. (2013), some fungal biomass fractions are 
highly recalcitrant and are likely a major source of recalcitrant 
SOM. Combined with the results for the CAZyme families 
involved in plant-derived cellulose, M1 can alleviate the 
degradation of SOC relative to M2. Similar to the results of Yang 
et al. (2019), who found that the rate of C mineralization was 
highest in M2 and lowest in M1, indicating M0 and M1 had much 
higher potential in terms of soil C sequestration than M2.

Microbial CAZymes for metabolic activity 
in bamboo plantations under different 
management practices

This study found that bacterial communities accounted for 
>98% of the microbial community in the bamboo soils studied. 
This result suggests that the bacterial community plays important 
roles in the degradation of dead plants and microbial biomass, 
partly because bacteria produce enzymes and participate in the 
degradation of cellulose, hemicellulose, and chitin (Eichorst and 
Kuske, 2012; López-Mondéjar et  al., 2016). The microbial 
CAZyme families associated with the degradation of dead plants 
and microbial biomass were mainly assigned to four bacterial 

A B

FIGURE 4

Redundancy analysis of soil properties and microbial CAZyme genes for the plant- (A) and microbial-derived (B) biomass decomposing in the 
bamboo plantations under different management practices.

TABLE 1 Spearman’s correlation analysis and Mantel tests for 
microbial CAZyme families involved in the decomposition of the 
plant- and microbial-derived components against soil properties 
(9,999 permutations).

Plant-derived 
components

Microbial-derived 
components

r p-value r p-value

pH 0.552 0.015 0.78 0.0002

TOC 0.281 0.0583 0.366 0.0329

TN 0.237 0.0843 0.331 0.0384

TP 0.654 0.0081 0.477 0.0188

AK 0.876 0.0002 0.748 0.0009
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phyla: Acidobacteria, Actinobacteria, Proteobacteria, and 
Chloroflexi. Members of the Actinobacteria produce extracellular 
enzymes and play a role in the degradation of plant polysaccharides 
and phenolic compounds (Mccarthy, 1987; Warren, 1996). 
Notably, the analysis of the contribution of microbial phyla to 
plant-derived cellulose degradation revealed that these four phyla 
were significantly altered. Actinobacteria and some Acidobacteria 
are oligotrophic bacteria (Kielak et  al., 2016; Liu et  al., 2018), 
affecting the decomposition of organic matter under limited 
nutrient conditions (Fierer et  al., 2007; Banerjee et  al., 2016). 
Therefore, the increased Actinobacteria and Acidobacteria 
indicated low nutrient levels in M2. Members of Proteobacteria 
were related to N fixation, organic matter degradation, and plant 
growth improvement (Yarwood et al., 2009; Delmont et al., 2018). 
Several studies reported that Proteobacteria are rich in higher pH 
soils (Christian et al., 2009; Chu et al., 2010). The increased pH 
can clarify the higher abundance of Proteobacteria in M1 than in 
M0 and M2. The phylum Chloroflexi plays a role in cycling C and 

N (Hug et al., 2013). Thus, the increased abundance of Chloroflexi 
was related to the higher TOC and TN contents in M0 than in 
M1 and M2.

Factors driving the CAZyme families 
involved in plant and microbial biomass 
degradation

Several studies have found that soil properties are one of the 
most important factors influencing soil microbial diversity and 
function (Zhang et al., 2021; Wang et al., 2022). According to 
Cardenas et al. (2015), soil properties can exert selective pressure 
on soil microorganisms, shaping changes in CAZyme coding 
genes. In our study, RDA and mantel tests showed that soil pH, TP, 
and AK content significantly affected the abundance of CAZyme 
encoding genes. Results of PLS-PM suggested that management 
practices altered the CAZyme families during the decomposition 

FIGURE 5

PLS-PM shows the effects of management practices on the microbial CAZyme genes for the plant- and microbial-derived biomass decomposing.
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of plant and microbial biomass by changing the soil nutrients (TN 
and TP) and pH, respectively. These results indicated soil pH and 
TP were the major factors shaping the specific CAZyme families. 
Studies have shown that pH is the vital factor shaping soil 
microbial communities (Qi et  al., 2018; Lopes et  al., 2021). 
Conversely, soil pH indirectly affects microbial communities due 
to its close relationship with other soil factors, such as fertility and 
nutrient availability (Christian et al., 2009; Penn and Camberato, 
2019). Phosphorus is an important macronutrient for all biota on 
Earth, and changes therein affect the microbial community 
(Bergkemper et al., 2016; Samaddar et al., 2019).

Conclusion

This study elucidated the trends of microbial CAZymes in 
Moso bamboo stands. The abundance of CAZymes targeting dead 
plant biomass was higher than that of dead microbial biomass, 
indicating that dead plant biomass was the major source of the soil 
C pool in the bamboo plantations. Management practices alter the 
abundance of microbial CAZymes encoding plant- and microbial-
derived biomass degradation, further affecting the C accumulation. 
The dominant microorganisms for microbial C degradation were 
bacterial communities, suggesting that the bacterial community 
contributes more to the degradation of microbial C in the bamboo 
soil and that Acidobacteria, Actinobacteria, Proteobacteria, and 
Chloroflexi, in particular, are essential for microbial C 
decomposition. Overall, our findings expand the understanding of 
the relationship between microbial CAZyme families and C 
decomposition, establishing the importance of the bacterial 
community for C cycling in bamboo plantations.
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