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Bovine mastitis is one of the most troublesome and costly problems in the 

modern dairy industry, which is not only difficult to monitor, but can also 

cause economic losses while having significant implications on public health. 

However, efficacious preventative methods and therapy are still lacking. 

Moreover, new drugs and therapeutic targets are in increasing demand due to 

antibiotic restrictions. In recent years, noncoding RNAs have gained popularity 

as a topic in pathological and genetic studies. Meanwhile, there is growing 

evidence that they play a role in regulating various biological processes and 

developing novel treatment platforms. In light of this, this review focuses on 

two types of noncoding RNAs, micro RNAs and circular RNAs, and summarizes 

their characterizations, relationships, potential applications as selection 

markers, diagnostic or treatment targets and potential applications in RNA-

based therapy, in order to shed new light on further research.
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Introduction

Bovine mastitis, an inflammatory disease of the mammary gland, is recognized as one 
of the most troublesome and costly problems in modern dairy industry. There are several 
factors contributing to mastitis that is notorious for its high morbidity, including 
pathogenetic microbial infections (Nash et al., 2003), physical trauma and environmental 
hazards (Chen et  al., 2021, 2022). Hitherto over 130 pathogens are demonstrated to 
be related to mastitis (Bradley, 2002). Over 80% of global economic losses (~35 billion 
USD) is attributed to reduced dairy production and inferior milk quality (especially in 
China), and monthly losses can be up to 76,000 USD per farm (He et al., 2020). More 
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importantly, mastitis can pose a public health risk. Due to the 
abuse of antimicrobial agents in therapy and prophylaxis for food 
animals previously (Aarestrup, 2005), antimicrobial-resistant 
(AMR) pathogens can be frequently isolated from raw milk and 
animal feces (Holko et al., 2019; Rovira et al., 2019). However, 
except for the use of antibiotics, there is still no effective therapy 
that can be  applied to the treatment of bovine mastitis on a 
large scale.

Immunization and the improvement of management concepts 
have traditionally been considered as potent approaches for 
preventing bovine mastitis (Ruegg, 2017). At the same time, 
alternative therapies are under investigation to replace the use of 
antibiotics in mastitis control, owing to the abovementioned AMR 
problem (El-Sayed and Kamel, 2021). Moreover, current vaccines 
fail to prevent mastitis for various reasons, such as nutrient level 
(Jing et  al., 2021), mammary gland features, and the lack of 
suitable adjuvants or delivery systems (Rainard et al., 2022b). In 
general, treatment failure of mastitis is associated with delayed 
diagnosis, because most of diseased animals are suffering from 
chronic courses, also known as subclinical mastitis, making 
monitoring and controlling them more challenging (Ruegg, 2017; 
Cobirka et al., 2020). So far, somatic cells counting (SCC), the 
global standard for milk quality, has been used as an index for 
mastitis management (Ruegg, 2017), but SCC-value only indicates 
the pathological state, while the pathogenesis and associated 
details still need further laboratory diagnosis (Sanchez-Visedo 
et al., 2020). It is therefore important to identify new biomarkers 
for diagnosis of subclinical cases, as well as for our understanding 
of pathology of mastitis.

Disease resistance breeding is one of new strategies for 
sustainable dairy industry (Bronzo et al., 2020; Rasheed et al., 
2020). In the past, it has mainly been genetic mutations in DNA, 
such as single-nucleotide polymorphisms (SNPs; Hou et  al., 
2012; Wang et al., 2014; Ju et al., 2018c), insertions and deletions 
(indels; Hu et  al., 2022), or copy number variations (CNV; 
Molotsi, 2020), that served as a basis for predicting and 
demonstrating susceptibility of animals to different diseases. 
Recently, it has become increasingly apparent that endogenous 
RNA molecules from noncoding regions of genome play 
important roles in regulating biological process like 
inflammation and immunity (Do et al., 2021; Della Bella et al., 
2022). Among them, the most well-known group is microRNAs 
(miRNA). With the increasing involvement of newfound 
noncoding RNA molecules, such as long noncoding RNAs 
(lncRNA) or circular RNAs (circRNA), a competitive 
endogenous RNA (ceRNA) network has been proposed (Qu 
et al., 2015), offering a new perspective for further transcriptome 
research. In addition, with the discovery of refinement and 
complex regulation processes involved in RNA molecules, 
comprehensive studies of ceRNA network could contribute to 
our knowledge of these unclarified biological processes to find 
novel therapeutic targets. Here, we review previous reports on 
the regulation of two noncoding RNA molecules (miRNAs and 
circRNAs) and summarize their potential in breeding and 

clinical applications as selection and/or diagnostic biomarkers 
in mastitis therapy.

Micro RNAs

As a class of noncoding RNAs, micro RNAs, whose length is 
about 22 nucleotides, widely exist in eukaryote genome (Ha and 
Kim, 2014). So far, more than 38,000 precursor miRNAs, which 
express almost 49,000 mature miRNAs, have been discovered in 
271 species (Kozomara et al., 2019). As early as 30 years ago, the 
first reported miRNA Lin-4 was discovered in Caenorhabditis 
elegans (Horvitz and Sulston, 1980; Lee et al., 1993), and in 2000, 
another miRNA Let-7 was found, thus initiating the study of 
miRNAs (Reinhart et al., 2000; Lagos-Quintana et al., 2001). Since 
then, numerous studies have been conducted on miRNAs, 
uncovering their roles in various biological processes, ranging 
from developmental regulation to disease progression (Treiber 
et al., 2019; Lu Q. et al., 2021; Della Bella et al., 2022).

The biogenesis and regulatory 
mechanism of miRNA

Converting the primary miRNA transcript (pri-miRNAs) into 
mature miRNA requires several biogenesis steps. Canonical 
miRNA biogenesis pathway can be  summarized as follows 
(Figure  1). First, pri-miRNAs are transcribed from introns of 
protein coding genes by RNA polymerase II (Pol II; Lee et al., 
2004; Carthew and Sontheimer, 2009). The next step is to process 
pri-miRNAs into single hairpins termed precursor miRNAs 
(pre-miRNAs) by a nuclear protein complex, microprocessor 
(Gregory et al., 2004), which mainly consists of RNase III enzyme 
Drosha, double-stranded RNA (dsRNA)-binding protein (dsRBP), 
DiGeorge critical region 8 (DGCR8), and several auxiliary factors 
(Partin et  al., 2020). They are subsequently exported to the 
cytoplasm via export receptor exportin 5 (Exp5) and processed 
into dsRNAs with a length of 20–25 nucleotides by RNase III-type 
enzyme Dicer (Ketting et al., 2001; Bohnsack et al., 2004). Finally, 
under the effect of the Argonaute (AGO) protein family, one 
strand of dsRNA is selected as mature miRNA (also known as 
guide strand), while the other strand (passenger strand or 
miRNA*) is discarded in a process termed as RNA-induced 
silencing complex (RISC) loading (Wu et al., 2020). Treiber et al. 
(2019) recently reviewed this part of non-canonical microRNA 
biogenesis pathway, which are often independent of one or several 
steps described before.

When mature miRNAs are exported to the cytoplasm, these 
molecules perform their functions at the occurrence of signals or 
targets. The regulatory mechanism of miRNAs is based on their 
characteristic RNA-induced silencing complex (RISC), while the 
degrees of complementary pairing of miRNAs with target mRNA 
sequences can be either complete or incomplete (Carthew and 
Sontheimer, 2009). In the former one, target mRNAs will be cut 
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and degraded directly, while in the later form, miRNAs tend to act 
as translational inhibitors (Gaken et al., 2012). In general, miRNAs 
are less complementary to target mRNAs in animals, and their 
mode of action is primarily to inhibit the translation of target 
mRNAs (Lu Q. et  al., 2021). Given that relationship between 
miRNAs and target mRNAs is not a simply one-to-one pattern, 
this means one miRNA could regulate multiple mRNAs, while one 
mRNA could be regulated by several miRNAs, indicating their 
interlacing interaction mechanism.

Potential roles of miRNAs in bovine 
mastitis

In clinical cases, mastitis/mammary gland inflammation is 
caused by a pathogenic infection. Such pathogens can be classified 
into contagious and environmental types, which are represented 
by Staphylococcus aureus or Streptococcus agalactiae, and 
Escherichia coli or Streptococcus uberis, respectively (Cheng and 
Han, 2020). Usually, subclinical mastitis is caused by contagious 
factors characterized by chronic symptoms, while clinical mastitis 
often attributes to environmental factors and is characterized by 
acute symptoms. In practice, however, factors inducing mastitis 
are more complex for the high occurrence of cross infection 
(Luoreng et  al., 2018a). Among pathogen-induced miRNA-
mastitis model, S. aureus (Figure 2A) and E. coli (Figure 2B) have 
been well-studied, which are applied in simulating subclinical and 

clinical mastitis, respectively. Several sources of miRNAs exist in 
mastitis cows, including mammary gland tissue, peripheral blood 
cells and milk exosome (Table 1). The purpose of this section is to 
discuss identified miRNAs from these sources and their functions 
in regulating mastitis as well as potential therapeutic applications.

miRNAs as molecular markers in bovine 
mastitis resistance

SNPs within pre-miRNA regions may be  responsible for a 
number of reported associations between SNPs, miRNAs, 
phenotypes and diseases (Wang Y. et al., 2021), which caught the 
eye of animal breeders in overcoming mastitis issues. Previous 
studies have been primarily focused on understanding the influence 
of genetic variations in the 3′ UTR (untranslated region) on the joint 
efficiency of differently expressed miRNAs. For example, Li et al. 
(2012) reported that SNP in the 3′ UTR of the bovine high-mobility 
group box protein 1 (HMGB1) gene could affect its target miRNA 
bta-miR-223, which is found to be upregulated in mammary gland 
tissues of mastitis. Similarly, bta-miR-2318, a downregulated 
miRNA in mastitis cows, is also repressed by SNP of BOLA-DQA2, 
which belongs to the bovine leukocyte antigen (BOLA) class II 
genes and participates in bovine immune response. Alpha-2-
macroglobulin (A2M) has been reported to bind host or foreign 
peptides and particles, thereby serving as a defensive barrier in 
mastitis (Wang et al., 2012). Wang et al. (2014) further investigated 
the relationship between SNP in its exon 29 and target binding 
miRNA bta-miR-2898, indicating that bta-miR-2898 could regulate 

FIGURE 1

The biogenesis of miRNA.
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inflammation and immunity. However, these studies only 
demonstrated the binding efficiency repression of target miRNAs 
and predicted potential roles in mastitis, but further investigations 
as selection markers are still pending. It may be due to the lack of 
effective complementation strategies at RNA level in further 
experiment, and some progress has been made on this issue. 
Recently, various point mutation techniques for single bases in RNA 
editing have been proposed (Cox et al., 2017; Liu et al., 2020), some 
of which are applied to experimental treatment of genetic diseases 
caused by SNPs (Liao et al., 2020). In brief, as a result of the progress 
of this technology, we will be able to rediscover previous research 
findings, thereby gaining a better understanding of emerging 
variants associated with mastitis.

These years, as sequencing and bioinformatic technology have 
advanced (Stark et al., 2019), some new models based on miRNA 
and related mRNA or co-work protein also have been proposed 
and deepened our research on mastitis. By combining next-
generation sequencing with advanced network biology methods 
and fluorescence activated cell sorting (FACS), Lawless et  al. 
(2014) profiled the mRNA and miRNA expression in milk and 
blood CD14+ monocytes from animals infected in vivo with 
S. uberis at multiple time points. Meanwhile, they identified two 
miRNAs-Translation factor (TF) pairs, miR-233-STAT3 and 
miR-150-MyD88, both involved in Toll-like receptor (TLR), 
NOD-like receptor (NLR) and Retinoic acid-inducible gene 
I  (RIG-I) signaling pathways. Notably, a number of metabolic 
processes were widely repressed during S. uberis infection, 
indicating that metabolic targets may play an important role 
during infection or immunological regulation (Palsson-
McDermott and O’Neill, 2020). Moreover, Fang et  al. (2017) 
proposed a model integrating sequence-based genome-wide 
association studies (GWAS) and RNA-Seq in studying genetic 
basis of mastitis, and further discussed the correlation between 
miRNA-network and GWAS markers (Fang et al., 2018). As a 

result, the new model improved the accuracy and reliability of 
previous prediction, indicating the contribution of microRNAs 
and their target networks to genetic variations in complex traits. 
Recently, a comprehensive approach based on the integrative 
analysis of miRNA and mRNA expression profiles was launched 
by Wang X. et al. (2021) and the regulatory functions of miRNAs, 
such as miR-23b-3p, miR-331-5p and miR-664 were emphasized 
again. A single association model analysis may only reflect part of 
the problem, but when multiple signals point to the same 
molecule, it is usually considered to be  decisive. Thus, 
we recommend to use more analysis network crossing to identify, 
more reliable selection markers which is conductive to preventing 
mastitis in dairy breeding.

miRNAs as diagnostic biomarkers of bovine 
mastitis

California Mastitis Test (CMT) has been traditionally 
regarded as a cheap and easy method for detecting mastitis. Later, 
due to the gradual deepening of the pathogenesis of mastitis, 
some diagnostic technique based on etiology and immunology 
have been proposed, such as agglutination test (Zschock et al., 
2005) and ELISA (Kano et al., 2016), which are widely used in 
dairy production practice. These years, as qRT-PCR methods and 
chemical probes based on nanomaterials continue to progress (Li 
J. et al., 2014), the detection of nucleic acid molecular markers in 
the peripheral blood or secretions to monitor disease progression 
has become a new direction in diagnostic technique. Although 
analysis based on mastitis related miRNAs lack further validation, 
these differently expressed endogenous molecules exhibit the 
potential to be regarded as biomarkers of diverse pathological 
patterns for diagnosis or as indicators of disease duration. As 
reported by Jin et  al. (2014), for instance, five differentially 
expressed miRNAs (bta-miR-184, miR-24-3p, miR-148, miR-486 
and let-7a-5p) have been identified in E. coli infected bovine 

A B

FIGURE 2

Differently expressed miRNAs in Staphylococcus aureus (A), and Escherichia coli (B), infection models.
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mammary epithelial cells, while another four types (bta-miR-
2339, miR-499, miR-23a and miR-99b) are unique to S. aureus 
infection. Additionally, miRNA expression also varies at different 
infectious timepoints, indicating a dynamic change over time. 
Compared with CMT, a classical mastitis assay based on somatic 
cells in milk (Ruegg, 2017), miRNAs in milk exosome are 
emerging as new biomarkers for more sophisticated diagnosis, as 

they are not only useful for reflecting whether cows are infected, 
but also help us understand the etiology and the progress of the 
disease (Colitti et al., 2020; Tzelos et al., 2022). To date, a batch of 
exosomal miRNAs have been screened in cows’ raw milk, such as 
miR-223 and miR-142-5p (Sun et al., 2015; Cai et al., 2018), and 
served as potential candidates for early detection of bacterial 
infection of the mammary gland. As research continues, miRNA 

TABLE 1 Emerging mastitis related miRNAs from three different sources.

miRNAs Sources References

MiR-23a Mammary gland tissues Cai et al. (2021)

MiR-145 Chen et al. (2019a)

MiR-15a Chen et al. (2019b)

Bta-mir-223 and bta-mir-21-3p Fang et al. (2016)

Bta-miR-130b Han (2019)

Bta-miR-2318, bta-miR-1777a, bta-miR-296, miR-2430, and miR-671 Hou et al. (2012)

Bta-miR-2899 Jiang et al. (2019)

Bta-miR-184, miR-24-3p, miR-148, miR-486, let-7a-5p, bta-miR-2339, miR-499, miR-23a and miR-99b Jin et al. (2014)

Bta-miR-2426 Ju et al. (2018c)

Bta-miR-15a Ju et al. (2018a)

Bta-miR-26a Ju et al. (2018b)

Bta-let-7i, bta-miR-3596, bta-miR-21, bta-miR-27a, bta-miR-27b, bta-miR-151, bta-miR-184, bta-miR-200a, 

bta-miR-200b, bta-miR-205, bta-miR-29b-2 and bta-miR-130a

Lawless et al. (2013)

MiR-17-5p, miR-20b and miR-93 Li et al. (2013)

MiR-223, miR-132 and miR-1246 Li et al. (2015)

Bta-miR-144, bta-miR-451 and bta-miR-7863 Luoreng et al. (2018a)

MiR-125b Luoreng et al. (2021a)

MiR-181a, miR-16 miR-31, and miR-223 Naeem et al. (2012)

Bta-let-7a-5p bta-let-7b, bta-let-7c, bta-let-7d, bta-let-7e, bta-let-7f, bta-let-7 g, bta-let-7i, bta-miR-1, bta-

miR-100, bta-miR-101, bta-miR-103, bta-miR-106a, bta-miR-106b, bta-miR-107 and bta-miR-10a

Ozdemir (2020)

Bta-miR-193a, bta-miR-363, bta-miR-148b, bta-miR-205 and bta-let-7e Passe Pereira et al. (2021)

MiR-223 Pu et al. (2017)

Bta-miR-24-3p, bta-miR-328, bta-miR-223, bta-miR-185, bta-mir-149-5p and bta-miR-874 Tucker et al. (2021)

Bta-miR-2898 Wang et al. (2014)

MiR-146a and miR-146b Wang et al. (2016)

MiR-16 and miR-223 Peripheral blood cells Chen et al. (2014)

MiR-9, miR-125 b, miR-155, miR-146 a and miR-223 Dilda et al. (2012)

MiR-21 Lai et al. (2021)

Let-7e, miR-150, miR-146b, bta-miR-200c, bta-miR-210, and bta-miR-193a Lawless et al. (2014)

Bta-miR-223 Li et al. (2012)

Bta-miR-486, bta-miR-451, bta-miR-191, bta-miR-339b, mml-miR-486-5p, Bta-miR-25, bta-miR-342 and 

bta-miR-30e-5p

Li Z. et al. (2014)

MiR-200a, bta-miR-205, bta-miR-122, bta-miR-182 and conservative_15_7229 Luoreng et al. (2018b)

MiR-320a, miR-19a, miR-19b, miR-143, miR-205, miR-24, miR-1301 and miR-2284r Luoreng et al. (2021b)

MiR-223 and miR-142-5p Milk exosomes Cai et al. (2018)

MiR-221 Cai et al. (2020)

MiR-21, miR-146a, miR-155, miR-222, and miR-383 Lai et al. (2017)

MiR-21, miR-146a, and miR-155 Lai et al. (2020)

Bta-miR-378 and bta-miR-185 Ma et al. (2019)

Bta-miR-223-3p Saenz-de-Juano et al. (2022)

Bta-miR-142-5p and bta-miR-223 Sun et al. (2015)

MiR-193b-5p Xu et al. (2021)
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biomarkers will benefit the high-accuracy early diagnosis of 
mastitis, especially in subclinical cases.

miRNAs as therapeutic targets of bovine 
mastitis

Traditionally, antibiotics have been considered as the priority 
choice for bovine mastitis treatment. However, exacerbated 
problems, such as antimicrobial resistance and antibiotic residue 
in animal products, give rise to the impact of antibiotic abuse on 
public health (Liu et  al., 2016), leading to restrictions on 
uncontrolled antibiotic therapy in the dairy industry worldwide 
(El-Sayed and Kamel, 2021). Today, a sharp demand appears for 
new drugs and therapeutics, and miRNAs are identified as 
immuno-oncological targets (Calin et  al., 2002), which also 
attracts the attention of veterinarians or veterinary researchers. 
The early research on mastitis aimed toward eradicating the 
infection by adjusting the abnormal levels of miRNA and 
inflammatory factors through traditional herbal medicine and 
animal nutrition. Quercetin, a secondary metabolite found in 
plants, has been reported to suppress the expression of miR-24-2, 
miR-146a and miR-181c, and decrease pro-inflammatory genes 
like IL1B, IL6, CXCL8, TLR4 and TNF (Chuammitri et al., 2017). 
Apart from that, selenium is an important nutrient that has shown 
promise in regulating immune responses in the form of over 30 
selenoproteins (Jing et al., 2021), reducing phosphorylation levels 
of NF-κB and MAPKs by downregulating miR-155 and 
upregulating miR-146a, thereby relieving mastitis (Sun et al., 2017; 
Zhang et al., 2019).

Disorders of miRNAs play an important role in diseases, 
especially in the pathological changes of cancer cells (Rupaimoole 
et al., 2016). As it has been proven that RNA interference (RNAi) 
is an effective strategy in in vitro experiments (Liu et al., 2017), 
correcting these disordered miRNAs is believed to have potential 
in disease treatment. Exogenous RNA molecules have therefore 
been considered as a promising strategy for molecular targeted 
therapy to adjust dysregulated miRNA transcription. Nevertheless, 
since RNA is unstable and sensitive to ribonuclease (Uslu and 
Wassenegger, 2020), it was thought unfeasible to apply exogenous 
RNA to regulate miRNA homeostasis in vivo and achieve similar 
therapeutic efficacy. Interestingly, in some past studies, complete 
exogenous miRNAs have been successfully isolated from food 
(Chen et al., 2010) and tissues (Zhang et al., 2012), and protective 
mechanisms such as exosome have also been discovered, 
confirming preceding assumptions.

Benefiting from previous efforts, miRNA-based treatments for 
many diseases are under rapid clinical development with the 
advantages of multiple targets, and there are serval successful 
practices in treating various kinds of human diseases (Rupaimoole 
and Slack, 2017), for example the locked nucleic acid (LNA) 
antimiRs of miR-221/222 were reported to remiss hepatic lipid 
accumulation, inflammation and collagen deposition in 
nonalcoholic steatohepatitis (Jiang et al., 2018), and the silencing 
of miR-122 caused by its LNA was proven effective during 
hepatitis C virus (HCV) infection and related liver diseases 

(Elmen et  al., 2008). Meanwhile, multiple miRNA targets 
pertaining to one biological process and their varying expression 
levels in specific tissues bring about challenges in the identification 
of the most effective therapeutic candidates and strategies to safely 
deliver small molecules to selective tissues. Notably, circRNA, 
another newly found stable RNA molecule that will be discussed 
in the following chapter, is shown to extensively participate  
in post-transcriptional regulation as miRNA sponge via 
complementary sequences, which provides a novel reference for 
miRNA-targeted interference strategy. Moreover, it is confirmed 
that CRISPR/Cas9 nuclease system is able to knock out multiple 
miRNAs (Narayanan et al., 2016), which not only broadens the 
genetics approach, but also provides a powerful complement to 
gene therapy. Recently, new delivery systems such as engineering 
exosome (Choi et  al., 2021) or selective organ targeting lipid 
nanoparticle (SORT-LNP; Algharib et al., 2020; Dilliard et al., 
2021) are getting more and more mature, and miRNA-targeted 
gene therapy is expected to be a new breakthrough in bovine 
mastitis. Unlike human medical practice, veterinary medicine is 
often concerned with the balance between treatment cost and 
economic feedback. Despite the potential of miRNA-targeted gene 
therapy, there are several factors that limit the feasibility of this 
application to animal clinical practice, especially the high cost. 
Admittedly, the work of screening potential miRNA therapeutic 
targets has just started (Table  2), which provide buffer for 
technology decentralization with cost reduction. Therefore, 
we still have expectations that this strategy can be used in the 
treatment of bovine mastitis in the future.

Circular RNAs

Circular RNAs (circRNAs) are a group of single-stranded 
circular RNA molecules, which have been found to be abundantly 
expressed in eukaryotic cells (Dixon et al., 2005) since its initial 
discovery in viroid or viral genome (Sanger et  al., 1976), and 
further widely reported in 1990s (Capel et al., 1993; Cocquerelle 
et al., 1993). Unlike other liner endogenous noncoding RNAs, 
circRNAs are generated via a non-canonical splicing manner 
described as “back-splicing” in which a downstream 5′ donor is 
covalently connected to an upstream 3′ accepter to form a closed-
loop structure. This structure lacks the 3′ polyadenylated tail 
(Liang and Wilusz, 2014), deeming it undetectable via classical 
sequencing methods (Jeck and Sharpless, 2014). Additionally, it is 
more resistant to exonuclease-mediated degradation than liner 
transcriptions, such as Ribonuclease R (RNase R; Suzuki et al., 
2006), suggesting of its potential in RNA drug delivery techniques 
(Qu et al., 2022). Additionally, circRNAs are found to be highly 
expressed in specific tissues and stages throughout animal 
genome, offering a potential biomarker or treatment target for 
disease detection (Wu et  al., 2022). Moreover, considering its 
unique features, modified investigation methods have been 
proposed for further bioinformatical analysis and more functions 
have been predicted and verified during the interaction between 
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pathogen and host, thus improving the insight of animal breeders 
(Wang J. P. et  al., 2022; Xu et  al., 2022). Research on animal 
circRNAs has become a hotspot in genetics and molecular biology 
with advances in techniques (Jeck and Sharpless, 2014).

The regulatory mechanisms of circRNAs

In addition to be  abundantly expressed in eukaryotes, 
circRNAs have various biological functions with complex and 
diverse action mechanisms. According to Kristensen et  al., 
functions of circRNAs are classified into three regulatory 
mechanisms (Kristensen et al., 2022; Figure 3).

miRNA sponging
The function of circRNAs as miRNA sponge depends on their 

complementary sequences to target miRNAs, which is also known 
as miRNA reaction elements (MRE). By taking up target miRNAs, 
specific miRNAs can be  prevented from interacting with or 
repressing target mRNA.

Take the most famous sponge ciRS-7 as an example, its target 
miR-7 contains over 60 binding sites and is proved to function as 
ceRNAs in certain tissues (Hansen et al., 2013). The lack of enough 
MREs, however, prevents all circRNAs from binding with target 
miRNAs as expected (Guo et al., 2014).

Protein interactions
In addition to miRNAs, there are also interactions between 

RNA binding protein (RBP) and circRNAs. Specifically, circRNAs 
function as protein sponges or inhibitors by acting as scaffolds to 
bring different proteins into proximity or recruiting them to 
specific subcellular compartments. In breast cancer cells, Circular 
RNA Forkhead box O3 (circ-Foxo3) has been demonstrated to 
facilitate ubiquitination and degradation of mutant p53 tumor 
suppressor protein (p53) by binding p53 and the E3 ubiquitin 
ligase mouse double minute 2 (MDM2) as the tumor suppressor. 
Meanwhile, it also prevents degradation of the pro-apoptotic 
transcription factor forkhead box O3 (FOXO3; derived from its 
source gene) mediated by MDM2 (Du et al., 2017).

Template for translation
The idea that circRNAs can serve as templates for translation is 

based on their primary location in the cytoplasm (Li et al., 2018), 
which is supported by several studies (Legnini et al., 2017; Yang et al., 
2017; Ho-Xuan et  al., 2020; Li Y. et  al., 2021). However, it was 
controversial because circRNAs were classified as noncoding RNAs 
previously. In fact, circRNAs perform this mechanism in two different 
manners, IRES (internal ribosome entry sites)-dependent and m6A-
dependent (Yang et al., 2017), such as circ-ZNF609 (Legnini et al., 
2017) and circARHGAP35 (Li Y. et al., 2021), respectively.

Among the three regulatory mechanisms mentioned above, 
miRNA sponging is the most frequently demonstrated action found 
in the inflammation of bovine mammary gland, which we will discuss 
in detail later. In addition, epigenetic modifications (N1-
methyladenosine, 2′-O-ribosemethylation, inosine, 5-methylcytidine, 
N6-methyladenosine (m6A) and pseudouridine) in RNA molecules 
have captured researcher’s attention in recent years, and the functions 
and applications of these unique molecules have also been expanded 
upon (Wu et al., 2021; Xu et al., 2022). Following the deepening of 
circRNA research, the regulatory mechanism of ncRNA network in 
animal biological process will be clearer.

The role of circRNAs in bovine mastitis

circRNA-miRNA-mRNA network
Research on circRNAs in mastitis has just begin, and their 

potential roles in regulating bovine mastitis are mainly based on a 
circRNA-miRNA-mRNA network model. It is reported that total 71 
differentially expressed circRNAs are detected in LPS-stimulated 
MAC-T cells, and 2 significantly down-regulated circRNAs, novel_
circ_000483 and novel_circ_0003097, are predicted to bind 19 
miRNAs and 20 miRNAs, respectively, in immunological or 
inflammatory-related pathways, including the NOD-like receptor 
signaling pathway, bacterial invasion of epithelial cells, the MAPK 
signaling pathway, and the Notch signaling pathway (Wang 
J. P. et al., 2022). According to Chen et al. (2021), circRNA-08409 
functions as a sponge of bta-miR-133a in cadmium-induced BMEC 
model, which targets TGFB2 (Recombinant Transforming Growth 

TABLE 2 Corroborating studies of miRNA in regulating mastitis.

MiRNA Model Cell type Target mRNA Function References

miR-214 Not mention BMEC NFATc3

TRAF3

Reducing inflammation by inhibiting MAP3K14, TBK1 and IL-6, 

IL-1β

Song et al. (2017)

miR-145 S. aureus MAC-T FSCN1 Promoting cell proliferation and facilitating the restoration of the 

damaged tissue

Chen et al. (2019a)

miR-221 Lipoteichoic acid 

(LTA)

RAW264.7 SOCS1 Upregulating JAK/STAT signaling in M1 macrophage polarization Cai et al. (2020)

miR-23a LTA MAC-T PI3K Inhibiting inflammatory signaling pathway TLR2/MyD88/PI3K/AKT Cai et al. (2021)

miR-125b Lipopolysaccharide 

(LPS)

HEK 293T NKIRAS2 Promoting inflammation by activating NF-κB and IL-6, TNF-α Luoreng et al. (2021a)

miR-142-5p LPS MAC-T BAG5 Promoting cell proliferation and facilitating the restoration of the 

damaged tissue

Lu J. et al. (2021a)
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Factor Beta 2). Compared with the control, overexpression of 
circRNA-08409 significantly downregulated miR-133a and 
upregulated mRNA TGFB2 while inducing apoptosis. Subsequently, 
a NH4Cl-induced mastitis model was established, and the role of 
circRNA in regulating apoptosis and inflammation in bovine 
mammary epithelial cells was verified via the circ02771/miR-194b/
TGIF1 axis (Chen et al., 2022). Both of the abovementioned studies 
not only illustrate that circRNAs can act as an indirect regulator in 
bovine mastitis by targeting complementary miRNAs, but also 
highlight that environmental chemicals could be potential factors 
for mammary gland inflammation in dairy bred management. 
Therefore, further efforts are required to investigate mastitis-related 
circRNAs and implement more innovative tools, like CRISPR-Cas13 
based knock-down system (Li S. et al., 2021; Gao et al., 2022). This 
will undoubtedly speed up the progress of our research on 
understanding these unique molecules in mastitis.

Epigenetic modifications in circRNAs
In recent years, epigenetic modifications in circRNAs has 

become a new hotspot in RNA field, because its key biological 
function is to regulate circRNA metabolism, including biogenesis, 
translation, degradation, and cellular localization (Wu et al., 2021). 
However, there are very few studies on epigenetic modifications in 
mastitis-related circRNAs. In a recent study conducted by Xu et al. 

(2022), RNA immunoprecipitation and high-throughput sequencing 
(MeRIP-seq) were used for the first time to profile circRNAs 
regulated by m6A modification in mammary epithelial cells and the 
different pathological patterns between S. aureus and E. coli 
treatment were compared. Notably, the m6A-modified circRNAs, 
differentially expressed in the two groups were found to be highly 
similar in functional predictions, including immunity, cell junctions, 
growth metabolism, and resistance to bacterial invasion, indicating 
the compatibility and biomarker potency of circRNAs in mastitis.

Emerging applications of 
noncoding RNAs in mastitis

The focus of this part is to summarize some of the emerging 
applications of noncoding RNAs (miRNAs and circRNAs) in 
disease prevention and treatments, and to look into their 
therapeutic potential in treating bovine mastitis.

miRNA-based cross-species therapy

Most of the recent research focus on examining how changes 
in the abundance of a certain type or group of miRNAs inhibit or 

A

B C

FIGURE 3

The regulatory mechanisms of circRNAs, including miRNA sponging (A), protein interactions (B), and template for translation (C)  
(Lasse S. Kristensen, Theresa Jakobsen, Henrik Hager, Jørgen Kjems; The emerging roles of circRNAs in cancer and oncology; Nature Reviews 
Clinical Oncology; 2021 [Springer Nature]).

https://doi.org/10.3389/fmicb.2022.1048142
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Zong et al. 10.3389/fmicb.2022.1048142

Frontiers in Microbiology 09 frontiersin.org

promote protein translation, while very few studies look at the 
impact of other molecular features on the various biological 
process, such as subcellular localization in cells (Jie et al., 2021) or 
organelles (Wang et al., 2020) and the differences in nucleotide 
lengths within the same isoform miRNA population. Notably, a 
recent study about the role of miRNA nucleotide length in cancer 
cell proliferation suggested that in addition to changes in single 
transcriptome abundance, changes in other biological 
characteristics also deserve to be noticed since they might make a 
difference in the regulation of pathological processes. In a study 
conducted by Qi et  al. (2022), researchers compared the 
differences across the length of certain miRNAs associated with 
cell cycle in cancer cells under normal physiological conditions 
via single cell RNA-seq (scRNA-seq), and their observations 
suggest that the deficiency of miRNA function due to differences 
in length plays a crucial role in cancer cell development. 
Furthermore, the researchers compensated for the deficiency of 
length by introducing a protein from the plant immune system  
to suppress the cell-cycle of cancer cells. The protein is 
RNA-dependent RNA polymerase (RDR), which is absent in 
vertebrates (Cao et  al., 2014). Notably, the effect of RDR on 
miRNAs is broad spectrum, which overcomes the limitations of 
single target of traditional cell cycle drugs. Additionally, they 
proposed that cross-species exogenous proteins could be used for 
molecular targeted therapy, and that these interesting miRNAs 
may also have other unknown properties that widely affect various 
regulations in organisms. In light of this, the rediscovery of these 
miRNAs will help us develop new strategies to treat bovine  
mastitis.

circRNA vaccines

Traditional mastitis vaccine has been shown to have high rates 
of immunization failure or insufficient immune response. Various 
reasons may contribute to the failure of traditional vaccine, such 
as poor immunogenicity of the antigen (Rainard et al., 2022b), the 
lack of a suitable drug delivery system (Wang K. et al., 2022), the 
effect of immune inductive sites (Rainard et al., 2022a), and errors 
due to manual operation. In recent years, differing from previous 
vaccine strategies that were based on biological carriers such as 
engineered bacteria or adenovirus (Lasaro and Ertl, 2009), or 
specific antigens combined with immune adjuvants (Liu et al., 
2021; Campra et al., 2022), a new vaccine development platform 
based on nucleic acid [DNA (Vogel and Sarver, 1995) or RNA 
(Geall et al., 2013)] has emerged. Nucleic acid vaccines have been 
introduced as the third generation vaccines with the advantage 
that they are more prominent in inducing humoral immunity or 
cellular immunity and can provide better protection compared to 
traditional vaccines (Wadman, 2021). The advantage of modern 
vaccines like DNA-based vaccines is that a small dose can bring 
about longer-lasting antigen stimulation. However, the 
immunization rate is dependent on a rigid cellular distribution, as 
only the DNA vaccine that reaches the nucleus can be successfully 

translated into the corresponding antigen (Kutzler and 
Weiner, 2008).

Recent years have witnessed the emergence of RNA-based 
vaccine technology as a new research hotspot. Contrary to 
DNA-based vaccine, it is not strictly dependent on cellular 
distribution but it does require administration at a higher dose. 
However, there are several caveats in of RNA based vaccines that 
need to be  addressed, such as the requirement of specific 
modification (Ψ, Pseudouridine) to the nucleic acid sequence 
during synthesis (Kariko et al., 2008), and degradation caused 
by  RNases from the environment. Hence, strict storage, 
transportation and delivery conditions are required (Zhang 
et al., 2020).

With the discovery of circRNA, its high stability resulting 
from its special structure and the ability to be  translated into 
proteins with aids of specific elements or modifications, 
researchers quickly realized that this special molecule has the 
potential to serve as a more suitable delivery system of novel 
vaccines such as the RNA baesd vaccine (Liu and Chen, 2022). In 
a recent study, the strategy of engineering circRNA autocatalysis 
(Wesselhoeft et al., 2018) has been applied to fuse the spike protein 
sequence from SARS-CoV-2 and protein translation elements 
with the circRNA molecule to develop a novel circRNA-based 
RNA vaccine, and its strong protection effect against the virus has 
been confirmed in subsequent animal experiments (Qu 
et al., 2022).

circRNA adjuvants

Another major challenge to developing an effective vaccine for 
mastitis is the complexity of host-pathogen interactions in the 
mammary gland. Not only does mammary gland play a pivotal 
role in microbial invasion and defense (Rainard et al., 2022a), but 
it also secrets and synthesizes fatty acids in milk (Lu Q. et al., 
2021). Notably, a growing body of studies suggests that host 
metabolic processes may be related to its own immunity regulation 
(Buck et al., 2017), and this crosstalk often involves the normal or 
abnormal differentiation of cells during inflammation (Palsson-
McDermott and O’Neill, 2020). Consequently, these target 
substances are regarded as a potential avenue for developing 
vaccine adjuvants during metabolic process. At the same time, 
noncoding RNAs intersect and overlap with substances mentioned 
above to play regulatory roles in cell metabolism and development. 
This suggests that circRNAs are capable of becoming new 
platforms for adjuvant development.

circRNA medicines

RNA-based molecular targeted therapy involves both the 
interference of RNAs and the regulation of specific proteins (Yu 
and Tu, 2022). CircRNAs are also capable of being translated, 
which may allow researchers to obtain antibodies against 
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FIGURE 4

Emerging applications of noncoding RNAs in mastitis.

specific pathogens through manipulating circRNA translation. 
Recently, it has been revealed that the interference of 
non-protective antibody may explain the failure of S. aureus 
vaccine, which suggests a delicate competition between 
antibodies targeting different subdomains of antigen (Tsai et al., 
2022). This strategy has also been applied in a study discussed 
earlier (Qu et al., 2022), which undoubtedly enhances another 
possibility for utilizing the platform based on RNA-level 
treatment strategies.

Conclusion and prospects

The struggle between pathogen and host has been a long-
standing and important issue, especially since the eruption of 
coronavirus in 2019. This problem also persists in century-old 
animal husbandry. In recent years, with the continuous 
exploration of animal economic traits, the breeding business has 
improved rapidly. While productivity of animals has boosted, the 
cost of breeding and the difficulty of obtaining animal products 
have continued to decrease. Subsequently, sick animals are brutally 
eliminated and unqualified animal products are discarded as 
prevention and control measures for animal diseases.

Researchers have been increasingly focusing on the 
development of pathogen-based inspection and quarantine 
technologies. Despite being feasible in terms of reducing 

economic losses, these measures do not offer long-term solutions. 
As animal welfare has been raising its voice more and more over 
the last few years, it is also worth thinking about how to ensure a 
healthier life for these animals. Our efforts should also be directed 
toward researching the pathogenesis of environmentally-induced 
animal diseases and the development of vaccines and therapeutic  
drugs.

Dairy farming’s most common and costly disease is bovine 
mastitis, which has serious economic and animal welfare 
consequences. Exploring the regulatory mechanism behind 
bovine mastitis will no doubt benefit our understanding of this 
troublesome problem. Profiting from the progress in sequencing 
technologies, the breeding industry has come to a new era, and 
people have gained more insight on how to use new and key 
genetic selection markers to breed healthier and disease-
resistant livestock. Noncoding RNAs as gene expression 
regulators have become a hot topic in research. Numerous 
co-working networks have been predicted but they are still in 
the theoretical stage since they have not yet been experimentally 
verified or functionally tested. Notably, new therapies based on 
noncoding RNAs are emerging and the development of delivery 
systems will widen the application of these novel platforms 
(Figure 4). There will be more breakthroughs in bovine mastitis 
if veterinary scholars and animal breeders collaboratively 
conduct comprehensive studies on noncoding RNAs in 
bovine mastitis.
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