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Salinity is among the most significant abiotic stresses that negatively affects 

plant growth and agricultural productivity worldwide. One ecofriendly 

tool for broadly improving plant tolerance to salt stress is the use of bio-

inoculum with plant growth-promoting rhizobacteria (PGPR). In this study, a 

bacterium strain CNUC9, which was isolated from maize rhizosphere, showed 

several plant growth-promoting characteristics including the production 

of 1-aminocyclopropane-1-carboxylate deaminase, indole acetic acid, 

siderophore, and phosphate solubilization. Based on 16S rRNA and recA gene 

sequence analysis, we identified strain CNUC9 as Burkholderia pyrrocinia. Out 

of bacterial determinants to elicit plant physiological changes, we investigated 

the effects of volatile organic compounds (VOCs) produced by B. pyrrocinia 

CNUC9 on growth promotion and salinity tolerance in Arabidopsis thaliana. 

Higher germination and survival rates were observed after CNUC9 VOCs 

exposure under 100 mM NaCl stress. CNUC9 VOCs altered the root system 

architecture and total leaf area of A. thaliana compared to the control. A. 

thaliana exposed to VOCs induced salt tolerance by increasing its total soluble 

sugar and chlorophyll content. In addition, lower levels of reactive oxygen 

species, proline, and malondialdehyde were detected in CNUC9 VOCs-

treated A. thaliana seedlings under stress conditions, indicating that VOCs 

emitted by CNUC9 protected the plant from oxidative damage induced by salt 

stress. VOC profiles were obtained through solid-phase microextraction and 

analyzed by gas chromatography coupled with mass spectrometry. Dimethyl 

disulfide (DMDS), methyl thioacetate, and 2-undecanone were identified as 

products of CNUC9. Our results indicate that optimal concentrations of DMDS 

and 2-undecanone promoted growth in A. thaliana seedlings. Our findings 

provide greater insight into the salt stress alleviation of VOCs produced by B. 

pyrrocinia CNUC9, as well as potential sustainable agriculture applications.
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Introduction

Soil salinity is one of the most significant environmental 
constraints restricting seed germination, plant growth, and 
productivity worldwide, posing a serious threat to global food 
security (Mukhopadhyay et al., 2021). Globally, approximately 
20% of agricultural areas and 33% of irrigated lands are negatively 
affected by soil salinity, and the salinization of irrigated land is 
predicted to increase by 50% by 2050 (Shrivastava and Kumar, 
2015). Salinity adversely affects plant physiology, biochemistry, 
and metabolism that induces cellular osmotic imbalance, inhibited 
root growth, and alters root architecture, impairing the ability of 
plants to acquire water and nutrients (Nawaz et al., 2020). High 
salinity also induces the accumulation of reactive oxygen species 
(ROS), which are detrimental to cell viability, photosynthetic 
pigments, membrane lipid integrity, and phytohormone imbalance 
(Cappellari et al., 2020; Ali et al., 2022). Various strategies have 
been developed to mitigate the effects of soil salinity on crops, 
including the reclamation of saline soil and breeding salt-tolerant 
plant varieties through genetic engineering (Nawaz et al., 2020). 
However, these methods have not been widely accepted due to 
time and resource costs, as well as potential environmental risks 
(Hu et al., 2012). Therefore, the application of microorganisms 
that are beneficial to plants [e.g., plant growth-promoting 
rhizobacteria (PGPR)] has gained attention as an alternative 
sustainable agricultural approach to alleviating salt stress in crops.

PGPR are plant root-associated bacteria that improve plant 
growth and increase tolerance to various abiotic and biotic stresses 
(Ha Tran et al., 2021). The main mechanisms of growth and yield 
improvement are the production of growth regulators such as 
indole acetic acid (IAA), gibberellic acid, and cytokinins; processes 
increasing nutrient availability such as nitrogen fixation, 
phosphorous solubilization, and siderophore production; 
synthesis of 1-amino cyclopropane-1-carboxylic acid (ACC) 
deaminase; and secretion of exopolysaccharides (EPS) and 
antimicrobial secondary metabolites (Bhattacharyya and Jha, 
2012; Gouda et al., 2018; Basu et al., 2021). In addition, volatile 
organic compounds (VOCs) produced by PGPR have been shown 
to enhance plant biomass, disease resistance, and abiotic stress 
tolerance (Farag et al., 2013; Fincheira and Quiroz, 2018; Fincheira 
et al., 2021).

VOCs emitted by plant-associated microorganisms are 
low-molecular-weight (<300 g mol−1) lipophilic compounds with 
a low boiling point and high vapor pressure. These characteristics 
allow them to act as signals via short-and long-distance dispersal 
in the rhizosphere, allowing indirect interactions between plants 
and microorganisms (Cordovez et al., 2018). Since the production 
of VOCs by rhizobacteria was first reported to trigger growth 
promotion in A. thaliana (Ryu et al., 2003), several studies have 
demonstrated that VOCs released from rhizobacteria such as 
Bacillus, Burkholderia, Enterobacter, Pseudomonas, Streptomyces, 
and Stenotrophomonas species can stimulate plant growth and 
induced systemic tolerance (IST) against abiotic stresses (Yang 
et al., 2009; Fincheira and Quiroz, 2018; Veselova et al., 2019; 

Cellini et al., 2021). Some studies reported that bacterial VOCs 
promote plant growth by influencing root architecture and 
growth, resulting in increased surface area for nutrient and water 
acquisition as well as other rhizosphere effects (Gutiérrez-Luna 
et al., 2010; Grover et al., 2021). The number of chloroplasts and 
chlorophyll content increase following exposure to Bacillus subtilis 
GB03 VOCs to A. thaliana, resulting in higher quantum efficiency, 
complex II photosynthetic efficiency, and effective quantum yield 
(Zhang et  al., 2008). VOCs also regulate growth hormone 
redistribution, induce key defense mechanisms, and increase 
antioxidant enzyme accumulation (Kwon et al., 2010).

The Burkholderia cepacia complex (Bcc) is the primary cluster 
in the Burkholderia genus, and is found in diverse environmental 
niches (Meier-Kolthoff et al., 2022). Some Bcc species have been 
used as agricultural biocontrol agents or in toxin bioremediation 
(LiPuma and Mahenthiralingam, 1999). Bibi et al. (2022) reported 
that the application of B. cenocepacia as a bio-organic fertilizer 
increased the maize germination index, promptness index, and 
seedling vigor index by 32, 34, and 21%, respectively, compared to 
controls. B. phytofirmans strain PsJN enhances A. thaliana growth 
and salt tolerance throughout its life cycle, modifying ion 
transporters necessary for salt-stress tolerance (Pinedo et  al., 
2015). Sarkar et al. (2018) reported that Burkholderia sp. MTCC 
12259 was tolerant to treatment with 1.2 M NaCl and produced 
IAA, EPS, and proline essential for rice seedling growth under salt 
stress. Subsequent studies have mainly focused on the antagonistic 
effects of B. pyrrocinia (Vandamme et al., 2002; Ren et al., 2011; de 
los Santos-Villalobos et al., 2012; Depoorter et al., 2016). However, 
the mechanisms of its VOCs-mediated growth promotion and IST 
in plants against abiotic stresses, particularly salt stress are 
currently limited.

In this study, we screened 24 bacterial isolates from maize 
rhizosphere, and selected one isolate that identified as B. pyrrocinia 
(strain CNUC9) has various plant growth promoting traits. 
Considering the potential role of bacterial VOCs in growth 
promotion and plant stress tolerance, we investigated the role of 
CNUC9 VOCs on plant biomass (vigor and morphological 
characteristics of leaf and root), and the mitigation of salt stress in 
A. thaliana. In addition, we evaluated stress-related biochemical 
changes in cellular solutes and ROS generation in A. thaliana 
under salt stress.

Materials and methods

Sample collection and rhizobacterium 
isolation

Rhizosphere soil samples were collected from roots of maize 
(Zea mays L.) grown in Gongju, South Korea (36°21′34.6”N 
127°09′48.4″E), in 2020. Roots and adhered soil were manually 
separated from the surrounding bulk soil and collected into sterile 
polyethylene bags. To isolate rhizobacteria, roots were gently 
washed with tap water, and 5 g root tips were transferred to 50 ml 
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0.8% NaCl (w/v) solution. Bacteria were removed from root tips 
by vortexing and sonication three times each for 30 s. The 
suspension was serially diluted and each dilution was separately 
spread on nutrient agar (NA) plates. After 3 days of incubation at 
28°C, bacterial colonies with different phenotypes were purified. 
Purified bacterial isolates were stored in 40% glycerol at −80°C 
and used for further study.

Screening of bacterial isolates for plant 
growth-promoting traits

To screen for phosphate solubilization, 10 μl each bacterial 
isolate was inoculated onto Pikovaskya’s agar medium containing 
tri-calcium phosphate as the mineral P (Pikovskaya, 1948) and 
incubated at 28°C for 4 days. Halo zone formation by the colonies 
was considered to indicate phosphate-solubilizing capacity. IAA 
production by bacterial strains was estimated in LB broth 
supplemented with L-tryptophan (100 mg/l) using the Salkowski 
reagent, which consisted of 0.5 M of FeCl3 in 70% HClO4 (Bric 
et  al., 1991). The IAA concentration was determined from a 
standard curve of purified IAA (Daejung Chemicals and Metals 
Co. Ltd., Siheung, Korea). To screen for siderophore production, 
10 μl each bacterial isolate was inoculated onto Chrome Azurol 
Sulphonate over-laid onto NA medium (Alexander and Zuberer, 
1991). A color change observed on the overlaid medium after 
3 days was considered to indicate siderophore production. 
Proteolytic activity was determined by streaking isolates on skim 
milk agar, and the formation of clear zones surrounding the 
colonies was considered to indicate casein hydrolyzation and the 
formation of soluble nitrogenous compounds. ACC deaminase 
production was screened by culturing bacteria in Dwarkin and 
Foster (DF) medium using ACC (Thermo Fisher Scientific, 
Waltham, MA, United  States) as the sole nitrogen source 
(Dworkin and Foster, 1958). Quantification of ACC deaminase 
activity was performed spectrophotometrically by measuring the 
production of α-ketobutyrate at 540 nm by comparing it with the 
standard curve of different concentrations of purified 
α-ketobutyrate (Sigma, United States; Penrose and Glick, 2003).

Molecular identification of rhizobacteria

For taxonomical identification of the bacterial isolates, 16S 
rRNA and recA genes were amplified and sequenced using the 
primers 27 F and 1492 R (Pitcher et al., 1989), and BCR1 and 
BCR2 (Mahenthiralingam et  al., 2000), respectively. Multiple 
sequence alignments were generated with the 16S rRNA and recA 
sequences of strain CNUC9, and available sequences of related 
species were downloaded from the National Center for 
Biotechnology Information (NCBI) databank. A phylogenetic 
tree was constructed using the MEGA v7.0 software (Kumar 
et al., 2018) based on maximum likelihood (ML) analysis. The 
best-fit model of molecular evolution with 1,000 bootstrap 

replicates was computed, and bootstrap values >80% were 
considered highly supported.

Screening of water-and salt-stress 
tolerant strains

To screen drought stress-tolerant bacteria, isolates (20 μl) 
were grown in 20 ml LB broth containing 15 and 30% PEG 6000 
at 28°C with rapid shaking. We  also screened for salinity 
tolerance by growing bacterial strains in 20 ml LB broth with 
different salt concentrations (0, 400, 600, 800, or 1,000 mM 
NaCl). Samples were collected periodically and optical density 
at 620 nm (OD620) was measured using a spectrophotometer. A 
bacterial OD620 ≥ 0.1 was considered to indicate tolerance. 
Distilled water (DW)-inoculated LB medium was used as 
a control.

Plant materials and growth conditions

Arabidopsis thaliana Col-0 seeds were surface-sterilized with 
70% ethyl alcohol for 2 min and 1% sodium hypochlorite solution 
for 1 min, and then rinsed five times with sterile water. Five 
A. thaliana seeds were sown in one half of a two-section I-plate 
containing 1/2-strength Murashige and Skoog medium (1/2 MS) 
with 1% agar, and a 20 μl bacterial aliquot was spotted onto the 
other half of the I-plate containing NA medium. Four treatment 
combinations were prepared as follows: DW inoculation/0 mM 
NaCl, CNUC9 inoculation/0 mM NaCl, DW inoculation/100 mM 
NaCl, and CNUC9 inoculation/100 mM NaCl. Plates were sealed 
with parafilm and placed vertically in a growth chamber at 22°C 
with a 16 h/8 h light/dark photoperiod. After 10 days, plant growth 
parameters were recorded.

Seedling physiological traits

To determine seed germination and seedling survival rates, 
sterilized A. thaliana seeds were sown as described above. A total 
of 200 seeds for each treatment were used, each with three 
replicates. Root lengths >0.5 cm were considered to indicate 
survival. The germination and survival rates of different treatments 
were counted 10 days after sowing.

To analyze root architecture and leaf proliferation, A. thaliana 
seedlings in Petri dishes were directly scanned using a scanner 
(Perfection V850 Pro, Epson, Nagano, Japan), and scanned images 
were analyzed using the WinRHIZO image analysis system for 
A. thaliana (Regent Instruments, Inc., Quebec City, QC, Canada). 
Link and color analyses were used to detect total root length, root 
surface area, lateral root number, and leaf area. Microscopic 
differences in root architectures under salt stress among 
treatments were observed by microscopy (BX41, Olympus, 
Tokyo, Japan).
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Plant biochemical analyses

Chlorophyll a (Chl a) and b (Chl b) and total chlorophyll 
content were determined by spectrophotometric analysis as 
described previously (Inskeep and Bloom, 1985). Briefly, 0.1 g 
seedling tissues were ground with liquid nitrogen, then 
transferred to a tube containing 1 ml 80% acetone. The 
mixtures were vortexed to homogenize the leaf tissues and 
centrifuged at 13,000 ×g for 10 min at 4°C. The supernatant 
was measured at OD of 663.6 and 646.6 nm. Chl a, Chl b, and 
total chlorophyll concentrations were calculated as follows 
(Porra, 2002):

[Chl a] = 13.71 × A663.6–2.85 × A646.6,
[Chl b] = 22.39 × A646.6–5.42 × A663.6,
[Total chlorophyll] = [Chl a] + [Chl b],
where A is absorbance at the indicated wavelength.

To determine the total sugar content, seedlings were ground 
using liquid nitrogen, and 0.1 g powder was homogenized with 
10 ml sterile distilled water. Samples were vortexed and boiled 
for 1 h. To remove chlorophyll, 0.1 g activated charcoal was 
added and the mixture was boiled again for 30 min. 
Homogenized samples were centrifuged at 13,000 ×g for 10 min. 
Then, 200 μl supernatant was transferred to a new tube and 1 ml 
0.2% anthrone was added. After boiling again for 30 min, the 
samples were transferred in an ice bath to stop the reaction. 
We  recorded OD620 and standard curves were drawn for 
different sucrose concentrations as described previously (Ikram 
et al., 2018).

The proline content of A. thaliana seedlings was quantified as 
described previously (Bates et  al., 1973). Briefly, 0.1 g ground 
tissues were homogenized with 1 ml 3% aqueous sulfosalicylic 
acid by vortexing, and then the samples were centrifuged at 
13,000 ×g for 10 min. The 200 μl supernatant was mixed with 
500 μl glacial acetic acid and 500 μl acidic ninhydrin. After boiling 
for 30 min, samples were transferred to an ice bath to stop the 
reaction. OD520 was recorded, and different concentrations of 
L-proline were used as standards.

Lipid peroxidation in A. thaliana seedlings was estimated to 
be malondialdehyde (MDA) content by calculating the amount 
of MDA extracted from 0.5% (w/v) thiobarbituric acid and 1% 
(w/v) trichloroacetic acid as described previously (Du and 
Bramlage, 1992). The OD of the supernatant was measured at 
450, 532, and 600 nm by spectrophotometry, and MDA 
concentrations (μmol/g) were calculated as follows: [MDA] = 6.45 
(A532–A600)–0.56 A450, where A is absorbance at the 
indicated wavelength.

Hydrogen peroxide (H2O2) content was detected by 
3,3′-diaminobenzidine (DAB) staining as described previously 
(Asselbergh et al., 2007), and quantified as described previously 
(Mukherjee and Choudhuri, 1983). Different concentrations of 
H2O2 obtained from Sigma-Aldrich (St. Louis, MO, United States) 
were used as standards.

VOC analysis by solid-phase 
microextraction with gas 
chromatography–mass spectrometry 
(SPME–GC–MS)

Bacterial VOCs were collected using a solid-phase 
microextraction (SPME) fiber with 50/30 μm divinyl benzene/
carboxen/polydimethylsiloxane (Supelco, Bellefonte, PA, 
United States) and an autosampler (CombiPAL, CTC Analytics, 
Zwingen, Switzerland). For VOCs sample preparation, a bacterial 
aliquot (20 μl) was inoculated into NA medium and the plates 
were incubated under the same conditions described for the plant 
growth assay. Fibers were introduced and held for 15 min in the 
bottle’s headspace at 50°C. For GC–MS analysis, we employed an 
Agilent 7890A series gas chromatograph (Agilent Technologies, 
Santa Clara, CA, United  States) equipped with an HP-5MS 
capillary column (30 m length, 0.25 mm inner diameter, 0.25 μm 
film thickness) coupled with a Triple-Axis Detector (Agilent 
Technologies). The equipment was operated under the following 
conditions: automatic sample desorption with the injector port at 
250°C, oven programmed with an initial temperature of 40°C to 
be held for 3 min, and then increased at a rate of 10°C min−1 to 
220°C. Helium was used as the carrier gas (flow rate: 1.0 ml/min). 
Electron impact ionization at 200°C was conducted to analyze 
mass fragments in a scan range of 40–500 m/z. GC–MS analysis 
was performed independently for bacteria grown alone and for 
the culture media. Data analysis and compound identification 
were performed using the National Institute of Standards and 
Technology Mass Spectral Database (NIST 11.L).

Plant growth promotion assay using 
selected synthetic VOCs

To determine the effect of each identified VOC, synthetic 
dimethyl disulfide (Sigma-Aldrich), methyl thioacetate (TCI, 
Tokyo, Japan), and 2-undecanone (Sigma-Aldrich) were dissolved 
in dimethyl sulfoxide (DMSO). Different concentrations of each 
compound (0.2 μM, 2 μM, and 20 μM) and controls (50 μl DMSO 
and DW) were applied to a sterile paper disk (diameter: 1.85 mm), 
and placed on one half of an I-plate. A. thaliana seeds were sown 
on the opposite side of the I-plate containing 1/2 MS medium. 
The sealed plates were incubated as described above. After 
10 days, the effects of individual synthetic compounds on plant 
growth were recorded.

Data analysis

All data presented in bar graphs are means ± standard errors 
of the mean (SEMs). Means were compared using analysis of 
variance (ANOVA), followed by Tukey’s post hoc test for multiple 
comparisons. All tests were performed using the GraphPad Prism 
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9 (GraphPad Software, San Diego, CA, United  States). Group 
differences were considered significant at p < 0.05. Principal 
component analysis (PCA) graphs were created using the R 
software (R Core Team, Vienna, Austria) with the FactoMineR and 
factoextra packages. Heatmaps were created using the Bioinfo 
Intelligent Cloud online tool (Chen et al., 2022).

Results

Identification and growth-promoting 
characteristics of isolate CNUC9

To discover bacteria that promote plant growth and salt 
tolerance, we isolated bacteria from the maize rhizosphere. Total 
of 24 isolates out of 139 isolates were selected according to their 
morphological characteristics and examined for plant growth-
promoting traits. Among these bacteria, isolate CNUC9 showed 
the highest ACC deaminase production (292.5 nM). This isolate 
also produced IAA (9.8 μg/ml) and siderophore and exhibited 
substrate solubilization of casein and tricalcium phosphate 
(Supplementary Figure S1). These results suggest that CNUC9 has 
potential as a PGPR, providing nutrients to plants. CNUC9 also 
showed tolerance of up to 400 mM NaCl salt stress and 30% 
PEG6000 osmotic stress in LB medium (Figures 1A,B), indicating 
that it may perform efficiently in saline or drought environments.

Based on a BLASTN search of the 16S rRNA gene sequence, 
CNUC9 shared 100% homology with Bcc, including B. cepacia, 
B. ambifaria, and B. pyrrocinia. To further identify this strain, 
we  performed recA gene sequence analysis. BLAST analysis 
indicated that the recA gene sequences of CNUC9 shared 100% 
identity with B. pyrrocinia strain JK-SH007 (accession no. 
CP094459). In a phylogenetic tree, CNUC9 clustered within the 
Bcc group and with its nearest neighbor as B. pyrrocinia A12 
(JQ658434) and B. pyrrocinia JK-SH007, which has growth-
promoting effects on tobacco seedlings (Han et al., 2012) and has 
biocontrol potential on polar canker (Ren et al., 2011), respectively 
(Figure 1C). Therefore, CNUC9 was identified as B. pyrrocinia 
based on 16S rRNA (accession no: ON076876) and recA (accession 
no: ON086316) gene sequences, which have multiple plant 
growth-promoting traits. Among bacterial determinants on plant 
growth promotion, bacterial VOCs displayed many advantages to 
apply crop plant under field compared to previous agrochemicals 
and chemical fertilizers (Fincheira et al., 2021).

CNUC9 VOCs increase germination and 
survival rates and biomass under salt 
stress condition

To investigate the effects of VOCs emitted by CNUC9 on plant 
growth and abiotic stress tolerance, A. thaliana Col-0 seeds were 
sown on 1/2 MS medium with and without 100 mM salt and 
co-cultured with CNUC9 on I-plates (Figure 2). Under no salt 

stress (0 mM NaCl), there were no significant differences in 
A. thaliana seed germination or survival rates with or without 
bacterial VOCs exposure (p > 0.05). However, salt stress caused 
significant reductions in germination (25.9%) and survival rates 
(48.7%) among seedlings not exposed to VOCs, compared to 
control seedlings grown without salt stress. Interestingly, VOCs-
exposed seedlings under salt stress had 22.6 and 37.3% higher 
germination and survival rates than non-exposed seedlings.

VOCs produced by CNUC9 triggered a number of 
physiological changes in A. thaliana. Following exposure to VOCs 
from CNUC9 in I-plate culture (0 or 100 mM NaCl) for 10 days, 
A. thaliana seedlings displayed increased biomass, in terms of 
lateral root numbers and extensive leaf area (Figures 3A–H). The 
growth parameters were further quantified using the WinRHIZO 
software (Figures  3I–L). Under non-stress conditions, VOCs-
exposed seedlings showed significantly increased root length 
(64.7%), root surface area (93.0%), and lateral root numbers 
(41.3%) compared to non-exposed seedlings. Similar results were 
obtained for seedlings grown under salt stress. Seedlings treated 
with 100 mM NaCl that exposed to VOCs were exhibited 
significantly increased root length (54.9%), root surface area 
(42.8%), and lateral root numbers (80.9%) compared to 
non-exposed seedlings. These data demonstrate that VOCs from 
CNUC9 altered root architecture and enhanced root growth in 
A. thaliana seedlings with or without salt stress. Salt stress 
significantly reduced seedling root length, root surface area, and 
lateral root numbers, by 34.2, 24.9, and 46.5%, respectively, 
whereas VOCs-exposed seedlings showed similar root parameter 
levels to the controls without salt stress. Interestingly, A. thaliana 
seedlings exposed to VOCs had markedly larger leaf area (no salt 
stress, 129.6%; salt stress, 174.5%) than non-exposed control 
seedlings. Together, these results suggest that VOCs from CNUC9 
greatly promoted plant growth and ameliorated salinity stress in 
A. thaliana seedlings by altering physicochemical properties in 
cellular solutes.

CNUC9 VOCs increase leaf chlorophyll 
content

To examine the impact of VOCs exposure on plant 
photosynthetic efficiency, the contents of leaf chlorophyll were 
measured. Under non-stress conditions, the levels of leaf Chl a, 
Chl b, and total chlorophyll were significantly increased in VOCs-
exposed seedlings (p < 0.001), by 63.6, 66.4, and 64.2%, 
respectively, compared to non-exposed seedlings (Figures 4A–C). 
Similarly, seedlings exposed to VOCs for 10 days under salt stress 
conditions had 100.5, 29.0, and 69.0% higher leaf Chl a, Chl b, and 
total chlorophyll content, respectively, than non-exposed 
seedlings. Chl a, Chl b, and total chlorophyll content significantly 
decreased by 43.6, 23.0, and 34.9%, respectively, in non-exposed 
seedlings grown at 100 mM NaCl, whereas VOCs-exposed 
seedlings maintained leaf chlorophyll levels that were similar to 
those under non-stress conditions. These results indicate that 
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exposure to VOCs from CNUC9 maintained photosynthetic 
pigments in A. thaliana seedlings, particularly under salt stress. 
These findings were consistent with the greater leaf area expansion 
as well as darker green leaves observed in A. thaliana seedlings 
exposed to CNUC9 VOCs than in non-exposed plants (Figure 3).

CNUC9 VOCs modulate total soluble 
sugar, proline, and MDA content

Salt stress can damage the cellular membranes of plants and 
alter the production of osmoprotectants (Hasanuzzaman et al., 
2013). To investigate whether CNUC9 VOCs affect physiological 
responses to osmoprotectants, endogenous levels of total soluble 
sugar, proline, and MDA were measured. The VOCs significantly 
enhanced the total soluble sugar content of seedlings compared to 
non-exposed seedlings grown under non-stress (38.0%) and salt 

stress (26.0%) conditions (p < 0.01; Figure  4D). Salt stress 
significantly reduced the total soluble sugar content by 39.3 and 
44.6%, respectively, in non-exposed and VOCs-exposed 
A. thaliana seedlings.

Altered proline levels in plants are characteristic of salt stress. 
Plants without salt stress showed no significant difference in 
proline content with or without CNUC9 VOCs exposure (p > 0.05; 
Figure 4E). Under salt stress, proline content was dramatically 
increased by 293.7% in non-exposed seedlings compared to 
non-exposed seedlings without salt stress. The proline content of 
A. thaliana seedlings exposed to CNUC9 VOCs under salt stress 
increased by 97.78%, but was 34.8% lower than that of 
non-exposed seedlings.

Malondialdehyde (MDA) is one of the end products of lipid 
peroxidation and has been used as oxidative stress indicator in 
plant tissues during ROS damage (Gutteridge, 1995). Under salt 
stress, MDA content was significantly higher (77.6%) in 

A

C

B

FIGURE 1

Growth curve and phylogenetic analysis of B. pyrrocinia CNUC9. Data for B. pyrrocinia CNUC9 growth curves were measured in liquid LB medium 
supplemented with (A) different NaCl concentrations (0, 400, 600, 800, or 1,000 mM), or (B) PEG 6000 concentrations (0, 15%, or 30%) incubated 
at 28°C for 48 h with rapid agitation. Error bars represent standard error (SE, n = 9). (C) Maximum likelihood tree inferred from analysis of recA gene 
sequences of Burkholderia species. Bootstrap values ≥70% based on 1,000 replicates are shown at the nodes. Xanthomonas axonopodis pv. citri 
str. 306 was used as an outgroup. Evolutionary distances were computed using the Kimura 2-parameter method and were expressed in numbers 
of base substitutions per site. Evolutionary analyses were conducted using the MEGA v6 software.
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non-exposed seedlings than in non-stressed control seedlings 
(p < 0.001; Figure 4F), whereas seedlings exposed to VOCs had 
24.5% lower MDA content. Interestingly, seedlings under no salt 
stress exposed to CNUC9 VOCs had similar MDA content to 

non-exposed controls. Together, these results indicate that 
CNUC9 VOCs are involved in cellular membrane modulation 
and osmolyte protection in A. thaliana seedlings under 
salinity stress.

A B

FIGURE 2

Effects of volatile organic compounds (VOCs) of B. pyrrocinia CNUC9 on Arabidopsis seed germination and survival rates under non-stress and 
salt stress conditions. (A) Germination rates and (B) survival rates were measured after 10  days. Error bars represent standard error of the mean 
(SEM) of three independent biological replicates (n = 200 seedlings per replicate). Asterisks on bars of the same parameter indicate statistical 
differences among treatments according to two-way analysis of variance (ANOVA), followed by Tukey’s multiple comparison test (**p ≤ 0.01; 
***p ≤ 0.001; n = 600). ns, non significant.

FIGURE 3

Effects of B. pyrrocinia CNUC9 VOCs on growth of A. thaliana seedlings under non-stress (0 mM NaCl) and salt stress (100 mM NaCl) conditions for 
10  days. (A–D) CNUC9 VOCs promoted the growth of A. thaliana seedlings. (A) No VOCs exposure; 0 mM NaCl. (B) CNUC9 VOCs exposure; 0 mM 
NaCl. (C) No VOCs exposure; 100 mM NaCl. (D) CNUC9 VOCs exposure; 100 mM NaCl. (E,F) Root tips under salt stress under (E) no VOCs 
exposure or (F) CNUC9 VOCs exposure. (G,H) Lateral roots under salt stress under (G) no VOCs exposure or (H) CNUC9 VOCs exposure. (I–L) 
Quantitative analysis of A. thaliana biomass after 10  days of exposure to CNUC9 VOCs under no-stress and salt stress conditions. (I) Root length. 
(J) Root surface area. (K) Lateral root numbers. (L) Total leaf area. Error bars represent SEM of three independent biological replicates (n = 20 
seedlings per replicate). Asterisks on bars of the same parameter indicate statistical differences among treatments (two-way ANOVA followed by 
Tukey’s test; *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; n = 60). ns, non significant.
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A B C
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FIGURE 4

Effects of B. pyrrocinia CNUC9 VOCs on changes in (A) chlorophyll a, (B) chlorophyll b, (C) total chlorophyll, (D) total soluble sugar, (E) proline, 
and (F) malondialdehyde (MDA) content under no-stress (0 mM NaCl) and salt stress (100 mM NaCl) conditions for 10 days. Error bars represent 
SEM of three independent biological replicates (n = 20 seedlings per replicate). Asterisks on bars of the same parameters indicate statistical 
differences among treatments (two-way ANOVA followed by Tukey’s test; *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; n = 60). ns, non significant.

CNUC9 VOCs modulate ROS 
accumulation

DAB polymerization was not observed in either VOCs-exposed 
or non-exposed seedlings under non-stress conditions, whereas extra 
brown precipitates indicating the presence of H2O2 were detected in 
non-exposed leaves under 100 mM NaCl stress (Figures 5A-C). Light 
brown precipitates were also observed in VOCs-exposed seedlings 
under 100 mM NaCl salt stress, indicating decreased H2O2 levels 
(Figure 5D). Interestingly, there was significantly less accumulation 
of brown precipitate in younger leaves than in older leaves. These 
results were further supported by an H2O2 accumulation assay. Under 
100 mM NaCl stress, H2O2 levels were significantly higher (40.5%) in 
non-VOCs-exposed seedlings than in non-stressed control seedlings 
(p < 0.001), whereas in VOCs-exposed A. thaliana seedlings, H2O2 
levels were significantly decreased by 10.7% compared to 
non-exposed seedlings (p < 0.01; Figure 5E). DAB staining and ROS 
accumulation assay results revealed that CNUC9 VOCs exposure 
reduced H2O2 accumulation in salt-stressed A. thaliana seedlings.

CNUC9 VOC profiling

To identify the VOCs emitted by CNUC9, we  conducted 
SPME–GC–MS analysis on CNUC9 at 72 h post-inoculation 
(Figure  6). Three peaks were identified from CNUC9, among 
which the major peak areas were DMDS (ca. 87.71% of the total 
peak area; retention time [RT], 5.01 min) and methyl thioacetate 
(ca. 11.67%; RT, 4.04 min). The compound 2-undecanone (ca. 
0.61%; RT, 14.85 min) was present in relatively low amounts; other 
detected compounds did not differ significantly from the 
uninoculated medium (control).

Effects of pharmaceutical application of 
VOCs on plant growth

To determine the effects of identified VOCs on plant 
growth, we  tested three concentrations of DMDS, methyl 
thioacetate, and 2-undecanone using I-plates. We found that 
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only 2-undecanone and DMDS promoted aerial and root 
growth in A. thaliana seedlings (Figure 7). Among the three 
concentrations, 2 μM 2-undecanone-exposed seedlings had 
increased root surface area (65.6%), root length (63.3%), 
lateral root numbers (222.6%), and leaf area (57.6%) compared 
to control groups (Figure  7; Supplementary Figure S2). In 
addition, seedlings exposed to 0.2 μM DMDS showed 
significantly increased root surface area (44.3%), root length 
(45.9%), lateral root numbers (200.2%), and leaf area (42.7%) 
compared to control groups; however, these levels were 

decreased compared to seedlings treated with 2 μM methyl 
thioacetate. Interestingly, higher VOCs concentrations had 
negative effects on seedling growth. Notably, significant 
growth inhibition occurred under treatment with 20 μM 
2-undecanone, in terms of decreased root length (86.4%), root 
surface area (90.9%), lateral root numbers (59.2%), and leaf 
area (78.6%) compared to the control groups 
(Supplementary Figure S2). These results suggest that 
2-undecanone and DMDS are major CNUC9 VOCs promoting 
seedling growth in a dose-dependent manner.

A B

C D

E

FIGURE 5

Effects of B. pyrrocinia CNUC9 VOCs on hydrogen peroxide (H2O2) modulation in A. thaliana seedlings. (A–D) A. thaliana leaves stained with 
3,3′-diaminobenzidine (DAB) after seedling exposure to CNUC9 VOCs under no-stress and salt stress conditions for 10  days. (A) No VOCs 
exposure; 0 mM NaCl. (B) CNUC9 VOCs exposure; 0 mM NaCl. (C) No VOCs exposure; 100 mM NaCl. (D) CNUC9 VOCs exposure; 100 mM NaCl. 
Bar = 1 mm. (E) Quantification of H2O2 production in A. thaliana seedlings after exposure to CNUC9 VOCs under no-stress and salt stress 
conditions. Error bars represent SEM of three independent biological replicates (n = 20 seedlings per replicate). Asterisks on bars of the same 
parameters indicate statistical differences among treatments (two-way ANOVA followed by Tukey’s test; **p ≤ 0.01; ***p ≤ 0.001; n = 60). ns, non 
significant.

A

B

FIGURE 6

Gas chromatography–mass spectrometry (GC–MS) analysis of VOCs of B. pyrrocinia CNUC9 grown on nutrient agar (NA) medium for 3  days. 
(A) NA medium control. (B) B. pyrrocinia CNUC9.
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FIGURE 7

Effect of pure synthetic compounds on A. thaliana seedling growth after 10  days under no-stress conditions. Representative photographs of 
(A) control seedlings and seedlings treated with (B) 2  μM 2-undecanone, (C) 0.2  μM dimethyl disulfide, (D) 2  μM methyl thioacetate. (E–H) Growth 
parameters of representative A. thaliana seedlings including (E) root length, (F) root surface area, (G) lateral root numbers, and (H) total leaf area. 
Error bars represent SEM of three independent biological replicates (n = 20 seedlings per replicate). Different letters indicate significant differences 
between treatments (one-way ANOVA followed by Tukey’s test; p < 0.05).

Principal component analysis and 
heatmap analysis

We investigated possible relationships between different plant 
growth parameters and CNUC9 VOCs exposure effects under 
non-stress and salt stress conditions using Principal Component 
Analysis (PCA) based on the mean values of all variables. A 
bi-plot was inferred from the PCA-separated plant responses of 
the first two components, with overall 97.1% variability (PC1: 
83.3%; PC2: 13.8%; Figure 8A). All treatments showed comparable 
morphological, biochemical, and physiological effects under 
CNUC9 VOCs exposure and salt stress. PCA results revealed that 
seedlings exposed to CNUC9 VOCs had significantly enhanced 
plant organ development (leaf area, root tips, and surface area), 
photosynthetic efficiency (Chl a, Chl b, and total chlorophyll 
content), and osmoprotectant accumulation (soluble sugar) 
compared to control inoculation under non-stress conditions. 
Similarly, CNUC9 VOCs treatment of stressed A. thaliana 
seedlings induced different H2O2, MDA, and proline content 
responses from the non-inoculation control.

Heatmap analysis showed that plant growth variables 
exhibited differential responses under different treatments 
(Figure 8B). Multivariate heatmap analysis suggested that salinity 
stress had positive effects on MDA, proline, and H2O2 
accumulations in A. thaliana seedlings, but was negatively 

correlated with germination and survival rates, root proliferation, 
chlorophyll content, and sugar content in seedlings. By contrast, 
plants treated with CNUC9 VOCs positively influenced the 
vegetative, physiological, and photosynthetic pigments of 
A. thaliana seedlings under non-stress conditions, promoting 
plant growth. Heatmap results also indicated that CNUC9 VOCs 
maintained plant growth indices to non-stress levels under 
salt stress.

Discussion

Present study, we newly isolated and characterized the PGPR 
strain B. pyrrocinia CNUC9 from maize rhizosphere. This isolate 
exhibited the ability to produce ACC deaminase, siderophore, 
protease, IAA, and able to solubilize calcium phosphate. 
Previously, endophytic B. pyrrocinia JK-SH007 was reported to 
promote plant growth and suppress poplar stem canker disease 
(Ren et  al., 2011). Burkholderia pyrrocinia P10 has also been 
shown to significantly enhance peanut seedling growth under 
saline conditions (100 and 170 mmol/l NaCl) by secreting IAA, 
solubilizing phosphorus compounds, and producing siderophores 
and ACC deaminase (Han et al., 2021). Thus, B. pyrrocinia shows 
potential as a PGPR or biocontrol candidate via direct interaction 
with plants. However, our results clearly indicate that VOCs 
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produced by B. pyrrocinia CNUC9 enhance salt tolerance in 
A. thaliana seedlings, showing significant increases in germination 
and survival rates, plant development, photosynthetic component 
regulation, antioxidant activity, and osmoprotectant responses in 
the absence of any direct contact with plants.

Recent studies have demonstrated that VOCs emitted by 
PGPR have the ability to improve plant growth and biomass 
without physical contact, potentially enhancing plant 
resistance against biotic and abiotic stresses (Ryu et al., 2003; 
Park et al., 2015; Raza et al., 2016; Cordovez et al., 2018; Liu 
et  al., 2020a). We  also observed that A. thaliana seedlings 
exposed to B. pyrrocinia CNUC9 VOCs showed significantly 
enhanced growth compared to non-VOCs-exposed plants 
under both normal and salt stress conditions. As shown in 
Figure  3, representative A. thaliana seedlings treated with 
CNUC9 VOCs reached the 5-leaf stage (non-stress) and 4-leaf 
stage (salt stress) after 10 days of co-cultivation, whereas 
control plantlets had 4 leaves (non-stress) and 3 leaves (salt 
stress). VOCs-exposed A. thaliana seedlings also showed 
2.3-fold (non-stress) and 2.7-fold (salt-stress) increases in 
total leaf area compared to non-exposed controls. Similarly, 
Tahir et  al. (2017) and Zhang et  al. (2007) reported that 
bacterial volatiles had a significant increase leaf area and leaf 
expansion by modulating expressions of cell division and 
auxin related genes.

The root system is responsible for water and nutrient 
acquisition from the soil; thus, a larger root system architecture 
increases plant resilience and survival under various stresses. Root 
system architecture is coordinated by plant growth hormones 
including auxin and cytokinin (Wang et al., 2021; Rivas et al., 
2022); previous studies reported that beneficial soil microbes 
directly regulate the accumulation of these hormones in plant 
roots (Wu et al., 2012; Wang et al., 2021). Interestingly, volatiles 
released by PGPR also significantly improve root architecture 
through modulating the root hormonal networks that contribute 
to water and nutrient uptake capacity (Wang et al., 2006; Sharifi 
et  al., 2021). We  observed adverse effects of salt stress on 
A. thaliana root system architecture in terms of significantly 
reduced lateral root numbers and root hair development, as well 
as decreased root length and surface area (Figure 3). However, 
exposure to CNUC9 VOCs markedly alleviated the negative 
effects of salt stress, and all root development parameters 
recovered to levels similar to the control group under no salt stress 
(Figure 3). Recently, Li et  al. (2021) demonstrated that VOCs 
produced by Bacillus species participated in regulating lateral root 
development in A. thaliana seedlings via an auxin-dependent 
mechanism. By contrast, B. subtilis GB03 volatiles triggered 
growth promotion through cytokinin–ethylene signaling, whereas 
B. amyloliquefaciens IN937a volatiles appeared to act 
independently of both cytokinin and ethylene (Ryu et al., 2003; 

A B

FIGURE 8

(A) Principal component analysis and (B) heat map responses of Pearson’s correlation coefficient for all growth variables of A. thaliana treated with 
B. pyrrocinia CNUC9 VOCs grown under salinity stress. Correlations are indicated in blue (positive) or red (negative).
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Farag et al., 2006). These findings suggest that different types of 
volatile compounds emitted by PGPR may differentially regulate 
plant hormones via different signaling pathways. We demonstrated 
that VOCs produced by CNUC9 significantly promoted root 
system architecture formation in A. thaliana seedlings; the specific 
mechanisms of VOCs-mediated phytohormone responses are 
currently being investigated.

Under salt stress, plants experience physiological and 
biochemical changes that lead to the accumulation of an array of 
metabolites such as chlorophyll contents, total soluble sugar, and 
proline in cells (Kumar et al., 2017). PGPR stimulates plants to 
activate different physiological and biochemical mechanisms to 
cope with stress by accumulating osmotic regulator solutes to 
maintain osmotic pressure homeostasis and structural stability 
(Acosta-Motos et al., 2017). Chlorophyll is a green pigment that 
has a vital role in photosynthesis. Maintaining endogenous 
chlorophyll levels is important for photosynthetic efficiency to 
acquire energy for growth and development. Under salt stress, 
however, chloroplast enzyme activity is increased, followed by the 
acceleration of chlorophyll degradation and decreased 
photosynthesis efficiency (Megdiche et  al., 2008). Our results 
showed that salt stress adversely affected Chl a, Chl b, and total 
chlorophyll content; however, CNUC9 VOCs exposure 
significantly increased chlorophyll content compared to 
non-exposed controls under non-salt-stress conditions and 
successfully protected photosynthetic pigment levels under 
100 mM salt stress (Figures 4A–C). Our results are consistent with 
those of a previous report that exposure to B. subtilis GBO3 VOCs 
stimulated photosynthetic activity by increasing chlorophyll 
content and upregulating chloroplast gene expression (Zhang 
et  al., 2008). Additionally, VOCs of B. subtilis SYST2 and 
B. amyloliquefaciens FZB42 increase chlorophyll synthesis, which 
helps mitigate the negative effects of saline stress on photosynthesis 
and enhancing plant growth (Tahir et al., 2017).

Total soluble sugar and proline are often used as indicators 
of potential stress reactions in plants. Total soluble sugar is a 
main product of photosynthesis and a fundamental component 
of energy supply to cells for carbohydrate metabolism. 
However, in plants under stress, soluble sugar acts as a major 
osmoregulation substance (Zang et  al., 2019). Proline is 
another metabolite that acts as an osmoprotectant and 
antioxidant defense molecule (e.g., scavenging hydroxyl free 
radicals) that helps maintain osmotic balance and lower ROS 
concentrations under stress (Kumar et  al., 2017). The 
application of PGPR is beneficial for total sugar and proline 
accumulation in plants against osmotic stress caused by salinity 
(Abbas et  al., 2019). For example, inoculation of B. subtilis 
SU47 and Arthrobacter sp. SU18 enhanced the total soluble 
sugar and proline content of wheat under salt stress compared 
to non-inoculated control plants (Upadhyay et al., 2012). The 
PGPR strain Kocuria rhizophila Y1 also increased soluble sugar 
and proline content in maize under salt stress (Li et al., 2020a). 
Similar results were obtained in the current study, as total sugar 
content increased significantly in plants under CNUC9 VOCs 
exposure and either non-stress or salt stress conditions 

(Figure  4D). By contrast, proline content was significantly 
lower in plants exposed to VOCs than in non-exposed plants 
under salt stress (Figure 4E). This finding is consistent with 
previous studies that have reported that PGPR treatment 
decreases proline content but increases total sugar content 
(Hmaeid et al., 2019; Li et al., 2020a; Liu et al., 2020b). Such 
studies suggested that proline accumulation is lower in the 
presence of PGPR because plants treated with PGPR do not 
experience high salt stress.

ROS play important roles as signaling molecules in the 
regulation of plant adaptive defense responses against biotic and 
abiotic stresses (Kumar et  al., 2017). Under stress, plants 
overproduce ROS, resulting in chlorophyll degradation, cell 
membrane damage through lipid peroxidation, and electrolyte 
leakage (Kumar and Singh, 2016). Lipid peroxidation is a 
ROS-mediated cellular damage reaction that targets 
polyunsaturated fatty acids in the cell membrane and generates 
MDA as a final metabolite (Kumar et al., 2017; Alexander et al., 
2020). Thus, MDA content reflects ROS production in plant 
tissues during stress and is responsible for cellular membrane 
instability (Gutteridge, 1995). Under salt stress, we  observed 
marked reductions in H2O2 and MDA concentrations in CNUC9 
VOCs-exposed A. thaliana seedlings compared to non-exposed 
seedlings (Figures 4, 5). Those results suggest that CNUC9 VOCs 
alleviated oxidative damage in plants due to salt stress and boost 
the membrane stability.

We detected three VOCs produced by B. pyrrocinia 
CNUC9; among these, we concluded that DMDS was the major 
VOC influencing stress responses in A. thaliana in this study, 
which is consistent with the findings of a previous study on 
strain B. pyrrocinia JK-SH007 (Liu et  al., 2020a). DMDS is 
common to most of bacterial species, e.g., Pseudomonas, 
Serratia, Bacillus, and Stenotrophomonas, which show 
antifungal activity, influence mosquito behavior, enhance plant 
growth, and reduce potential fungal toxin production (Meldau 
et al., 2012; Popova et al., 2014; Tyagi et al., 2019). DMDS also 
accelerated the growth of tobacco plants by increasing sulfur 
content in the environment (Meldau et al., 2013), and induced 
an auxin response in lateral root primordia in A. thaliana Tyagi 
et al. (2019). However, Cordovez et al. (2018) reported that 
DMDS had no impact on shoot growth in A. thaliana and only 
a slight effect on root growth. In our study, the plant-promotion 
efficiency of DMDS was concentration-dependent. The 
2-undecanone belongs to medium-chain methyl ketones family 
which exhibit low water solubility and high volatility (Yan 
et al., 2020). This volatile is a major VOC of Pseudomonas spp. 
and Bacillus spp. (Gu et al., 2007; Timm et al., 2018), which can 
stimulate seed germination in Lactuca sativa (Fincheira et al., 
2017) and display nematocidal and antifungal activities (Gu 
et al., 2007; Li et al., 2020b). We also found that an optimal 
dose of 2-undecanone had strong growth-promotion ability, 
whereas higher concentrations led to growth inhibition 
(Supplementary Figure S2).

In addition to those VOCs, bacterial inorganic volatiles 
are also reported to affect plant growth: ammonia and 
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hydrogen cyanide are considered harmful (Blom et al., 2011b; 
Weise et  al., 2013), while CO2, nitric oxide and hydrogen 
sulfide are reported beneficial to plant growth and abiotic 
stress tolerance (Kai and Piechulla, 2009; Christou et  al., 
2013; Sharma et al., 2021). Therefore, in the sealed Petri dish, 
the accumulation of the former volatiles can induce growth 
inhibition whereas accumulation of the latter can promote 
plant growth. For example, as an essential substrate for 
photosynthesis, CO2 has been suggested as a plant growth 
promoting compound. Kai and Piechulla (2009) demonstrated 
that the growth promoting effect of Serratia odorifera 4Rx13 
was specific to the sealed Petri dish environment, not to the 
open cultivations, indicating the enhanced effect of bacteria-
produced CO2 on plant growth. Zhang et al. (2021) compared 
the plant growth in the tightly sealed (high CO2) or open 
(ambient CO2) systems and elucidated the role of CO2 as a key 
contributor to the plant growth-promoting volatiles emitted 
by bacteria in a sealed system. However, others provided 
evidence for a lack of role for CO2 in plant growth promotion. 
Lee et  al. (2012) presented that co-cultured PGPR strains 
induced a significantly enhanced growth promotion of 
A. thaliana by growing plants in the presence of Ba(OH)2, a 
chemical eliminator of CO2. Ledger et al. (2016) also assessed 
the effects of Paraburkholderia phytofirmans PsJN on plant 
growth in sealed-and non-sealed systems, and clarified that 
plant growth promotion was predominated by volatile-
mediated effects, not by CO2 produced by PsJN. We showed 
that optimal doses of synthetic VOCs (DMDS and 
2-undecanone) significantly promoted A. thaliana growth in 
the sealed Petri dish (Figure 7). However, we also noticed that 
the effects of growth promotion and salt stress tolerance were 
much greater when A. thaliana was co-cultured with CNUC9 
compared with synthetic compounds (Figure  3; 
Supplementary Figure S2). These results suggest that plant 
growth promotion and salt stress tolerance may be induced 
in part by other volatile compounds such as CO2, nitric oxide 
and hydrogen sulfide produced by CNUC9  in addition to 
DMDS and 2-undecanone. Although further studies are still 
required, these data support the important roles of DMDS 
and 2-undecanone in plant growth promotion and resistance 
to salt stress.

Volatile mixtures depend strongly on the growth medium 
(Rath et  al., 2018) and vary considerably among closely 
related species (Nawrath et al., 2012), among individuals of 
the same species from different origins (Groenhagen et al., 
2013), and among inoculation doses (Blom et  al., 2011a). 
Benzothiazole, dimethylthiomethane, and 11 other VOCs 
have been detected from B. pyrrocinia JK-SH007 cultured on 
LB medium. These compounds (excluding DMDS) were not 
found in our strain B. pyrrocinia CNUC9 grown on NA 
medium, indicating that VOCs production is highly 
cultivation medium-dependent. Blom et al. (2011a) showed 
that VOCs of B. pyrrocinia Bcc171 grown on Methyl Red and 
Voges–Proskauer (MR-VP) medium show greater growth 
promotion in A. thialiana, whereas VOCs of B. pyrrocinia 

Bcc171 grown on LB medium inhibit A. thialiana growth. 
Although in that study both strains were cultured on LB 
medium, strain B. pyrrocinia Bcc171 isolated from soil in the 
United  States produced trans-2-dodecenal, 2-nonanone, 
2-decanone, 2-undecanone, undecanal, tetrahydro-3-
furanmethanol, 1-butoxy-2-propanol, phenol, and 3-methyl-
1-butanol, none of which were detected on strain B. pyrrocinia 
JK-SH007 from poplar stems in China, which corresponds 
with results of Groenhagen et  al. (2013). To date, VOCs 
biosynthesis pathway data are insufficient to understand 
these phenomena; further in-depth study of the metabolic 
processes involved in VOC biosynthesis and genetic 
regulation are required, and the mechanism of their action on 
various biological substances must be investigated.

Conclusion

Our findings have shown that co-culture with B. pyrrocinia 
CNUC9 VOCs stimulated the development of the root system 
architecture, leaf proliferation, and induction of salt tolerance in 
A. thaliana seedlings. Based on VOC profiling analysis using 
SPME–GC–MS, we  found that CNUC9 emitted three VOCs 
under our experimental conditions: DMDS, methyl thioacetate, 
and 2-undecanone. Among these three VOCs, optimal 
concentrations of dimethyl disulfide and 2-undecanone promoted 
A. thaliana growth and alleviated salt stress. Our findings provide 
a potential insight on the agricultural application of VOCs for 
salt-stress tolerance. Further study is required to elucidate the 
molecular mechanisms of VOCs-mediated systemic salt tolerance 
in plants.
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