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The outbreak of the SARS-CoV-2 pandemic led to increased use of

disinfectants and antiseptics (DAs), resulting in higher concentrations of these

compounds in wastewaters, wastewater treatment plant (WWTP) e	uents and

receiving water bodies. Their constant presence in water bodies may lead to

development and acquisition of resistance against the DAs. In addition, they

may also promote antibiotic resistance (AR) due to cross- and co-selection of

AR among bacteria that are exposed to the DAs, which is a highly important

issue with regards to human and environmental health. This review addresses

this issue and provides an overview of DAs structure together with their modes

of action against microorganisms. Relevant examples of the most e�ective

treatment techniques to increase the DAs removal e�ciency from wastewater

are discussed. Moreover, insight on the resistance mechanisms to DAs and

the mechanism of DAs enhancement of cross- and co-selection of ARs are

presented. Furthermore, this review discusses the impact of DAs on resistance

against antibiotics, the occurrence of DAs in aquatic systems, and DA removal

mechanisms in WWTPs, which in principle serve as the final barrier before

releasing these compounds into the receiving environment. By recognition

of important research gaps, research needs to determine the impact of the

majority of DAs in WWTPs and the consequences of their presence and spread

of antibiotic resistance were identified.

KEYWORDS

disinfectants, antiseptics, wastewater treatment plants (WWTP), cross-resistance,

antibiotic resistance

Frontiers inMicrobiology 01 frontiersin.org

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2022.1050558
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2022.1050558&domain=pdf&date_stamp=2022-12-13
mailto:ilke.palaozkok@uis.no
https://doi.org/10.3389/fmicb.2022.1050558
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmicb.2022.1050558/full
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Basiry et al. 10.3389/fmicb.2022.1050558

Introduction

Multi drug resistant (MDR) microorganisms have

become a major threat to both global health and

economy. The World Health Organization (WHO) has

declared that the microbial infections caused by antibiotic

resistance bacteria will lead to massive preventable deaths

(Collignon, 2017; Morrison and Zembower, 2020). They

also estimated that the global economy will suffer over

100 trillion dollars in low- and middle-income countries

over the course of the next 30 years due to MDR

microorganisms (Collignon, 2017; Morrison and Zembower,

2020).

As MDR microorganisms become more prevalent it is

crucial to consider different environments, co-factors involved

and sources of emergence, to evaluate the potential threat

originating from MDR microorganisms. In this context,

disinfectants and antiseptics (DAs) are two significant factors

as they are not only widely used in medical and manufacturing

sectors but also in private households (Russell, 2013). The recent

global pandemic of SARS-CoV-2 has extensively increased

the use of DAs as their use was one of the main counter

measures against the virus (Usman et al., 2020). This is a

potential human health risk as a correlation between DA

exposure and resistance to relevant antibiotics has been

shown (Kampf, 2018a). DAs are classified as biocides that

are widely used and important in industrial and health

related applications (Orth, 1998; Dettenkofer and Spencer,

2007; Møretr et al., 2017). In comparison to antibiotics,

they normally do not target specific enzymes (Mcdonnell

and Russell, 1999; Lachapelle et al., 2013). This makes

them good for general purpose application, but bad for

treatment of health conditions. DAs however, can serve as a

selector for cross-resistance to antibiotics (Varela and Manaia,

2013).

With only a few exceptions, the literature does not

consider the correlation between the concentrations of DAs

in water bodies, their treatment methods in wastewater

treatment plants (WWTP), which receive industrial, hospital

and municipal sewage (Karkman et al., 2018), and the

potential impact of DAs on the development of cross-resistance

to antibiotics.

This review examines the current knowledge on

disinfectants and antiseptics and their relationship with

the antibiotics. Moreover, it highlights their potential

impact on the development of cross- and co-resistance in

the aquatic environments with emphasis on wastewater

treatment plants. Finally, it provides conclusive evidence on

the impact of prioritized DAs on resistance development and

gives suggestions for decreasing their discharge loads into

receiving waters while making the future of public health

the priority.

Review methodology

This paper provides a systematic literature review and puts

the currently available research on DAs in aquatic environments

into context. This study discusses and compares the current

literature on DA concentration, their fate, removal, and their

influence on existing antibiotic resistance from main scientific

databases, which included PubMed, Web of Science (ISI),

Scopus, and Google Scholar. The search terms used to obtain

the literature for this review included groups of DAs, specific

compounds, aquatic environments, and cross/co-resistance

for antibiotic resistance genes (“antimicrobial resistance” or

“antibiotic resistance” or “antimicrobial susceptibility”). Titles

and abstracts were screened, followed by the full texts of the

papers deemed relevant. Unpublished data was excluded from

this review and only publications in English were included. The

papers similarities and differences were compared. The classes

of disinfectants were chosen based on their relevance for aquatic

environments, hence aerial disinfectants were excluded from

this review.

Disinfectants and antiseptics and
their mechanism of action

Biocide is a collective term covering all chemical substances

used with the intent to inactivate harmful or undesired variety of

species which include microorganisms and rodents. Inactivation

can be further distinguished into “-static” substances which

only inhibit further growth or “-cidal” substances which kill the

organism (Mcdonnell and Russell, 1999).

According to EU legislation biocides include four major

groups of substances: disinfectants, preservatives, pest

control and miscellaneous (Smith, 2015). Disinfectants

aim at killing already existing organisms in various fields

employed further specified in Figure 1 (Smith, 2015). The

preservatives group tries to prolong the time until decay

takes place (Smith, 2015). Compounds for pest control serve

to poison larger organisms (Smith, 2015), while substances

that cannot be categorized as any of the above fall into the

miscellaneous group (Figure 1). Antiseptics are non-antibiotic

compounds used to prevent or limit infection on living tissues

(European Committee for Standardization, 2020). For further

details on antibiotics and their spread in WWTPs see for

example Barancheshme and Munir (2018) and Uluseker et al.

(2021).

Common DAs groups and their targets as well as their

mode of action are listed in Table 1 and a table with common

representatives and structures (Supplementary Table 1).

While broad-spectrum antibiotics exist, antibiotics tend to

have specific intracellular targets when compared with DAs.

DAs, unlike antibiotics, have a broader and unspecific toxicity
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FIGURE 1

The four big subgroups of biocides according to EU legislation with the associate products (Smith, 2015).

and target membrane proteins, cell wall, nucleic acids and thiol

groups in proteins (Denyer and Stewart, 1998).

The outer layer of protection in most bacteria is the cell

wall, which encircles the plasma membrane (Maillard, 2002).

The cell wall consists of peptidoglycan chains crosslinked by

short peptides. Gram-negative bacteria have an outer membrane

in addition to the cell wall (Maillard, 2002). Certain DAs bind

lipid components of the cell wall or replace cationic components

which can cause deformation of the cell wall and the underlying

plasma membrane, weakening the cell wall integrity and causing

leakage of components.

The cell or plasma membrane exists in most cells in the form

of a lipid double layer and separates the external environment

from the cell interior. It consists mainly of phospholipids and

contains proteins of varying functionality e.g., transport proteins

redox enzymes (Maillard, 2002). Across the cell membrane the

proton-motive force (PMF) enables active transport of specific

molecules and sustain essential cellular processes (Le et al.,

2021). Through disruption of the cell wall and membrane

various DAs cause loss of structural integrity and leakage of cell

components such as K+, nucleotides and amino acids (Hugo

and Longworth, 1965; Jensen, 1975; Chawner and Gilbert,

1989b,a).

In the cytoplasm, a direct interaction between the cellular

machinery and DAs occurs. Binding of or reacting with DNA

causes inhibition of protein syntheses, reactive components

interact specifically with a variety of proteins and cause

coagulation (Maillard, 2002). A visualization of the different

target sides is shown in Figure 2 followed by a more detailed

look into their respective groups’ resistance mechanism.

Alcohols

As broad-spectrum antimicrobial agents, alcohols are very

effective against vegetative bacteria (including mycobacteria),

viruses, and fungi (Stawarz-Janeczek et al., 2021). While they

are not considered to be sporicidal, they can inhibit sporulation

and spore germination. Their main application is hard-

surface disinfection and skin antisepsis. They are not used for

sterilization (Elekhnawy et al., 2020). Ethyl alcohol (ethanol) and

isopropyl alcohol (isopropanol) are the two most widely used

alcohols (Morton, 1950) applied at low levels in clinical settings

for many years (Boyce, 2018). Another often used alcohol

is bronopol which is used in pharmaceutical and cosmetic

products (Shepherd et al., 1988). Depending on the active

agent and target microorganisms, isopropyl alcohol is more

potent against bacteria (Coulthard and Sykes, 1936; Mcdonnell

and Russell, 1999), and ethyl alcohol is more effective against

viruses (Klein and Deforest, 1983; Mcdonnell and Russell,

1999). To increase the efficiency of alcohol’s antimicrobial

activities, they are produced in combination with low levels

of other biocides or excipients. For instance, the presence

of excipients like emollients reduces the alcohol evaporation

time. As another example, chlorhexidine improves the alcohol

products’ effectiveness significantly by remaining on the target

surface after alcohol evaporation (Bush et al., 1986). The optimal

concentration for alcohol antimicrobial activity is between 60

and 90% (Boyce, 2018).

Alcohols cause several different reactions in microbial cells.

Short chained alcohols for example can cause reduced cross-

linking of peptide glycan, precipitation of nucleic acids and
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TABLE 1 Displayed are DA groups with common representatives and their mode of action.

Group Function Target Mode of action References

Alcohols Antisepsis,

disinfection

Cytoplasmic and membrane

proteins

Membrane damage, enzyme

inhibition, coagulation of cell

components

Boyce, 2018

Aldehydes Disinfection,

sterilization

Outer membrane, cell wall Cross linking of proteins and nucleic

acids

Bowes and Cater, 1968; Gorman

et al., 1980; Maillard, 2002;

Migneault, 2004

Anilides Antisepsis Cell membrane, lipid

biosynthesis

Inhibition of enoyl-acyl carrier

protein reductase

Carey and McNamara, 2014

Biguanides Antisepsis,

disinfection

Cell wall, membrane Disrupting membrane integrity Chawner and Gilbert, 1989a,b

Bisphenols Antisepsis,

disinfection

Cell membrane, proteins Loss of membrane integrity, protein

coagulation

Walia et al., 2017

Chelating agents Antisepsis,

disinfection

Cell membrane Chelating metal ions, loss of

membrane integrity

Finnegan and Percival, 2015

Halophenols Antisepsis Cell membrane, Lipid

biosynthesis

Inhibition of enoyl-acyl carrier

protein reductase (FabI)

Jang et al., 2008; Larras et al., 2020

Heavy metal derivatives Antisepsis,

disinfection

Thiol groups in proteins,

PMF*, DNA bases

Cytological changes, K+ leakage,

intercalation

Chappell and Greville, 1954;

Rosenkranz and Rosenkranz, 1972;

Modak and Fox, 1973; Schreurs and

Rosenberg, 1982; Feng et al., 2000;

Dibrov et al., 2002

Halogen-releasing

agents

Antisepsis,

disinfection

Thiol groups in proteins Oxidation to disulphides causing

inhibition and modification

Dyer et al., 2019

Phenols and cresols Disinfection Cell membrane, PMF,

proteins

Loss of membrane integrity, protein

coagulation, inhibition electron

transport chain

Judis, 1965, 1966; Denyer et al., 2004

Peroxygens Disinfection,

sterilization

Thiol groups in proteins Oxidation to disulphides causing

inhibition and modification

Small et al., 2007

Quaternary ammonium

compounds

Antisepsis,

disinfection

Cell membrane lipids; cell

wall

Leakage of cell components through

membrane damage

Hugo and Longworth, 1965; Gilbert

and Moore, 2005

PMF*, proton motive force.

leakage of the latter and small molecules (Ingram and Buttke,

1985). Bronopols mechanism of action on the other hand

is attributed to its ability to cross-link sulfohydrid-groups of

dehydrogenase enzymes on the cell surface (Legin, 1996).

Aldehydes

Aldehydes are a significant broad-spectrum disinfectant

group from which the most critical agents are glutaraldehyde,

formaldehyde and o-phthalaldehyde (Fraud et al., 2001).

Glutaraldehyde (GA) serves as an important DA in different

areas such as disinfection and sterilization of hospital equipment

and environments, animal husbandry and as a general

disinfectant of surface areas (Juncker, 2015). It has broad

spectrum activity against bacteria, spores, fungi and viruses

(Migneault, 2004). Formaldehyde is effective against bacteria,

spores, fungi and viruses (Graham and Barger, 1936; Tilley,

1945; Korukluoglu et al., 2006) and it is used either in liquid or

vapor form. In 2011, the U.S. Department of Health and Human

Services stated that formaldehyde is a known human carcinogen

(U.S. Department of Health and Human Services PHS, 2021).

O-phthalaldehyde is a broad-spectrum disinfectant with activity

against bacteria, viruses and mycobacteria as well as spores but

less efficient compared to other aldehydes (Alfa and Sitter, 1994;

Gregory et al., 1999; Walsh et al., 1999, 2001).

The efficiency of aldehydes is attributed to their ability

to effectively cross-link outer wall components, enzymes and

other proteins, disabling their function (Bowes and Cater,

1968; Gorman et al., 1980; Maillard, 2002; Migneault, 2004).

As aldehydes exist in a polymeric, aqueous solution the

alkylation responsible for the cross-linking happens through
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FIGURE 2

Disinfectants and antiseptics and their target location and components.

chemical reactions depending on, for example, pH-value of the

disinfectant solution (Migneault, 2004). Aldehydes react with

nucleophilic functional groups such as amine, thiol, phenol and

imidazole, for example in the amino acids lysine (Bowes and

Cater, 1968), tyrosine, tryptophan, phenylalanine (Hopwood

et al., 1970), histidine and cysteine (Lopachin and Gavin, 2014).

In addition to cross-linking aldehydes also cause irreversible

changes to protein structures through alkylation (Bowes and

Cater, 1968; Migneault, 2004). This happens mainly through

reactions with sulfhydryl, hydroxyl, amine and carboxyl groups

(Bowes and Cater, 1968; Hopwood et al., 1970). Aldehydes can

also alkylate the amino groups of purines and pyrimidine bases

which can result in mutations (Loshon et al., 1999).

Anilides

Anilides are based on the two structures, salicylanilide and

diphenylurea. Triclocarban (TCC), based on diphenylurea, is

the most extensively used anilide, widely applied in various

personal care products and household consumables including,

soaps, shampoos, and toothpaste, since 1957 (Musee, 2018). This

broad-spectrum antimicrobial agent is particularly active against

gram-positive bacteria.

A growing body of literature describes the adverse

consequences of persistent TCC residues in the environment

and their potential impact on plants, animals, humans, and

microorganisms (Yun et al., 2020). Endocrine disruption,

bioaccumulation, acute/chronic toxicity, and possible antibiotic

resistance are the main consequences (Halden, 2014). It has

been reported that exposure to 200 µg/L of TCC causes growth

retardation and reduced fecundity in some marine species (Han

et al., 2016).

Anilide’s mechanism of action is due to its protonophoric

activity and ability to discharge parts of the proton-motive force

(Kratky and Vinsova, 2011). This causes a lower extracellular

protein production and may cause autolysis (Kratky and

Vinsova, 2011).

Biguanides

Biguanidines used as antiseptics and disinfectants contain at

least two biguanidine elements in their structure (Kathuria et al.,

2018). Popular biguanides like chlorhexidine have been in use
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and under research since the mid-20th century (Davies et al.,

1954).

Chlorhexidine is a broad-spectrum antiseptic and

disinfectant. It is used as an antiseptic for medical and

veterinarian antisepsis, oral disinfection and hand scrubs

(Lowbury and Lilly, 1960; Holloway et al., 1986; Kuruvilla

and Kamath, 1998; Traor et al., 2000; Gomes et al., 2001).

Chlorhexidine works against gram positive and negative

bacteria, fungi and is spore- and mycobacteriostatic (Davies

et al., 1954; Beeuwkes, 1958; Ortegón et al., 2017).

Alexidine is an antimicrobial of the biguanide class, and is

used in antiseptics, antiplaque solutions (Gjemro et al., 1973)

and in contact lens solutions (Rosenthal et al., 2006). Alexidines

works by altering membrane permeability.

Another effective biguanide is the mixture called

polyhexamethylene biguanides (PHMB) consisting of

polymeric biguanides with varying end groups such as

amine, cyanoguanide and guanidine (Allen M. J. et al., 2006).

The European chemicals agency considers it to be safe to use

for swimming pool disinfections and surface cleaning (ECHA,

2017).

Biguanides linking mechanism of action is the alteration

of membrane permeability and the leakage of intracellular

cell components (Hugo and Longworth, 1965; Jensen, 1975;

Chawner and Gilbert, 1989b,a). The hexamethylene chain in

chlorhexidine is essential for its effectiveness. Varying the length

of the chain can lead to reduced antimicrobial efficiency with

hexamethylene being the optimal length (Davies et al., 1954).

Biguanides cause coagulation at concentrations higher than

the minimum inhibitory concentration (MIC). Coagulation is

not considered as the reason for the cell death (Hugo and

Longworth, 1965) but rather for a reduction in leakage which

is attributed to the coagulated proteins plugging the porose

membrane (Hugo and Longworth, 1965).

PHMB, in addition to the general biguanide mechanism,

strongly binds nucleic acids and consequently interferes with the

expression of proteins and causes changes in the transcriptional

profile (Allen et al., 2004; Allen M. J. et al., 2006). Recent

research showed that PHMB selectively condensed bacterial

chromosomes (Chindera et al., 2016).

Bisphenols

Bisphenols are sporostatic, hydroxy-halogenated

compounds derived from two phenolic groups conjunct

by numerous bridges (Sasatsu et al., 1995). Despite their broad-

spectrum activity, they are not efficient against gram-negative

bacteria, like E. coli and P. aeruginosa, and molds (Lloyd et al.,

1988). Hexachlorophene was an extensively used bisphenol

that was mainly applied as an antiseptic agent in personal

care products (Marzulli and Bruch, 1981) until concerns

over its neurotoxicity led to it being banned in the US in

1970s (Heidler and Halden, 2009). Experiments on Bacillus

megaterium showed that hexachlorophene adsorbs to the

membrane, causing leakage, protoplast lysis and respiration

blockage by disruption of the PMF (Silvernale et al., 1971).

While the leakage occurs mostly at higher concentrations

(Joswick et al., 1971), at MIC for hexachlorophene it binds

tightly to the membrane and inhibits uptake of amino acids and

respiration. Like other lipophilic acids, its main mechanism is

the inhibition of the PMF (Levin and Freese, 1977).

Chelating agents

Chelating agents, for example ethylenediaminetetraacetic

acid (EDTA), work against Gram- positive and -negative

bacteria, yeast, amoeba and fungi (Finnegan and Percival,

2015). ETDA is used as a contact lens disinfectant, on medical

equipment, for wound care (Finnegan and Percival, 2015), and

has excellent properties for biofilm removal (Percival et al., 2005;

De Almeida et al., 2016).

Metal chelating agents like EDTA cause destabilization of the

membrane through removal of metal ions like Mg2+ and Ca2+-

ions (Vaara, 1992). These metal ions stabilize the negatively

charged phospholipids in the outer layer. Through the removal

of these ions, lipopolysaccharides (LPS) from the cell wall are

rapidly released and lost (Leive, 1965). It was proposed that

chelating agents like EDTA, N-hydroxyethylethylenediamine-

NN’N’-triacetic acid (Walsh et al., 2003) and to a lesser extent

nitrilotriacetic acid (Haque and Russell, 1974) serve as a

potentiating agent, as they destabilize the outer membrane and

create easier access for other compounds.

Halogen-releasing agents

Halogen-releasing agents are extensively used as antiseptics,

disinfectants, and preservatives. The most used halogens are

chlorine and iodine-based compounds applied in clinical

settings (McDonnell, 2009).

Iodine is a broad-spectrum antimicrobial effective against

bacteria, mycobacteria, fungi, protozoa, and viruses (Maksym

and Gmur, 2020). This agent causes cell death through passive

diffusion through the cell membrane and intracellular oxidation

of proteins, nucleotides, and fatty acids (Lepelletier et al., 2020).

Chlorine-releasing agents (CRAs) are widely used for

hard-surface disinfection. Hypochlorites including sodium

hypochlorite (liquid form) and calcium hypochlorite (solid

form) are the most used disinfectants in this group (Bennett

et al., 2015). In water, sodium hypochlorite is ionized to the

hypochlorite ion (OCl−2 ) at equilibrium with the hypochlorous

acid (HOCl). Depending on the pH, chlorine can predominate

as HOCl or OCl−2 . The former predominates in pH between 4

and 7, and the latter in pH above 9 (Bloomfield, 1996). A hybrid
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system of sodium chlorite and mandelic acid has been found to

be effective as an antiseptic (Mcdonnell and Russell, 1999).

CRAs biocidal activity is attributed to their function as

strong oxidizing agents. Targets are various chemical groups in

proteins, especially sulfhydryl groups but they are also known to

cause cellular lesions (Bloomfield, 1996).

Halophenols

Halophenols have a similar base mechanism to that of the

non-halogenated phenols. Through the halogenation the phenol

reaches higher activity than phenols, but the water solubility is

reduced (Zhao and Chen, 2016).

Triclosan (TCS) is a synthetic broad-spectrum antimicrobial

that is efficient against both gram-positive and gram-negative

bacteria. It is also effective against some fungal species, parasites,

and protozoa species (Bhargava and Leonard, 1996; Fang et al.,

2010). Since 1962, it has been used in a wide range of products

and applications in many countries (Allmyr et al., 2008; Iyer

et al., 2017). It is bacteriostatic at concentrations lower than

0.1 mg/L, and exhibits bactericidal activity against numerous

species, including E. coli and Streptococci, at concentrations

above 2.0 mg/L. Besides the antibacterial properties, triclosan

may have anti-inflammatory effects against inflammatory skin

conditions (Alfhili and Lee, 2019). However, possible antibiotic

resistance has been reported because of TCS exposure (Halden,

2014).

The mode of action of triclosan in bacterial cytoplasm

includes the disruption of lipid biosynthesis through inhibition

of the enzyme enoyl-acyl carrier protein reductase (FabI) (Larras

et al., 2020). However, the exact mechanism that leads to the

switch from bacteriostatic to bactericidal action is still unknown

(Yasir et al., 2020). Triclosan exposure resulted in upregulation

of multidrug resistance genes in S. aureus. These genes are

involved in coenzyme transport and the downregulation of

genes for virulence factors, energy metabolism and of several

enzymes involved in lipid metabolism (Jang et al., 2008).

Chloroxylenol (PCMX) is a halophenol widely used as

antiseptic for skin (e.g., hand soap) and as disinfectant for

abiotic surfaces. It has been commercially available in Dettol

handwashing products since 1920 and is now frequently used

in over-the-counter products used in domestic and hospital

environments (Mcdonnell and Russell, 1999; Yasir et al., 2020).

After the ban of triclosan and triclocarban in disinfectant

formulations in 2016 (Sreevidya et al., 2018) there was a

sudden increase in consumption of PCMX as an alternative.

Although PCMX is a broad-spectrum antimicrobial which is

very effective against bacteria, fungi, algae and viruses, there are

still some molds, and the gram-negative bacteria for example P.

aeruginosa, that are very resistant to it (Bruch, 1996; Sreevidya

et al., 2018). Due to phenolic nature of PCMX’s, interactions

between the hydroxyl groups of this agent and cytoplasmic

membrane proteins can destroy the microbial membranes

leading to cell death (Hamilton, 1970; Mcdonnell and Russell,

1999).

The phenolic compound PCMXworks by causing loss of cell

membrane integrity and leakage of cell components (Hamilton,

1970; Mcdonnell and Russell, 1999; Walia et al., 2017). Denyer

and Stewart (1998) proposed the idea that this causes an

autocidal chain reaction inside the cell. The loss of cytoplasmatic

components leads to the initiation of degradative enzymes and

the creation of free radicals. In addition to the loss of cell

membrane integrity, PCMX causes coagulation of cytoplasmic

components through interactions between the hydroxyl–OH

groups of this agent and proteins (Hamilton, 1970; Mcdonnell

and Russell, 1999; Walia et al., 2017).

In terms of ecotoxicity, PCMX has chronic effects on the

red blood cells of aquatic organisms, even at levels as low as 4

µg/L (Capkin et al., 2017). This compound can also disrupt gene

expression and cell tissue structures (Kasprzyk-Hordern et al.,

2009).

Heavy metal derivates

Heavy metals appear in different oxidative states and their

antimicrobial activity varies depending on the oxidative state of

the metal. Copper, mercury, and silver are the most used metals

as DA.

Copper (Cu) compounds aremainly sulfate, citrate or nitrate

salts releasing the active Cu2+-ion. Even though it has a wide

range of bactericidal and viricidal activity (Borkow and Gabbay,

2005; Noyce et al., 2007), it is mainly used as an algaecide or

fungicide (Borkow and Gabbay, 2005). Copper compounds are

also utilized as preservative in the wood industries (Brient et al.,

2020).

Because of coppers redox chemistry it takes part in the

formation reactive oxygen species (Peña et al., 1999). These

radicals can cause major harm to the cell through oxidation of

membrane lipids, proteins (Peña et al., 1999). The assumption

that Cu ions cause DNA damage through Fenton-like oxidation

process is increasingly doubted as molecules like glutathione

chelate copper (Macomber et al., 2007).

Mercury (Hg) compounds are today mainly used in the form

of organo derivates like nitromersol, thimerosal, merbromin and

phenylmercuric nitrate. Organomercury are used less often in

the west as disinfectants since they are considered toxic (Gilpin

et al., 2021). Thimerosal is still used as an antiseptic in multi

vaccine doses, especially in the third world countries (Geier et al.,

2015).

Silver (Ag) compounds and silver nanoparticles (AgNPs)

have a wide variety of usage. They are used on medical devices

to prevent the growth of biofilm, in treatment of burn wounds

and as an additional disinfectant in water systems of pools and
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hospitals (Silver, 2003; Mijnendonckx et al., 2013; Stout and Yu,

2014; Norman et al., 2017).

Silver ions interfere with the PMF and respiratory chain

enzymes and cause the leakage of K+ ions (Chappell and

Greville, 1954; Schreurs and Rosenberg, 1982; Dibrov et al.,

2002) and act as a DNA intercalating agent based around the

Ag+-ion and its high reactivity (Rosenkranz and Rosenkranz,

1972; Modak and Fox, 1973; Feng et al., 2000). The main

targets are thiol groups causing cytological changes, intercalating

in nucleotide chains, inhibiting cell division and inactivating

proteins (Rosenkranz and Rosenkranz, 1972; Modak and Fox,

1973; Feng et al., 2000).

Phenols and cresols

Phenolic-type antimicrobial agents are used as disinfectants

to control the growth of microorganisms. These compounds

have different inhibitory effects against diverse bacteria, fungi,

and viruses (Yarley et al., 2021). Due to their fungicidal

and antiseptic properties, they are used in many different

industrial products and processes including; pharmaceuticals,

textiles, plasticizers, pulp and paper, pesticide manufacturing,

the wood industry, detergent application, and metallurgic

industries (Santana et al., 2009). It has been suggested that their

membrane-active properties contribute to their overall activity

(Davidson and Branden, 1981; Mcdonnell and Russell, 1999).

de León et al. (2010) indicated that cell membranes of

both gram-positive and gram-negative bacteria are vulnerable to

phenolic antimicrobial agents cause leakage of cell components

such as K+, nucleotides and amino acids. Higher phenol

concentrations result in coagulation of cytoplasmic constituents

leading to irreversible cellular damage (Hugo, 1992). Phenolic

compounds because of their lipid-soluble properties able to

dissipate the PMF (McLaughlin and Dilger, 1980; Kasianowicz

et al., 1984; Mitchell, 2011).

The potential toxicity and negative impacts of phenolic

compounds on the environment have been investigated in

a large body of literature, suggesting that some of these

compounds (particularly chlorophenols) are highly toxic,

estrogenic and carcinogenic for some aquatic organisms

(Ferreira Guedes and Leitão, 2012; Catherine et al., 2016).

Additionally, phenolic compounds can inhibit microorganisms

present in activated sludge, and therefore disrupt treatment

performance in wastewater treatment facilities (Salaudeen et al.,

2019).

Peroxygens

This class of disinfectants has been in use since the 19th

century and represents environmentally friendly disinfectants as

water is their only by-product.

Hydrogen peroxide is used in the food industry for

processing, handling and production, hard-surface disinfection

in medical institutions for critical equipment (Agency USEP,

1993), in distribution of drinking water, skin disinfection (1–

6%) and in the preservation of paper additives (EU, 2015;

Murphy and Friedman, 2019). It is also used in the disinfection

of wastewater (Gulyas et al., 1995; Lin et al., 1999). It is a

broad-spectrum disinfectant against bacteria, viruses, and fungi

(Baldry, 1983).

Peracetic acid is a more potent disinfectant than hydrogen

peroxide and works against mycobacteria and spores (Baldry,

1983). It is used in the food industry, human hygiene, and

disinfectant for surfaces, the medical sector and drinking water

(Agency USEP, 1993; European Commission, 2016). Peracetic

acid is also used for the disinfection of wastewater (Liberti and

Notarnicola, 1999).

Performic acid’s activity spectrum includes bacteria, spores,

viruses fungi and mycobacteria (Rutala and Weber, 2001). The

food and medical sector use performic acid as a disinfectant

(Gehr et al., 2009) and it is also used in wastewater disinfection

(Gehr et al., 2009; Chhetri et al., 2019). Performic acid is unstable

and is normally produced on site in a solution containing

performic acid, formic acid, hydrogen peroxide and water (Gehr

et al., 2009).

Peroxygens mode of action is based on free radical oxidation

of enzymes and protein thiol groups (Denyer and Stewart, 1998)

breaking down proteins, nucleic acids and membranes leaving,

innocuous and non-toxic end products (Liberti andNotarnicola,

1999; Gehr et al., 2009; Chhetri et al., 2019). In the case of

nucleic acids this can induce single and double strand breaks

independent of cell type (Dizdaroglu and Jaruga, 2012). To

better identify the effects of peroxygen exposure, Small et al.

(2007) looked at the transcriptome during peroxygen exposure.

P. aeruginosa was exposed to hypochlorite, hydrogen peroxide

and peracetic acid. In addition to the upregulation of general

stress genes as protection against peroxygen disinfectants,

hydrogen peroxide and hypochlorite each caused a more specific

response (Small et al., 2007). When exposed to hydrogen

peroxide, DNA repair genes were upregulated (Small et al.,

2007). Hypochlorite exposure caused oxidative phosphorylation,

electron transport and proteins actively transporting hexose

molecules to be downregulated (Small et al., 2007). Organic

sulfur transporter genes and membrane proteins in general were

upregulated (Small et al., 2007).

Quaternary ammonium compounds

The structure of Quaternary ammonium compounds (QAC)

constitutes of an ammonium with four substitutes and a

small anion with further distinction into mono-, di-, tri- and

polymeric structures. The biocidal activity mostly originates
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from the length of the alkyl chains and can be adapted to target

different microorganisms (McBain et al., 2004).

Benzalkonium chloride (BAC) is a broad-spectrum

disinfectant lethal to gram-positive and negative bacteria,

lipophilic viruses, fungi- and algae static (Beveridge et al., 1998;

Obłak et al., 2021). BAC is a mixture of varying alkyl group

chain length. It is used in hand scrubs, surface disinfectant,

wound and skin antiseptic and as a wood preservative (Report,

2012).

Cetrimide is a composition from tetradonium bromide,

cetrimonium bromide and laurtrimonium bromide. It is used

as a wound and skin antiseptic and in combination with

chlorhexidine is used to clean medical instruments (Tripathi,

2019).

The biostatic and cidal activity of QACs is mainly attributed

to displacement of outer membrane associated cations such as

Ca2+ and subsequent intercalation into the membrane (Gilbert

and Moore, 2005). As a consequence, a leakage of low molecular

cellular components takes place causing autolysis (Davies et al.,

1968; Bonesvoll and Gjermo, 1978; Tischer et al., 2012).

Cetyltrimethylammonium bromide, part of the QAC mixture

cetrimide, intercalates into DNA and causes precipitation (Allen

G. C. et al., 2006), as well as other QACs (Zinchenko et al.,

2004). The chain length of the side group polymer influences

the antimicrobial effectiveness of QACs (Dizman et al., 2004; Lu

et al., 2007).

Occurrence of disinfectants and
antiseptics in aquatic environments,
and their fate in wastewater
treatment plants

Disinfectants and antiseptics ultimately reach WWTPs.

As these WWTPs have not been designed to remove these

components, and due to the current inability of wastewater

treatment setups a significant fraction of these compounds

reaches the receiving water bodies due to the discharge

of WWTP effluent. Their presence in natural water cycles

represent a risk to human health and the ecosystem. The

current section covers the occurrence of these compounds in

water bodies including surface waters, WWTP influent and

effluent, together with the observed removal potential, the

existing situation in typical WWTPs. The occurrence data have

been categorized according to the source and summarized in

Tables 2–4. Additionally, due to the concern of impact of co-

occurrence of DA and antibiotics on antibiotic resistance, this

section provides data on the co-occurrence of disinfectants,

antiseptics, and antibiotics in WWTPs. The concentrations of

DA and antibiotics were listed in this section, when detected

in co-occurrence, however it is important to note that their

co-occurrence is variable depending on different conditions

including season, sampling location, type of WWTP and types

of DA and antibiotics that occur together.

Alcohols

Alcohols are biodegradable compounds that are quickly

metabolized in wastewater. A study investigating six

pharmaceutical WWTPs in China found that alcohols were

only detected in the influents, however, alcohol degradation

residues are detected in WWTPs (Luo et al., 2019). In a study

conducted in Spain, the stable ethanol residue ethyl sulfate

was found in wastewater in ranges between 1.4 µg/L and

74 µg/L (López-García et al., 2020). Among the alcohols,

isopropanol is extensively used in pharmaceutical fields

leading to the production of large amounts of wastewater

containing this compound (Cui et al., 2019; Yan et al., 2022).

However, isopropanol is a valuable organic solvent that usually

is recovered from industrial wastewater through separation

processes (Zhou et al., 2019). According to a recent literature

review by Verovšek et al. (2022) the concentration of alcohol

residues in surface waters and wastewater has not been

examined in any major reviews.

Aldehydes

Glutaraldehyde (GA) has been detected in urban sewage

networks, surface waters, and even drinking water (Boillot and

Perrodin, 2008; Wang et al., 2011). GA values found in drinking

water samples ranged from 0.3 to 1.4 µg/L (Dizman et al.,

2004). In hospital wastewater it was measured at a concentration

of 0.50 mg/L (Kang and Shin, 2016) with peak concentration

up to 4 mg/L can be seen in hospital effluents (Kang and

Shin, 2016). Formaldehyde is a common chemical in various

applications, and it was the 25th most produced chemical in

the USA in 1999 (Edwards et al., 1999). It can be found in

very high concentrations (12,900 mg/L) in specific industrial

wastewater (Hidalgo et al., 2002). GA and formaldehyde were

detected in the effluent and/or influent of 11 different livestock

WWTPs in South Korea, along with some antibiotics including

chlortetracycline, oxytetracycline, and trimethoprim (Lim et al.,

2013). Up to 13.1 and 16.7 ng/L of GA were detected in

the influent and effluent WWTP samples, respectively. For

formaldehyde the concentrations detected in the influent and

effluent were up to 346.2 and 321.1 ng/L, respectively, and

chlortetracycline was detected at up to 70,866.5 ng/L and

4,516.5 ng/L in the influent and the effluent, respectively.

Oxytetracycline and trimethoprim were only detected in the

influent in concentrations up to 12,171.9 ng/L and 0.4 ng/L,

respectively (Lim et al., 2013).

Biodegradability studies conducted on glutaraldehyde

showed variable results, which ranged from 83% in 5 days to
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TABLE 2 Occurrence of disinfectants in wastewater treatment plants (WWTPs) and wastewater (WWs).

Compound Concentration

(µg/L)

Source Country References

Alcohols Ethyl sulfate 1.4–74 RawWW Spain López-García et al., 2020

Aldehydes Glutaraldehyde Up to 0.0131 RawWW South Korea Lim et al., 2013

0.0167 WWTP Effluent

Formaldehyde Up to 0.3462 RawWW

Up to 0.3211 WWTP Effluent

Anilides Triclocarban 6.7 RawWW U.S. Halden and Paull, 2005

0.0047–0.0762 RawWW China Sun et al., 2016

0.0276–0.109 WWTP Effluent

Biguanides Chlorhexidine 1.305 RawWW Sweden Östman et al., 2017

Chelating agents Ethylenediaminetetraacetic

acid (EDTA)

5.7–330 RawWW Austria Clara et al., 2012

6.5–310 WWTP Effluent

585 RawWW UK Gardner et al., 2013

Nitrilotriacetic acid

(NTA)

71–830 RawWW Austria Clara et al., 2012

Up to 410 WWTP Effluent

Halogen-releasing

agents

AOX 1300–302,500 Pharma. WWTP

Effluent

China Xie et al., 2017

Iodine 10,000–30,000 Raw LCDWW South Korea Lee et al., 2009

Up to 100 RawWW France Wiest et al., 2018

5-40 WWTP Effluent US Drewes et al., 2001

Halophenoles Chloroxylenol 0.228–27.832 RawWW UK Kasprzyk-Hordern et al., 2009

Triclosan 0.087–15.729

Heavy metals

derivatives

Mercury 0.066 RawWW UK Gardner et al., 2013

0.7 (±8%)−

3.8 (±49%)

Italy Carletti et al., 2008

1.26 Sweden Östman et al., 2017

Copper 79 RawWW Greece Hargreaves et al., 2018

17 Brazil

59 France

73 US

76 UK

62 Australia

32 Italy

10

10

38

61

71 Wisconsin, U.S.

70

107

53 Sweden Östman et al., 2017

Silver <0.15–2.1 RawWW Norway Polesel et al., 2018

0.06–2.6 WWTP Effluent U.S. Shafer et al., 1998

0.49 RawWW Sweden Östman et al., 2017

(Continued)
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TABLE 2 (Continued)

Compound Concentration

(µg/L)

Source Country References

Phenols and cresols Phenol 0.74± 0.08 RawWW Spain Llompart et al., 2002

121± 50 Coking WWTP

Effluent

China Zhou et al., 2005

Cresols p-Cresol 1.1± 0.1 RawWW Spain Llompart et al., 2002

32± 110 Coking WWTP

Effluent

China Zhou et al., 2005

o-Cresol 81± 60

Phenolic compounds 0.000643–0.30583 RawWW Italy Spataro et al., 2019

Quaternary

ammonium

compounds (QACs)

QACs 0.002–0.072 WWTP Effluent Sweden Östman et al., 2017

Benzalkonium chloride

(BACs)

Up to 170 RawWW Austria Kreuzinger et al., 2007

Up to 40.1 WWTP Effluent

TABLE 3 Occurrence of disinfectants in surface waters, drinking/tap waters and drinking water treatment plants (DWTPs).

Compound Concentration

(µg/L)

Source Country References

Aldehydes Glutaraldehyde 0.3–1.4 DWTP Effluent South Korea Kang and Shin, 2016

Anilides Triclocarban 0.008– 1.119 River India Vimalkumar et al., 2018

0.360 South Africa Lehutso et al., 2017

Chelating agents Ethylenediaminetetraacetic

acid

07–4.0 River Germany Giger et al., 2006

Nitrilotriacetic acid

Halogen-releasing agents Iodine 0.4–212 River Europe and US Moran et al., 2002

0.1–0.4 Tap water China Gong and Zhang, 2013

Halophenols Chloroxylenol <0.03–0.358 River UK Kasprzyk-Hordern et al.,

2008

0.06–1.2 Indonesia Dsikowitzky et al., 2016

>500 Industrially impacted

estuarial areas

Global Thomas et al., 1999

Triclosan Up to 0.001 River Germany Bester, 2005

Up to 0.347 China Zhao et al., 2009

0.88–8.72 South Africa Lehutso et al., 2017

14.7 River Taiwan Shen et al., 2012b

Up to 0.2 Tap water

Heavy metals derivatives Mercury 0.0001–0.02 River Global Watras et al., 1995

Silver 0.00247–0.0698 River Germany Wimmer et al., 2019

Phenols and cresols Phenolic compounds Up to 0.458 River Germany Bolz et al., 2001

0.652–3.3 Lake China Zhong et al., 2010

98% in 20 days for different samples. Moreover, different studies

showed that lower concentrations of GA (< 2 mg/L) in WWTPs

resulted in higher biodegradability of this compound (Leung,

2001). The variability of the test results was attributed to the

shortcomings of different test methods. However, the overall

analysis of results led to the conclusion that glutaraldehyde

was readily biodegradable in the water environment (Leung,

2001). Evaluation of microbial community metabolism revealed
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TABLE 4 Occurrence of disinfectants in hospital wastewater.

Compound Concentration (µg/L) Country References

Aldehydes Glutaraldehyde 500–4,000 France Jolibois et al., 2002

Biguanides Chlorhexidine 85–1,940 Japan Matsushima and Sakurai,

1984

Halogen-releasing agents AOX 200–1,700 France Wiest et al., 2018

Heavy metals derivatives Mercury 21± 1 Mexico Pérez-Alvarez et al., 2018

0.04–2.6 Europe Kümmerer, 2001

that microorganisms quickly mineralize glutaraldehyde first to

glutaric acid and then to CO2 under aerobic conditions (Leung,

2001; Langenhoff, 2011). Additionally, glutaraldehyde has been

shown to prefer to stay in the aquatic phase (Langenhoff, 2011),

however, the GA that remains unmetabolized after biological

treatment can be removed by sorption on the biomass (Leung,

2001). Dilution to decrease GA concentrations is impractical

due to the large volumes of required water, however, sodium

bisulfite in a 2 to 3 molar ratio was found to be the most effective

chemical deactivation method for an aqueous glutaraldehyde

solution before entering the sewage facilities (Jordan et al.,

1996).

Formaldehyde in wastewater is removed by several

mechanisms which include adsorption, biological and chemical

oxidation methods (Eiroa et al., 2005; Jarusutthirak et al.,

2012; Bellat et al., 2015; Talaiekhozani et al., 2016; Yuan et al.,

2017). Formaldehyde in municipal wastewaters originates

from industrial manufacturing of common products including

paper, leather, and glass. It is biodegradable under anaerobic

and aerobic conditions, however above 250 mg/L it becomes

toxic to microorganisms. Formic acid is an intermediate during

formaldehyde degradation, which is also known to be easily

biodegradable (Jarusutthirak et al., 2012).

Anilides

Global consumption of products containing triclocarban

(TCC) has led to detectable concentrations of this compound

in raw and treated wastewaters as well as in the receiving

waters (Shen et al., 2012a,b; Taweetanawanit et al., 2018). Data

mainly from China and the US showed TCC to be detectable

in surface and drinking waters (Yun et al., 2020). The average

concentration in US raw wastewater was measured as 6.7 µg/L

(Halden and Paull, 2005). These data were significantly higher

than those observed in India and South Africa at 1.119 and

0.360 µg/L, respectively (Lehutso et al., 2017; Vimalkumar et al.,

2018). Sun et al. (2016) studied the occurrence and fate of

various pharmaceuticals and personal care products in three

different WWTPs in Xiamen, China, and observed the co-

occurrence of TCC (Inf: 4.7–76.2 ng/L, Eff: 27.6–109 ng/L) with

three different antibiotics including oxytetracycline (Inf: 8.6–230

ng/L, Eff: below the method detection level (BLD)-51.4 ng/L),

sulfamethoxazole (Inf: BLD−95.2 ng/L, Eff: BLD−22.4 ng/L),

and tetracycline (Inf: BLD−189 ng/L, Eff: BLD−37.6 ng/L) in

the influent and effluent of the plants.

Observed removal efficiency of TCC in WWTPs ranged

from 11.4 to 97% mainly due to adsorption onto sludge

(Yun et al., 2020). This significant disparity probably derives

from differences in overall treatment design, inlet loading and

concentrations, process operational conditions, and hydraulic

and solids retention time (Ying and Kookana, 2007; Lehutso

et al., 2017; Armstrong et al., 2018). A study conducted at a large

U.S. activated sludge WWTP found that TCC is not completely

removed during wastewater treatment and approximately 3%

residual is discharged with the effluents (Heidler et al., 2006).

Lozano et al. (2013) suggested some TCC degradation

occurred during nitrification-denitrification in the secondary

treatment stage, possibly due to reductive dehalogenation. On

the other hand, Wang et al. (2020) reported the biological

nutrient removal processes to be bioprocesses relevant for

nitrogen and phosphorus removal can significantly be inhibited

by long-term exposure to TCC concentrations of 100 µg/L or

higher (Wang et al., 2020). Due to its high hydrophobicity

[log KOW = 4.3; (Information NC for B, 2004)] TCC will

strongly partition to activated sludge and potentially be released

upon use as fertilizer on farmlands (Heidler et al., 2006;

Wang et al., 2020). Ultraviolet (UV) oxidation is considered

as a putative mechanism for degradation of TCC (Ali et al.,

2011).

Biguanides

Chlorhexidine was detected in hospital wastewater in

Japan at concentrations ranging from 0.085 to 1.94 mg/L

(Matsushima and Sakurai, 1984). In Sweden the average

concentration reported of chlorhexidine for influent wastewater

was 1,305 ng/L and in treated effluent, concentrations
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of five antibiotics including ciprofloxacin, clarithromycin,

erythromycin, metronidazole and trimethoprim were detected

in addition to an average chlorhexidine concentration of 28

ng/L (Östman et al., 2017). From the detected antibiotics,

trimethoprim was found in all samples in the range of 10–130

ng/L, and the highest concentration was found for erythromycin,

which was 350 ng/L (Östman et al., 2017).

Östman et al. (2018) studied detailedmass flows and removal

efficiencies of chlorhexidine in three Swedish WWTP. The

results of this study suggested that chlorhexidine removal is

associated mainly with adsorption onto sludge particles. No

biodegradation was observed for chlorhexidine in the studied

WWTPs. The maximum observed removal efficiency from

wastewater was 98% via sorption onto sludge, while the rest

ended up in the digested sludge (Östman et al., 2017). Over

99% removal was obtained in a drinking water treatment

plant in Spain using advanced treatment processes, including

ultrafiltration, reverse osmosis, and granular activated carbon

(Boleda et al., 2011).

Bisphenols

Hexachlorophene was widely used in personal care products

during the 1970s, and its presence was observed in sewage water

and sludge (Neal, 1973; Heidler and Halden, 2009). However,

the US Food and Drug Administration (USFDA) banned it over

concerns neural damage in infants (Kimbrough, 1973). Heidler

and Halden (2009) reported the influent and effluent wastewater

concentrations of this compound as < 0.11 ppb and < 0.02

ppb, respectively. Additionally, their results suggested that the

compound was removed from wastewater by adsorption to the

active sludge (Sasatsu et al., 1995).

Chelating agents

Ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic

acid (NTA) are chelating agents found at µg/L levels in

WWTPs and surface waters. The concentrations of EDTA and

NTA measured in the influent and effluent of a WWTP in

Austria were between 5.7 and 330 µg/L and 6.5–310 µg/L for

EDTA, and 71–830 µg/L and n.d. (not detected)-410 µg/L for

NTA, respectively (Clara et al., 2012). The concentrations of

EDTA with a mean value of 585 µg/L and three antibiotics

namely erythromycin, ofloxacin, and oxytetracycline with mean

concentrations of 2 µg/L, 0.18 µg/L and 3.6 µg/L, respectively,

were observed in the influent of sixteen WWTPs in the UK

(Gardner et al., 2013). EDTA and NTA were among the most

abundant organic compounds found in the river Rhine in

Germany with concentrations between 0.7 and 4.0 µg/L with an

average value of 1.8 µg/L (Giger et al., 2006).

Different studies showed that NTA could be removed up

to 90% through biological wastewater treatment, while removal

efficiency of EDTA was only between 15 and 23% (Clara et al.,

2012). As both compounds are very hydrophilic with log KOW

values of −2.6 and −3.8 (National Center for Biotechnology

Information, 2004a,b), respectively, they are not expected to

accumulate in the sludge. However, high hydrophilicity together

with poor biodegradability results in poor EDTA removal during

wastewater treatment. Therefore, in order to reduce its discharge

into receiving waters, it is crucial to control the sources and

to apply advanced treatment processes like ozonation and

adsorption onto activated carbon (Margot et al., 2015).

Halogen-releasing agents

When chlorines are added to wastewater they react

quickly with biological materials and produce various organo-

chlorinated compounds known as adsorbable organic halogens

(AOX). AOX are known to be lipophilic, persistent, and toxic

in aquatic environments (Kümmerer, 2001; Emmanuel et al.,

2004). Detectable levels of AOX compounds in treated effluents

from different WWTPs in China was reported to be in the

range of 1.3–302.5 mg/L (Xie et al., 2017). AOX are not readily

biodegradable but typically, can be removed to between 34 and

89% in biological treatment processes, mainly by adsorption to

the activated sludge (Bryant et al., 1992; Xie et al., 2017).

The raw wastewater collected from treatment plant at an

LCD film polarize manufacture in South Korea contained

iodine concentrations of 10 to 30 mg/L (Lee et al., 2009),

which was also detected in surface waters from 129 North

American and European rivers and tap water from four Chinese

cities in concentrations of 0.4–212 µg/L (Moran et al., 2002)

and 0.1–0.4 µg/L (Gong and Zhang, 2013), respectively. The

organic iodine concentration of 5–40 µg/L in treated effluents

from different WWTPs in the U.S. shows that this compound

is not completely removed during treatment (Drewes et al.,

2001). Laboratory experiments by Drewes et al. (2001) showed

removal rates of organic Iodine under aerobic conditions were

negligible. While anoxic conditions led to partial removal of

organic iodine (around 20%), the highest biodegradation of

57.3 % was observed under anaerobic conditions (Drewes et al.,

2001). These results are not surprising as organic halogen

compounds are well known not to be transformed aerobically

but remediated anaerobically via reductive dehalogenation

under anaerobic conditions.

A study in France reported the co-concentrations of AOX

and three antibiotics involving ciprofloxacin, sulfamethoxazole,

and vancomycin, in hospital and urban raw wastewaters. In this

study, AOX, ciprofloxacin, sulfamethoxazole, and vancomycin

were detected in range concentrations (µg/L) of 200–1,700, 4.6–

179, 0.9–26, and 0.06–7.4, in hospital raw wastewater and up to
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100, up to 0.15, 0.04–1.5, and< Limit of quantification, in urban

raw wastewater, respectively (Wiest et al., 2018).

Halophenoles

The extensive use of Chloroxylenol (PCMX) in domestic

and hospital environments has contributed to levels of up to

65 µg/L in urban wastewater treatment plants (Choi and Oh,

2019). A comprehensive monitoring study of pharmaceuticals

and personal care products in two rivers in the UK revealed that

all samples contained PCMX at a concentration ranging from

<0.03 to 0.358 µg/L (Kasprzyk-Hordern et al., 2008) Rivers in

greater Jakarta city, Indonesia, contained PCMX of 0.06 and 1.2

µg/L (Dsikowitzky et al., 2016). The concentrations found in this

study could be related to nearby sources which include potential

leaching form solid waste, WWTPs treating municipal and

industrial waste originating from manufactures of plasticizers,

paper and flame retardants (Dsikowitzky et al., 2016). Extreme

levels above 500µg/L were reported in one industrially impacted

estuarine area, these levels exceed the acute and chronic toxicity

thresholds for some aquatic species (Thomas et al., 1999).

Conventional WWTPs can remove PCMX from wastewater

through the activated sludge process with an efficiency of up

to 99% (Kasprzyk-Hordern et al., 2009). An examination of

the PCMX’s occurrence and removal in a WWTP in Baltimore

US influent and effluent concentrations of 0.4 and 0.08 µg/L,

respectively. Moreover, biodegradation test results presented in

the same work showed 60% biotransformation of PCMX after 21

days of incubation, which was increased to 80% after additional

50 days of incubation (Yu et al., 2006).

Triclosan (TCS) concentrations in domestic sewage ranged

from 0.3 to 12.5 µg/L (Abbott et al., 2020). This antimicrobial

and its known transformation product, methyl triclosan

(MeTCS), were detected in the range of <3–10 ng/L and 0.3–

10 ng/L, respectively, in surface water samples from the river

Ruhr in Germany (Bester, 2005). Data from China showed that

TCS was present at concentrations between 0.6 and 347+-12

ng/L in the Liuxi, Zhujiang, and Shijing rivers (Zhao et al.,

2009). Another study from Taiwan investigated the presence of

this compound in various samples, including tap water, treated

household drinking water, bottled water, and river water finding

TCS levels of up to 0.2, 0.13, 0.1, and 14.7 µg/L, respectively

(Shen et al., 2012b). The reported TCS concentration of river

water samples in South Africa were generally lower (0.88 and

8.72 µg/L) (Lehutso et al., 2017).

TCS, has been detected in Swiss WWTP effluents at

concentrations ranging from 42 and 213 ng/L, which results in

TCS in the receiving waters between 11 and 98 ng/L (Singer et al.,

2002). The fate of TCS during wastewater treatment has been

studied in four different WWTPs in China (Zheng et al., 2020b)

were the average influent and effluent TCS concentrations were

found to be 397.1 and 8.0 ng/L, respectively. This study found

that more than 97% of the TCS was removed in different

treatment processes including modified and carousel oxidation

ditch and modified A2/O. Their results indicated that while TCS

was removed from the wastewater 36.4–49% of the compound

was transferred onto the sludge, therefore posing a possible

ecological risk and thus, treatment is needed before application

onto land used for agriculture. A study by Lozano et al. (2013)

indicated that TCS concentrations decreased in the secondary

and in the nitrification/denitrification processes with removal

efficiencies of 10.4 and 22.6%, respectively, while presence of

methyltriclosan (MeTCS), a transformation product of TCS,

indicated biotransformation in the nitrification/denitrification

process (Lozano et al., 2013). Guerra et al. (2019) found that

biological treatment, including facultative and aerated lagoons,

were efficient methods for the removal TCS from wastewater,

and that there is a strong correlation between TCS removal and

organic nitrogen removal.

The cooccurrence of TCS and PCMX with five antibiotics

including trimethoprim, sulfamethoxazole, chloramphenicol,

erythromycin-H2O, and metronidazole were reported in

influent and effluent of two WWTPs in UK. Among these

antibiotics, trimethoprim had the highest mean concentration

of 2,192 and 2,925 ng/L in the influents of eachWWTPs, and the

mean levels of TCS and PCMX in the same influents were 87 and

228 ng/L in oneWWTP, and 15,792 and 27,832 ng/L in the other

WWTP, respectively (Kasprzyk-Hordern et al., 2009).

Heavy metals derivatives

The concentrations of heavy metal derivatives used as DAs

that are found in municipal wastewater vary over three orders of

magnitudes between ng/L and µg/L levels (Margot et al., 2015;

Cervantes-Avilés et al., 2019). Discharge of heavy metals such

as mercury (Hg), copper (Cu) and silver nanoparticles (AgNPs)

from sources including dental practices, hospitals, agricultural

sites, and landfill leachate is high (Wang et al., 2004; Li et al.,

2013).

Mercury (Hg) and Copper (Cu) are commonly detected

in municipal wastewater and WWTPs (Hargreaves et al.,

2018). The average co-concentrations of Hg and Cu and three

antibiotics (erythromycin, ofloxacin, oxytetracycline) detected

in the influents of several WWTPs in UK were reported as 0.066,

76, 2.0, 0.18, 3.6 µg /L, respectively (Gardner et al., 2013). The

detected concentration of Hg in the wastewater from a hospital

in Toluca, Mexico, was 21 ± 1 µg/L (Pérez-Alvarez et al.,

2018). The average concentration of Hg in European hospital

wastewaters varied between 0.04 and 2.6 µg/L (Kümmerer,

2001). In Italy, the average influent Hg concentration in five

WWTPs ranged between 0.7 and 3.8 µg/L (Carletti et al.,

2008). The globally detected Hg concentrations in surface waters

ranged from 0.1 to 20 ng/L, with most values under 5 ng/L

(Cossa and Fileman, 1991; Watras et al., 1995; Mastrine et al.,
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1999). Carletti et al. (2008) reported the typical Hg removal

efficiencies of fiveWWTPs to be between 57 and 92% by sorption

onto the sludge.

Domestic inputs were found to be the main sources of Cu

entering urban WWTPs, mainly due to corrosion in domestic

plumbing systems (Merkel et al., 2002). Hargreaves et al. (2018)

reported Cu concentrations in the WWTP influents from

different countries including Greece, Italy, Brazil, France, US

and the UK. The measured concentrations were seen to vary

between 10 and 107 µg/L, details of which are given in Table 2.

Moreover, the same study showed that maximum removal

efficiency of Cu in studied WWTPs (mainly activated sludge

process) was 94% (Hargreaves et al., 2018).

Silver is released into the environment in the form of

dissolved ionic Ag+ and AgNP (Kaegi et al., 2013). Ag+

concentration in the influent wastewater of two Norwegian

WWTPs were measured as <0.15–2.1 µg/ L by Polesel et al.

(2018). The influent and effluent Ag+ concentration was

measured in five WWTPs in the Wisconsin (US) area by Shafer

et al. (1998). The results suggested that the Ag+ removal

efficiency was above 94%, mainly via adsorption with effluent

Ag+ concentration of between 0.06–2.6 µg/L. AgNPs were

detected in the effluent of seven WWTPs in Germany. In this

study AgNP concentrations were measured at the discharge

points of these WWTP in the River Isar (Germany), and

these ranged from 2.47 to 69.08 ng/L (Wimmer et al., 2019).

However, due to rapid dilution and fast adsorption into the

river’s suspended sediments, the concentration was stable at

around 1–2 ng/L until the next discharge point (Wimmer et al.,

2019).

Average concentrations of Ag (0.49 µg/L), Hg (1.26 µg/L),

and Cu (53 µg/L) together with antibiotics (ciprofloxacin,

erythromycin, clarithromycin, trimethoprim, metronidazole) in

an average concentration ranging 0–100 ng/L were detected in

the influent of several WWTPs in Sweden (Östman et al., 2017).

Phenols and cresols

Phenolic compounds are common in ecological water

samples. Data from the influent of an urban WWTP in Spain

showed levels of 0.74 ± 0.08 and 1.1 ± 0.1 µg/L for phenol

and p-Cresol, respectively (Llompart et al., 2002).Whereas water

samples from a coking WWTP contained phenol, p-Cresol,

and o-Cresol in high concentrations of 131.8 ± 0.11, 51.2 ±

0.09, and 17.2 ± 0.06 mg/L for untreated samples, effluents

contained only 0.121 ± 0.05, 0.032 ± 0.11, and 0.081 ± 0.06

mg/L, respectively (Zhou et al., 2005). Phenolic compounds are

found in surface waters. The highest observed concentration in

five rivers and streams in south-west Germany was 0.458 µg/L

(Bolz et al., 2001). In the third biggest lake in China, Taihu,

concentrations ranged 0.652 – 3.3 µg/L (Zhong et al., 2010).

The occurrence of six antibiotics (amoxicillin, ciprofloxacin,

tylosin, erythromycin, sulfamethoxazole and chlortetracycline)

and four phenolic compounds (bisphenol A, 4-nonylphenol,

nonylphenol mono- and di-ethoxylate) were investigated in

the inlets and outlets in four WWTPs in Rome, Italy. The

maximum average antibiotic concentration was found for

chlortetracycline as 2,976.19 ng/L in the influent, in which the

average concentrations of phenolic compounds were 305.83,

6.43, 27.55, and 229.09 ng/L for bisphenol A, 4-nonylphenol,

nonylphenol mono- and di-ethoxylate, respectively (Spataro

et al., 2019).

Removal efficiencies of phenolic compounds from domestic

wastewaters and agricultural runoffs ranged from 33 and 96%,

with an average concentration of 5.3 µg/L in the final effluents

(Salaudeen et al., 2019). There is contradictory information

in the literature with regards to what is the mechanism for

phenol degradation in wastewater, where one group claimed

biotransformation (Zhong et al., 2010) whereas another study

argued that the phenolic compounds are removed mainly

through adsorption (Salaudeen et al., 2019). Although activated

carbon is the most applied treatment for the removal of phenols

it is also very expensive to use (Villegas et al., 2016).

Peroxygen

Without leaving any by-products, peroxygen decomposes

fully into hydrogen and water (Gehr et al., 2009). Due to the high

reaction kinetics, there are no longer term traces of peroxygen

residue in water bodies. However, some hydrogen peroxide

concentrations are detected in natural waters, the formation

of which is attributed to photochemical reactions by sunlight

(Cooper et al., 1988). In the wastewater, the same fast reaction

kinetics is applicable and leave low traces and therefore influent

concentrations to wastewater treatment plants are negligible.

Quaternary ammonium compounds

Quaternary ammonium compounds (QACs) are strong

cleaning and disinfecting agents used extensively during the

SARS-CoV-2 pandemic. The US Environmental Protection

Agency’s (USEPA) list of recommended disinfectants against

SARS-CoV-2 contains a majority of QAC containing

compounds (EPA, 2022), hence Zheng et al. (2020a) found

an increased detected level of 19 QACs in household dust.

Approximately 75% of QACs used yearly are discharged into

wastewater treatment systems (Ismail et al., 2010). QACs

concentrations in 12 municipal WWTPs in the Saint Paul

Minneapolis urban area ranged between 0.4 and 6.6 µg/L

(Pati and Arnold, 2020). Average co- concentrations of QACs

ranged between 2 and 72 ng/L and antibiotics (ciprofloxacin,

erythromycin, clarithromycin, trimethoprim, metronidazole)

ranged between 36 and 129 ng/L were observed in treated
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effluent of several WWTPs in Sweden (Östman et al., 2017).

Widespread detection of Benzalkonium chloride (BAC) in

samples obtained from different WWTP effluents demonstrates

that biological processes are not the most effective treatment

method for QACs (Zhang et al., 2015). The maximum

concentration of BACs in 5 WWTPs located in two different

Austrian cities were found to be 170 µg/L in the influent,

and 4.1 µg/L in the effluent (Kreuzinger et al., 2007). QAC

compounds are biodegradable under aerobic conditions;

however, their sorption rates are faster than their degradation

rates (Zhang et al., 2015). QACs are cationic surfactants and

have a strong affinity to anionic surfaces such as biomass

(Ferrer and Furlong, 2001; Hajaya and Pavlostathis, 2012).

These properties combined with their long half-lives led to

the accumulation of QACs on the sewage sludge (Tezel and

Pavlostathis, 2009). Although the removal efficiency for QACs

in WWTPs is above 90% (Clara et al., 2007; Kreuzinger et al.,

2007), only 20% are removed by biotransformation. Therefore,

∼70% are adsorbed to the sludge, which will be returned to

the environment through land application of QACs-bearing

biosolids (Ismail et al., 2010; Zhang et al., 2015). According

to the USEPA BACs are toxic to aquatic inhabitants and they

recommend against the discharge of BACs into the receiving

water bodies. Therefore, the proper treatment of wastewater

containing these compounds is important for environmental

health (Pereira and Tagkopoulos, 2019).

Resistance to disinfectants and
antiseptics and cross-resistance
between antibiotics

The first described resistance to disinfectants happened in

1887 by Kossiakoff in Paris where he described the adaptation to

phenol, boric acid and mercuric chloride (Russell, 2004). In the

1940s and 1950s a number of papers were published studying

the development of several DAs in gram positive and negative

bacteria (Russell, 2004).

Mechanism of resistance

The resistance mechanisms for disinfectants resemble those

of antibiotics resistance. Generally, these mechanisms reduce

the overall concentration of microbicides the organism is

exposed to or find a way to evade the compound. These

mechanisms are (i) efflux pumps, (ii) enzymatic inactivation,

(iii) target modification, (iv) changes in the cell surface to

reduce permeability or interaction and (v) by-pass of metabolic

pathways (Webber et al., 2008; Gnanadhas et al., 2013).

E	ux pumps

Efflux pumps are common among bacteria and there

are five main protein families documented: ATP-binding

cassette (ABC), drug/metabolite transporter (DMT), multidrug

and toxic compound extrusion (MATE), major facilitators

(MFS) and resistance nodulation cell division (RND) (Borges-

Walmsley and Walmsley, 2001; Piddock, 2006; Poole, 2007).

The pumps ensure a lower intracellular level of DA, reduce the

sensitivity of the cell and can confer resistance if overexpressed

(Chuanchuen et al., 2003; Piddock, 2006; Mima et al., 2007).

Efflux pump as a resistance mechanism against QAC and

triclosan mediated through e.g., qacA and mexCD in the

strains S. aureus, P. aeruginosa, E. coli and A. baumanii is

well documented (Tennent et al., 1989; McMurry et al., 1998;

Heir et al., 1999; Chuanchuen et al., 2001; Morita et al., 2003;

Mima et al., 2007; Rajamohan et al., 2009; Mc Cay et al., 2010).

Transcriptome analysis of E. coli and Salmonella enterica after

exposure to triclosan showed higher expression of efflux genes

as well as species specific responses (Bailey et al., 2009).

Enzymatic inactivation

Enzymatic inactivation renders the harmful substance

incapable from doing further damage. Enzymatic inactivation

takes place for metallic ions (Cu2+, Ag+) which are reduced to

their non-effective oxidation states (Cloete, 2003). Aldehydes are

inactivated by aldehyde dehydrogenase, and peroxygens via the

inactivation of free radicals by catalases (Kümmerle et al., 1996),

superoxide dismutase and alkyl hydroperoxidases (Greenberg

et al., 1990).

Changes in cell surface and permeability

Changes in Cell surface and permeability are well

documented for gram-positive, gram-negative bacteria,

spores, and mycobacteria (Manzoor et al., 1999; Denyer et al.,

2002; Lambert, 2002; Fraud et al., 2003; Svetlíková et al.,

2009; Frenzel et al., 2011; Leggett et al., 2012; Machado et al.,

2013). Gram-negative bacteria change their cell permeability

through the reduced expression of porins and by changing

lipopolysaccharide expression and structure (Denyer et al., 2002;

Machado et al., 2013). For mycobacteria and gram-positive

bacteria, the resistance comes from changes in the mycoylacyl

arabinogalacatan layer as well as change in porin expression

(Manzoor et al., 1999; Lambert, 2002; Fraud et al., 2003;

Svetlíková et al., 2009; Frenzel et al., 2011). The resistance of

spores through cell permeability is well described by Leggett

et al. (2012).

By-pass metabolic pathways

By-pass metabolic pathways are not well documented as

a resistance mechanism for DAs. There are several organisms
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where the higher resistance could be attributed to changes in

metabolism. For S. enterica, triclosan resistances was associated

with by-pass metabolic pathways and was discovered using

proteomics (Webber et al., 2008). As previously mentioned, a

target for triclosan is the lipid metabolism via the enoyl-acyl

carrier protein reductase (FabI) enzyme (Larras et al., 2020).

Webber et al. (2008) found nine proteins which were involved

in the production of pyruvate and fatty acids with altered

expression after exposure to triclosan. In a study by Tkachenko

et al. (2007) investigating triclosan resistant S. aureus, a change

in the lipid composition of the cell membrane was found

resulting in a change in the expression profile for branched chain

lipid acids.

Biofilm

Biofilm formation is amore general ecophysiological defense

mechanism against antagonists. Bacteria in biofilms are less

vulnerable due to transport limitations, predominantly limited

to molecular diffusion, and often form a synergistic community

comprised of multiple strains. Microbicides have to penetrate

several layers of bacteria and exopolymer substance (EPS)

driven by a falling concentration gradient which result in

lower disinfectant concentrations at the deeper strata (Chen

and Stewart, 1996). Additionally, more resistant strains might

further enhance the protection of the biofilm for more

susceptible strains (Leriche et al., 2003). As an example, Listeria

monocytogenes is less susceptible to the popular QAC, BAC,

and peracetic acid after biofilm formation (Pang et al., 2019;

Ibusquiza et al., 2011). At the same time a disinfectant gradient

exists in the biofilm with a sub-MIC stimulating the resistome

development. As the diffusive transport limitation also apply for

all othermolecular and particulater components, specific growth

is also reduced which partly counteract the benefit of the sessile

growth state (Anderl et al., 2003).

Acquisition and dissemination of
resistance

Besides the obvious acquisition through vertical inheritance,

microorganism obtain new resistance mechanisms through

horizontal gene transfer (HGT) or mutations (Jury et al.,

2010). As mutations occur randomly and are then normally

disseminated through vertical inheritance, HGT is of greater

concern as this enables genes to make phylogenetic jumps (Pál

et al., 2005; Barlow, 2009; Treangen and Rocha, 2011; Huang

et al., 2017).

The three main mechanisms are conjugation,

transformation and transduction. In conjugation processes

a plasmid is transmitted via a cellular connection from a donor

bacterium to a recipient, called trans-conjugant (Thomas,

2000). Transformation occurs by excreted free suspended

extracellular DNA (eDNA) being taken up and incorporated

into the intracellular genome by competent bacteria (De Vries

and Wackernagel, 2002; Heuer and Smalla, 2007). The last

mechanism is transduction which involves bacteriophages as

transporting shuttle for DNA fragments which are incorporated

into the recipient cells genomes (Cano and Colomé, 1988;

Snyder and Champness, 2007; Modi et al., 2013). It can further

be divided into generalized transduction where DNA segments

are randomly packed with the viral DNA, and specialized

transduction where a DNA fragment from the viral vicinity is

packed alongside the viral DNA (Canchaya et al., 2003).

While all mechanisms have been described for DA resistance

mechanism dissemination, the main focus is on conjugation

(Bjorland et al., 2005; Mc Carlie et al., 2020; Tong et al.,

2021). Especially well researched are qac genes encoding multi

efflux pumps, shown to occur on IncP1β-plasmids and class 1

integrons opening a wide host range (Schlüter et al., 2007). In

the food industry plasmid mediated QAC resistance genes were

documented, and dissemination suggested (Bjorland et al., 2005;

Li et al., 2017).

Co- and cross-resistance

Co-resistance describes the mechanism that transfers

various genetic components encoding different resistances at

the same time (e.g., plasmid, transposons, integrons) (Cantón

and Ruiz-Garbajosa, 2011). These genes are then separately

expressed and exercise their resistance. In the case of cross-

resistance, a microorganism is resistant to several (unrelated)

compounds through the same mechanism [e.g., using the same

efflux pump against different antibiotics (Masuda et al., 1995,

1996)].

For alcohol-based disinfectants, reports have claimed

no cross-resistance between DAs and antibiotics (Kampf,

2018a,b). This is supported by a recent study of Morante

et al. (2021) which found no relation in Klebsiella pneumoniae

isolates resistant to isopropanol and antibiotic resistances.

This is contrary to de Carvalho et al. (2020) who showed

that Mycobacterium vaccae were more resistant to antibiotics

after disinfectant exposure. The strains were exposed for 64 h

to ethanol-based hand rubs, causing a change in the fatty

acid composition of the cell membrane. The resistance of the

adapted strains was compared to non-adapted to the antibiotics

levofloxacin, teicoplanin and the efflux pump inhibitors

thioridazine and omeprazole. All the strains showed a higher

resistance than their non-adapted counterparts indicating a

cross-resistance through a change in permeability (de Carvalho

et al., 2020). In a study looking at 16 Mycobacterium chelonae

isolates it was found that 50% of the strains were tolerant

against 2% glutaraldehyde. All of the glutaraldehyde tolerant

strains showed resistance to at least two classes of antibiotics.

The addition of efflux pump inhibitors did not change the

MIC of glutaraldehyde or antibiotics indicating an alternative

resistance mechanism besides efflux pumps (Nomura et al.,

Frontiers inMicrobiology 17 frontiersin.org

https://doi.org/10.3389/fmicb.2022.1050558
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Basiry et al. 10.3389/fmicb.2022.1050558

2004). For the DAs triclosan, benzalkonium chloride and

chlorhexidine a number of examples for cross-resistance

exist. Merchel Piovesan Pereira et al. (2021) exposed 40 E.

coli strains to sub-inhibitory concentrations of 10 widely

used DAs. 17 of these strains exhibited cross-resistance to the

antibiotics ampicillin, chloramphenicol or norfloxacin. These

results showed that the DAs chlorophene, BAC, chlorhexidine

and glutaraldehyde induced cross-resistances. Membrane

related mutations were overrepresented, and the majority

of the strains showed improved biofilm-forming capacities

(Merchel Piovesan Pereira et al., 2021). In an investigation,

E. coli strains were isolated from pigs, pig carcasses and

pork, and were subsequently exposed to the DAs triclosan,

BAC and chlorhexidine. Afterwards the strains were tested

for eight antibiotics. Triclosan caused cross-resistance to

all eight antibiotics while BAC and chlorhexidine caused

resistance to at least three of the eight different antibiotics. The

presence of the efflux pump inhibitor (EPI) Phenylalanine-

arginine β-naphthylamide (PAβN) restored susceptibility to

chloramphenicol and trimethoprim, while leaving the strains

resistant to the other antibiotics (Puangseree et al., 2021).

This indicates that the resistance to chloramphenicol and

trimethoprim was caused by the expression of efflux pumps

but that the cross-resistance is multifaceted and caused by

several factors. Comparable results were shown for six E.

coli and six non-typhoidal Salmonella strains which were

exposed to QACs. After a 12-day period, all strains showed

increased MIC values for the tested antimicrobials where

the highest resistance was seen for ampicillin, tetracycline,

ciprofloxacin and chloramphenicol. It was additionally shown

that PAβN weakly restores susceptibility, indicating only a

weak involvement of efflux pumps (Nhung et al., 2015). Fraud

et al. (2008) exposed P. aeruginosa to cationic disinfectants

from the biguanide and quaternary ammonium chloride classes

and showed that expression for the mexCD-oprJ operon was

induced as well as an improved chlorhexidine resistance.

MexCD-oprJ is a multidrug efflux pump responsible for

tetracycline and ciprofloxacin resistance (Masuda et al., 1995,

1996). In a research article by Gadea et al. (2017) looking

at resistance through exposure to QACs, they exposed 76

previously identified biocide and antibiotic sensitive strains

from organic foods to the QACs benzalkonium chloride

and hexadecylpyridinium (HDP). The strains were exposed

via serial inoculation to gradually increased concentrations

of these DAs. Afterwards the strains were exposed to a

multitude of DAs: didecyldimethylammonium bromide,

cetrimide, hexachlorophene, hexadecylpyridinium chloride,

chlorhexidine, BAC; and the antibiotics ampicillin, cefotaxime,

ceftazidime, ciprofloxacin, sulfamethoxazole/trimethoprim,

tetracycline and nalidixic acid. Interestingly, exposure to BAC

and HDP caused reduced susceptibility to other DAs, among

these; hexachlorophene, triclosan and chlorhexidine. BAC

exposed strains showed increased resistance to ampicillin,

sulfamethoxazole and cefotaxime and increased membrane

rigidity. HDP exposed strains showed a more heterogenous

antibiotic resistance profile which also proved strain specific

(Gadea et al., 2017). In several independent experiments,

Salmonella enterica was exposed to popular farm disinfectants

for different periods of time. Several strains exhibited reduced

susceptibility to antibiotics such as ampicillin, tetracycline and

ciprofloxacin and they were associated with higher expression

of the efflux pump AcrAB-TolC (Karatzas et al., 2007, 2008;

Randall et al., 2007). Nicolae Dopcea et al. (2020) exposed

different Staphylococcus spp. strains to chlorhexidine and

showed that it led to higher MICs for chlorhexidine, but also to

a lowered sensitivity to popular antibiotics such as ampicillin,

gentamicin and tetracycline.

Inferring from this, some DAs, like QAC, triclosan and

chlorhexidine are more likely to induce cross-resistance or

reduced sensitivity to antibiotics in specific strains. This might

well be due to a research bias for certain DA compounds and

their effect on popular researched strains. Due to this possible

bias further research in this area is needed.

The cross-resistance mechanisms discussed here are mostly

related to more general resistance responses, changes in

membrane permeability, efflux pumps (Blanco et al., 2016), and

the structural effects of biofilms. In this regard it is not surprising

that these mechanisms cause cross-resistance as they all decrease

the accessibility of DAs and antibiotics. At the same time recent

research has shown that EPI only partially restores susceptibility

to acquired antibiotic resistances through DA exposure, strongly

indicating that efflux pumps are only part of the resistance and

that it is most likely a co-development of several mechanisms

as has been proposed for E. coli in response to BAC (Jang

et al., 2008; Moen et al., 2012). These results indicate that cross-

resistance between DA resistance mechanisms and antibiotic

resistance mechanisms are the result of the general microbial

adaptation to a hostile environment.

Conclusions and future perspectives

This review focused on the occurrence of DAs in aquatic

environments, their resistance mechanisms and their increased

cross-resistance to antibiotics. Microorganisms can develop

resistance to biocidal agents, when there is a constant selective

pressure, and simultaneously it may increase the development

rate of antibiotic resistance, hence improve their tolerance to

antibiotics. Alcohol-based disinfectants promote this to a lesser

degree than compounds like QACs, triclosan and chlorhexidine,

which have been flagged due to their potential to promote cross-

resistance. Together with the assessment of the occurrence and

fate of DAs in wastewater treatment plants, this work indicates

that some DAs promote the emergence of cross-resistance to

antibiotics and should be given special attention.

Frontiers inMicrobiology 18 frontiersin.org

https://doi.org/10.3389/fmicb.2022.1050558
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Basiry et al. 10.3389/fmicb.2022.1050558

Regarding the collateral effect of the SARS-CoV-2 pandemic

enhanced the use of DAs and therefore resulting ecological

concentrations of DAs in streams entering the WWTPs.

Therefore, there is an urgent demand for sustainable control and

handling of these micropollutants from wastewaters. Although

the development of resistance mechanisms against DAs is not

avoidable, measures should be implemented to limit and slow

down the development of resistances. In this view, following

points are suggested:

• Usage of DAs in concentrations that have no promoting

effect on the development of resistance mechanisms in

the environment.

• Developing new methods or operational strategies with

improved removal efficiency of critical DAs such as QACs,

biguanides, and bisphenols in WWTPs as these are proven

to promote cross-resistance in bacteria.

• Retrofitting existing WWTP to tertiary treatment unit

processes capable of conversion of key DA where

economically possible.

• Implementing a surveillance system for disinfectant

resistant genes in WWTP.

These approaches should be followed and implemented

until obtaining a better knowledge about mechanisms of the

emergence of DA resistance and understanding how these

mechanisms would influence the mechanisms of antibiotic

resistance. While progress in this was done in recent years,

research must be intensified to evaluate the potential danger

level and potential solutions.
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activity of quaternary ammonium salts and resistance of microorganisms to
these compounds. World J. Microbiol. Biotechnol. 37, 1–11. Available from:
doi: 10.1007/s11274-020-02978-0

Ortegón, L., Puentes-Herrera, M., Corrales, I. F., and Cortés, J. A.
(2017). Colonization and infection in the newborn infant: does chlorhexidine
play a role in infection prevention. Arch. Argent. Pediatr. 115, 65–70.
doi: 10.5546/aap.2017.eng.65

Orth, R. (1998). The importance of disinfection for the hygiene in the
dairy and beverage production. Int. Biodeterior. Biodegrad. 41, 201–208.
doi: 10.1016/S0964-8305(98)00036-5

Östman, M., Fick, J., and Tysklind, M. (2018). Detailed mass flows and removal
efficiencies for biocides and antibiotics in Swedish sewage treatment plants. Sci.
Total Environ. (2018) 640–41, 327–36. doi: 10.1016/j.scitotenv.2018.05.304

Östman, M., Lindberg, R. H., Fick, J., Björn, E., and Tysklind, M. (2017).
Screening of biocides, metals and antibiotics in Swedish sewage sludge and
wastewater.Water Res. 115, 318–328. doi: 10.1016/j.watres.2017.03.011

Pál, C., Papp, B., and Lercher, M. J. (2005). Adaptive evolution of bacterial
metabolic networks by horizontal gene transfer. Nat. Genet. 37, 1372–1375.
doi: 10.1038/ng1686

Pang, X., Wong, C., Chung, H. J., and Yuk, H. G. (2019). Biofilm formation of
Listeria monocytogenes and its resistance to quaternary ammonium compounds
in a simulated salmon processing environment. Food Control. 98, 200–8.
doi: 10.1016/j.foodcont.2018.11.029

Pati, S. G., and Arnold, W. A. (2020). Comprehensive screening of quaternary
ammonium surfactants and ionic liquids in wastewater effluents and lake
sediments. Environ. Sci. Process. Impacts. 22, 430–441. doi: 10.1039/C9EM00554D

Peña, M. M. O., Lee, J., and Thiele, D. J. A. (1999). Delicate balance:
homeostatic control of copper uptake and distribution. J. Nutr. 129, 1251–1260.
doi: 10.1093/jn/129.7.1251

Percival, S. L., Kite, P., Eastwood, K., Murga, R., Carr, J., Arduino, M. J., et al.
(2005). Tetrasodium EDTA as a novel central venous catheter lock solution against
biofilm. Infect. Control Hosp. Epidemiol. 26, 515–519. doi: 10.1086/502577

Pereira, B. M. P., and Tagkopoulos, I. (2019). Benzalkonium chlorides: uses,
regulatory status, and microbial resistance. Appl. Environ. Microbiol. 85, 1–13.
doi: 10.1128/AEM.00377-19

Pérez-Alvarez, I., Islas-Flores, H., Gómez-Oliván, L. M., Barcel,ó, D., López
De Alda, M., Pérez Solsona, S., et al. (2018). Determination of metals
and pharmaceutical compounds released in hospital wastewater from Toluca,
Mexico, and evaluation of their toxic impact. Environ. Pollut. 240, 330–341.
doi: 10.1016/j.envpol.2018.04.116

Piddock, L. J. V. (2006). Multidrug-resistance efflux pumps-not just for
resistance. Nat. Rev. Microbiol. 4, 629–636. doi: 10.1038/nrmicro1464

Polesel, F., Farkas, J., Kjos, M., Almeida Carvalho, P., Flores-Alsina, X., Gernaey,
K. V., et al. (2018). Occurrence, characterisation and fate of (nano)particulate Ti
and Ag in two Norwegian wastewater treatment plants. Water Res. 141, 19–31.
doi: 10.1016/j.watres.2018.04.065

Poole, K. (2007). Efflux pumps as antimicrobial resistance mechanisms. Ann.
Med. 39, 162–176. doi: 10.1080/07853890701195262

Puangseree, J., Jeamsripong, S., Prathan, R., Pungpian, C., and Chuanchuen,
R. (2021). Resistance to widely-used disinfectants and heavy metals and cross
resistance to antibiotics in Escherichia coli isolated from pigs, pork and pig carcass.
Food Control. 124, 107892. doi: 10.1016/j.foodcont.2021.107892

Rajamohan, G., Srinivasan, V. B., and Gebreyes, W. A. (2009). Novel
role of Acinetobacter baumannii RND efflux transporters in mediating
decreased susceptibility to biocides. J. Antimicrob. Chemother. 65, 228–232.
doi: 10.1093/jac/dkp427

Randall, L. P., Cooles, S. W., Coldham, N. G., Penuela, E. G., Mott, A. C.,
Woodward, M. J., et al. (2007). Commonly used farm disinfectants can select for
mutant Salmonella enterica serovar Typhimurium with decreased susceptibility
to biocides and antibiotics without compromising virulence. J. Antimicrob.
Chemother. 60, 1273–1280. doi: 10.1093/jac/dkm359

Report, A. (2012). Alkyl (C 12-16) dimethylbenzyl ammonium chloride. p. 8.

Rosenkranz, H., and Rosenkranz, S. (1972). Silver sulfadiazine: interaction
with isolated deoxyribonucleic acid. Am. Soc. Microbiol. 2, 373–383.
doi: 10.1128/AAC.2.5.373

Rosenthal, R. A., Dassanayake, N. L., Schlitzer, R. L., Schlech, B. A., Meadows,
D. L., Stone, R. P., et al. (2006). Biocide uptake in contact lenses and loss of
fungicidal activity during storage of contact lenses. Eye Contact Lens. 32, 262–266.
doi: 10.1097/ICL.0b013e31802b413f

Russell, A. D. (2004). Bacterial adaptation and resistance to antiseptics,
disinfectants and preservatives is not a new phenomenon. J. Hosp. Infect. 57,
97–104. doi: 10.1016/j.jhin.2004.01.004

Russell, H.ugo, Ayliffe’s. (2013). Principles and Practice of Disinfection,
Preservation and Sterilization. 5th ed. Fraise, A. P, Maillard, J. Y., Sattar, S. A., (eds).
Wiley-Blackwell. p. 616.

Rutala, W. A., and Weber, D. J. (2001). New disinfection and sterilization
methods. Emerging Infect. Dis. 7, 348–353. doi: 10.3201/eid0702.010241

Salaudeen, T., Okoh, O., and Okoh, A. (2019). Performance assessment of
wastewater treatment plants with special reference to phenol removal. Int. J.
Environ. Sci. Technol. 16, 401–12. doi: 10.1007/s13762-018-1684-0

Santana, C. M., Ferrera, Z. S., Padrón, M. E. T., and Rodríguez, J. J. S. (2009).
Methodologies for the extraction of phenolic compounds from environmental
samples: new approaches.Molecules. 14, 298–320. doi: 10.3390/molecules14010298

Sasatsu, M., Shirai, Y., Hase, M., Noguchi, N., Kono, M., Behr, H., et al. (1995).
The origin of the antiseptic-resistance gene ebr in Staphylococcus aureus.Microbios.
84, 161–169.

Schlüter, A., Szczepanowski, R., Pühler, A., and Top, E. M. (2007). Genomics
of IncP-1 antibiotic resistance plasmids isolated from wastewater treatment plants
provides evidence for a widely accessible drug resistance gene pool. FEMS
Microbiol. Rev. 31, 449–477. doi: 10.1111/j.1574-6976.2007.00074.x

Schreurs, W. J., and Rosenberg, H. (1982). Effect of Silver Ions on
transport and retention of phosphate byEcoli. J. Bacteriol. 152, 7–13.
doi: 10.1128/jb.152.1.7-13.1982

Shafer, M. M., Overdier, J. T., and Armstong, D. E. (1998). Removal,
partitioning, and fate of silver and other metals in wastewater treatment
plants and effluent-receiving streams. Environ. Toxicol. Chem. 17, 630–641.
doi: 10.1002/etc.5620170416

Shen, J. Y., Chang, M. S., Yang, S. H., and Wu, G. J. (2012a). Simultaneous and
rapid determination of triclosan, triclocarban and their four related transformation
products in water samples using SPME-HPLC-DAD. J. Liq. Chromatogr. Relat.
Technol. 35, 2280–2293. doi: 10.1080/10826076.2011.631258

Frontiers inMicrobiology 25 frontiersin.org

https://doi.org/10.3389/fmicb.2022.1050558
https://doi.org/10.1093/jac/dkg173
https://doi.org/10.1016/j.giec.2020.06.004
https://doi.org/10.1111/j.1749-6632.1950.tb31944.x
https://doi.org/10.1016/j.jaad.2019.05.030
https://doi.org/10.1016/j.envpol.2018.06.106
https://pubchem.ncbi.nlm.nih.gov/compound/Nitrilotriacetic-acid
https://pubchem.ncbi.nlm.nih.gov/compound/Nitrilotriacetic-acid
https://pubchem.ncbi.nlm.nih.gov/compound/Edetic-acid
https://pubchem.ncbi.nlm.nih.gov/compound/Edetic-acid
https://shareok.org/bitstream/handle/11244/23898/Thesis-1973-N343a.pdf?sequence=1
https://shareok.org/bitstream/handle/11244/23898/Thesis-1973-N343a.pdf?sequence=1
https://doi.org/10.3390/antibiotics4040480
https://doi.org/10.1016/j.jgar.2019.10.021
https://doi.org/10.1016/j.ajic.2003.07.007
https://doi.org/10.1002/14651858.CD011821.pub2
https://doi.org/10.1128/AEM.01139-06
https://doi.org/10.1007/s11274-020-02978-0
https://doi.org/10.5546/aap.2017.eng.65
https://doi.org/10.1016/S0964-8305(98)00036-5
https://doi.org/10.1016/j.scitotenv.2018.05.304
https://doi.org/10.1016/j.watres.2017.03.011
https://doi.org/10.1038/ng1686
https://doi.org/10.1016/j.foodcont.2018.11.029
https://doi.org/10.1039/C9EM00554D
https://doi.org/10.1093/jn/129.7.1251
https://doi.org/10.1086/502577
https://doi.org/10.1128/AEM.00377-19
https://doi.org/10.1016/j.envpol.2018.04.116
https://doi.org/10.1038/nrmicro1464
https://doi.org/10.1016/j.watres.2018.04.065
https://doi.org/10.1080/07853890701195262
https://doi.org/10.1016/j.foodcont.2021.107892
https://doi.org/10.1093/jac/dkp427
https://doi.org/10.1093/jac/dkm359
https://doi.org/10.1128/AAC.2.5.373
https://doi.org/10.1097/ICL.0b013e31802b413f
https://doi.org/10.1016/j.jhin.2004.01.004
https://doi.org/10.3201/eid0702.010241
https://doi.org/10.1007/s13762-018-1684-0
https://doi.org/10.3390/molecules14010298
https://doi.org/10.1111/j.1574-6976.2007.00074.x
https://doi.org/10.1128/jb.152.1.7-13.1982
https://doi.org/10.1002/etc.5620170416
https://doi.org/10.1080/10826076.2011.631258
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Basiry et al. 10.3389/fmicb.2022.1050558

Shen, J. Y., Chang, M. S., Yang, S. H., and Wu, G. J. (2012b). Simultaneous
determination of triclosan, triclocarban, and transformation products of
triclocarban in aqueous samples using solid-phase micro-extraction-HPLC-
MS/MS. J. Sep. Sci. 35, 2544–2552. doi: 10.1002/jssc.201200181

Shepherd, J. A., Waigh, R. D., and Gilbert, P. (1988). Antibacterial
action of 2-bromo-2-nitropropane-1, 3-Diol (Bronopol). 32, 1693–1698.
doi: 10.1128/AAC.32.11.1693

Silver, S. (2003). Bacterial silver resistance: molecular biology and uses
and misuses of silver compounds. FEMS Microbiol. Rev. 27, 341–353.
doi: 10.1016/S0168-6445(03)00047-0

Silvernale, J. N., Joswick, H. L., Corner, T. R., and Gerhardt, P. (1971).
Antimicrobial actions of hexachlorophene: cytological manifestations. J. Bacteriol.
108, 482–491. doi: 10.1128/jb.108.1.482-491.1971

Singer, H., Müller, S., Tixier, C., and Pillonel, L. (2002). Triclosan: Occurrence
and fate of a widely used biocide in the aquatic environment: field measurements
in wastewater treatment plants, surface waters, and lake sediments. Environ. Sci.
Technol. 36, 4998–5004. doi: 10.1021/es025750i

Small, D. A., Chang, W., Toghrol, F., and Bentley, W. E. (2007). Comparative
global transcription analysis of sodium hypochlorite, peracetic acid, and hydrogen
peroxide on Pseudomonas aeruginosa. Appl. Microbiol. Biotechnol. 76, 1093–1105.
doi: 10.1007/s00253-007-1072-z

Smith, R. (2015). Directive 98/5/EC of the European parliament
and of the council of 16 February 1998. Core EU Legis. 41, 197–202.
doi: 10.1007/978-1-137-54482-7_22

Snyder, L., and Champness, W. (2007).Molecular genetics of bacteria. ASM Press;
p. 758.

Spataro, F., Ademollo, N., Pescatore, T., Rauseo, J., and Patrolecco, L.
(2019). Antibiotic residues and endocrine disrupting compounds in municipal
wastewater treatment plants in Rome, Italy. Microchem J. 148, 634–42.
doi: 10.1016/j.microc.2019.05.053

Sreevidya, V. S., Lenz, K. A., Svoboda, K. R., and Ma, H. (2018). Benzalkonium
chloride, benzethonium chloride, and chloroxylenol - three replacement
antimicrobials are more toxic than triclosan and triclocarban in two model
organisms. Environ. Pollut. 235, 814–24. doi: 10.1016/j.envpol.2017.12.108

Stawarz-Janeczek, M., Kryczyk-Poprawa, A., Muszyńska, B., Opoka, W., and
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