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Carbapenem-resistant 
Acinetobacter baumannii: A 
challenge in the intensive care 
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Carbapenem-resistant Acinetobacter baumannii (CRAB) has become one of 

the leading causes of healthcare-associated infections globally, particularly 

in intensive care units (ICUs). Cross-transmission of microorganisms between 

patients and the hospital environment may play a crucial role in ICU-acquired 

CRAB colonization and infection. The control and treatment of CRAB infection 

in ICUs have been recognized as a global challenge because of its multiple-

drug resistance. The main concern is that CRAB infections can be disastrous 

for ICU patients if currently existing limited therapeutic alternatives fail in the 

future. Therefore, the colonization, infection, transmission, and resistance 

mechanisms of CRAB in ICUs need to be systematically studied. To provide 

a basis for prevention and control countermeasures for CRAB infection 

in ICUs, we  present an overview of research on CRAB in ICUs, summarize 

clinical infections and environmental reservoirs, discuss the drug resistance 

mechanism and homology of CRAB in ICUs, and evaluate contemporary 

treatment and control strategies.
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Introduction

The incidence of drug-resistant organism infection is currently increasing in hospitals 
and other clinical care settings, particularly in ICUs. A place that provides life support for 
critically ill or unconscious patients, ICU is the cornerstone of life extension for critically 
ill patients. However, because of a delayed immune response, reduced host defense, and use 
of invasive devices—central venous catheterizations, mechanical ventilation, and urinary 
tract catheterizations—patients in ICUs have an increased risk of infection. The morbidity 
and mortality of such infections have been reduced by the extensive use of antibiotics in 
recent decades. However, with the rise of the use of antibiotics in the treatment of microbial 
infections, increased selection pressures promote the emergence and dissemination of 
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drug-resistant pathogens (Lipsitch and Samore, 2002; Esposito 
and Leone, 2007; Baker et al., 2018).

A significant positive association between antibiotic resistance 
rates and antibiotic consumption has been determined, together 
with a rising trend in antimicrobial resistance (Agodi et al., 2015). 
Carbapenems were once recognized as a pillar of treatment for 
clinical critical infections, but with their widespread use, resistance 
to carbapenems has increased as well. The emergence and 
dissemination of carbapenem-resistant non-fermenting Gram-
negative bacilli (NFGNB) in ICUs pose a substantial threat in 
hospitals (Agarwal et al., 2017; Kousouli et al., 2019). Among these 
bacteria, CRAB is increasingly becoming one of the leading causes 
of healthcare-associated infections (HAIs), particularly in ICUs 
(Blanco et al., 2018; Busani et al., 2019; Chen et al., 2019; Tomczyk 
et  al., 2019). In the Global Priority List of Antibiotic-Resistant 
Bacteria published by the World Health Organization (WHO) in 
2017, CRAB was classified as among those bacteria for which 
antibiotics are most urgently needed (Tacconelli et al., 2018).

CRAB has been associated primarily with respiratory tract 
infections in ICUs, particularly ventilator-associated pneumonia 
(VAP; Nhu et al., 2014; Karruli et al., 2021; Khalil et al., 2021; Said 
et al., 2021; Pogue et al., 2022). Although no definitive agreement 
has been reached on the links between CRAB infections and an 
increased risk of mortality, CRAB infections have exhibited a 
significant association with the length of ICU stay, increased 
patient costs, and antibiotic use (Phu et al., 2017; Kousouli et al., 
2019; Zhen et  al., 2020; Liu Y. et  al., 2020; Ejaz et  al., 2021). 
Polymyxin currently remains effective as a treatment method for 
CRAB infections in ICUs (Garnacho-Montero et al., 2015; Sana 
et al., 2021). However, on an individual-patient basis, the use of 
polymyxin remains rather limited because of nephrotoxicity and 
neurotoxicity (Nazer et al., 2015b; Katip and Oberdorfer, 2021; Liu 
et al., 2021; Zhang N. et al., 2021). The emergence of polymyxin 
resistance in A. baumannii has also been reported (Cheah et al., 
2016a,b; Carrasco et al., 2021). Under these conditions, the control 
and treatment of CRAB in ICUs can potentially face new 
challenges and have prompted growing concern in the 
medical community.

Therefore, evidence-based interventions to strengthen 
prevention and control initiatives are urgently needed. Funding, 
research, and development of new antimicrobials should pay 
increased attention to CRAB infections in ICUs. This review 
focuses on CRAB infections in ICUs and its transmission, 
mechanisms of resistance, treatment alternatives, and control 
strategies to provide a basis for prevention and control 
countermeasures for CRAB infections in ICUs.

CRAB in ICUs

CRAB infections of patients in ICUs

WHO estimates that about 30% of ICU patients are affected 
by at least one HAI in high-income countries; meanwhile, the 

frequency is at least two-fold to three-fold higher in middle- and 
low-income countries (World Health Organization, 2011). 
NFGNB is the leading cause of HAI, among which A. baumannii 
is an opportunistic pathogen that causes hospital-acquired 
septicemia, pneumonia, and urinary tract infections, particularly 
in ICUs (Antunes et al., 2014; Harding et al., 2018). Notably, as 
CRAB isolates in growing numbers have been isolated from 
patients, the prevalence and risk factors of CRAB infections have 
received increasing attention.

VAP, a severe complication, remains to be the most common 
infection acquired in ICUs (Kalanuria et al., 2014; Kalil et al., 
2016). The pathogens responsible for VAP and their resistance 
mechanisms in ICUs are difficult to identify. The emergence and 
popularity of CRAB, which causes pulmonary infection in ICUs, 
have been reported in numerous publications. One multicenter 
prospective study found that multidrug-resistant Gram-negative 
bacteria, including A. baumannii, K. pneumoniae, and 
P. aeruginosa, are frequently associated with VAP in ICUs (Bandić-
Pavlović et  al., 2020). In a study conducted over a period of 
46 months, Lambiase et  al. demonstrated that A. baumannii 
isolated from patients with VAP in ICUs were resistant to 
carbapenem with imipenem MIC ≥ 16 μg/ml (Lambiase 
et al., 2012).

A retrospective study further found that the sputum 
separation rate of CRAB from ICUs was markedly higher than 
those from non-ICUs, and the resistance rate of CRAB showed a 
significantly rising trend (He et al., 2020). Similarly, 80% of CRAB 
in ICUs were isolated from sputum specimens, and CRAB 
comprised more than 50% of carbapenem-resistant Gram-
negative bacilli (Karuniawati et al., 2013; Lăzureanu et al., 2016). 
Alternatively, another study showed that 58 of 61 A. baumannii 
isolates exhibited MICs with imipenem or meropenem≥16 μg/ml, 
and pulmonary infection was the most common site (26 of 36 
cases; Mammina et  al., 2012). As is widely known, the use of 
mechanical ventilation is strongly associated with the incidence of 
VAP. Therefore, when lung infection due to CRAB occurs in ICUs, 
the use of ventilators should be paid more attention than other 
wards to prevent cross-infection. However, beyond the use of 
mechanical ventilation, independent risk factors for CRAB 
causing pulmonary infections have been identified, such as 
previous stays in other departments, longer ICU stay, and previous 
use of carbapenems (Nazer et al., 2015a; Djordjevic et al., 2016). 
That is to say, a comprehensive infection control strategy is 
required to effectively control the emergence and spread of CRAB 
in ICUs.

Zhou et al. reported that the high mortality associated with 
bloodstream infections (BSIs) caused by A. baumannii has become 
a major clinical concern (Zhou et al., 2019). As such, increased 
attention should be paid to patients with CRAB bacteremia, apart 
from those with pulmonary CRAB infections. Invasive procedures 
and excessive use of antibiotics, particularly in patients with 
compromised immunity, are risk factors independently correlated 
with CRAB bacteremia (Kim et  al., 2012; Shirmohammadlou 
et al., 2018). Previous studies have also found that colonization in 
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the respiratory tract and gastrointestinal tract by CRAB is a crucial 
step before nosocomial infection (Lazareva et al., 2014; Bado et al., 
2018; Kiddee et al., 2018; Maamar et al., 2018). Identifying risk 
factors and providing targeted interventions may become effective 
approaches to reducing the incidence of CRAB-causing HAIs.

Environmental contamination of CRAB  
in ICUs

A. baumannii can persist in the environment for long-term 
periods. A. baumannii, which ubiquitously and continuously 
persists in the hospital setting is one of the main sources of HAIs 
(Sunenshine et al., 2007). Ng et al. reported that environmental 
CRAB contamination was detected in nearly two-thirds of the 
rooms housing patients with CRAB (Ng et al., 2018). Previous 
studies have also indicated that cross-contamination of multidrug-
resistant bacteria, specifically CRAB in ICUs, may occur via the 
air (Shimose et  al., 2016), high-density electroencephalogram 
material (Weiss et  al., 2016), Velcro on blood pressure cuffs 
(Alfandari et al., 2014), medical devices, furniture, and gloves 
(Raro et  al., 2017). Uwingabiye et  al. also observed genetic 
similarity between environmental and clinical CRAB isolates in 
96.4% of all isolates (Uwingabiye et  al., 2017). Given the 
intersection between patients and the environment, increasing 
studies have been devoted to the study of the extensive 
environmental colonization of CRAB in ICUs.

CRAB from environmental (environment and healthcare 
workers from ICUs) and clinical samples has been isolated and 
analyzed in several studies (Royer et al., 2015; Raro et al., 2017; Jain 
et al., 2019; Al-Hamad et al., 2020; Liu W. et al., 2020; Wang et al., 
2021), and it was found that the overwhelming majority of CRAB 
isolated from clinical and environmental samples produced 
OXA-23, but no clone was specifically responsible for both 
environmental colonization and ICU infections. However, the 
experimental results of pulsed-field gel electrophoresis (PFGE) 
have revealed the spread of carbapenem-resistant isolates via cross-
transmission among the environment and patients (Royer et al., 
2015; Jain et al., 2019). Similarly, Salehi et al. (2018) and Raro et al. 
(2017) analyzed the isolates of A. baumannii from patients, staff, 
and the environment, and emphasized the circulation of CRAB as 
a nosocomial pathogen in different wards of hospitals, particularly 
in ICUs. Shenoy et al. also identified highly contaminated areas and 
confirmed the role of environmental reservoirs by investigating five 
clinical CRAB infection cases (Shenoy et  al., 2020). It should 
be noted that although environmental contamination of CRAB in 
ICUs has gained increasing attention, research about whether 
specific clone was responsible for both environmental colonization 
and ICU infections is still lacking.

Further, a prospective surveillance study for 8 months has 
shown that more than half of the CRAB strains originating from 
the air are clonally associated with the clinical strains of nine 
patients in two medical ICUs with 20 beds total (Yakupogullari 
et al., 2016). The results of this study (Yakupogullari et al., 2016) 

suggested that infected patients can spread CRAB in large 
quantities to the air of an ICU, and these strains can still infect 
new patients after several months. This conclusion was verified by 
another study in China (Jiang et al., 2018). That is to say, special 
infection control measures may be  required to prevent the 
airborne spread of CRAB in ICUs.

Colonization is usually regarded as a fundamental ecological 
process. Bacterial colonization of the surfaces is almost ubiquitous, 
especially in healthcare settings. In addition, the colonization of 
gastrointestinal tract, respiratory tract, urinary tract, and axilla is 
also receiving growing interest from researchers. Previous studies 
have found that colonization is an essential step in pathogen 
infections (Chipolombwe et al., 2016; Weiser et al., 2018; Tanimoto 
et al., 2019). Besides, numerous studies have shown that colonization 
is an important risk factor for subsequent infection (Huang et al., 
2006; Haber et al., 2007; Martin et al., 2016; Gorrie et al., 2017). 
Studying the relationship between colonization and infections may 
bring new insights into disease prevention and treatment.

Interestingly, several studies have found that air and 
environmental surface contamination of CRAB were 
significantly greater among patients with respiratory tract 
colonization and gastrointestinal colonization than in other 
types of patients (Rosa et  al., 2014; Shimose et  al., 2016). 
Moreover, in a retrospective cohort study, significant 
associations were observed between CRAB colonization and 
clinical infections (Latibeaudiere et  al., 2015). Namely, 
respiratory tract colonization and gastrointestinal colonization 
also play prominent roles in CRAB infections in ICU patients. 
Meanwhile, the relationship between environmental 
contamination and pathogen infections also cannot 
be neglected in general wards (Al-Hamad et al., 2020). Overall, 
environmental reservoirs of CRAB play a pivotal role in the 
HAIs of CRAB. An intensive study of environmental CRAB is 
beneficial to the control and elimination of CRAB infections in 
ICUs. The figure below shows the transmission relationship of 
CRAB among patients, health care workers, and the 
environment in ICUs (Figure 1).

Drug resistance mechanism and 
homology of CRAB isolated from 
ICUs

The increase in drug-resistant bacterial infections leads to 
a heavy burden on healthcare systems globally. The study of 
drug resistance mechanisms is the first step to overcoming the 
infection of drug-resistant bacteria. CRAB has been classified 
by the WHO as one of the 12 top priority resistant bacteria 
presenting the most serious threat to public health (Tacconelli 
et al., 2018). As described previously, CRAB has been a major 
cause of HAIs (Sunenshine et  al., 2007). Accordingly, a 
significant understanding of the mechanism underlying CRAB 
resistance is of major importance for drug development and 
clinical therapy.
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An increasing number of researchers have conducted 
studies on drug resistance mechanisms and the homology of 
CRAB isolated from ICUs (Table  1). Details of the Table  1 
reveal that most studies on the molecular characterization of 
CRAB in ICUs have been conducted in Asia and Africa, 
primarily in the developing world. Although the antibiotic 
resistance genes (ARGs) in the majority of studies have been 
dominated by blaOXA-23-like, differences in ARGs and CRAB 
molecular typing have been found between different countries 
and regions.

These literature reviews reflect the high diversity of the 
ARGs of CRAB isolated from ICUs globally. Zhang X. et al. 
(2021) investigated the phylogenetic relationships of 105 
CRAB isolates from an ICU of a Chinese hospital and found 
that CRAB isolates contained 17 unique ARGs. And whole-
genome sequencing (WGS) revealed the presence of blaADC-25, 
blaOXA-23, and blaOXA-66 in all strains, which belonged to 
Sequence type (ST) 2 (Zhang X. et al., 2021). A previous study 
indicated that carbapenem resistance was dominantly driven 
by the dissemination of CRAB isolates carrying blaOXA-23, 
belonging to ST2 (Mammina et al., 2012). A study conducted 
in Pakistan also found that the ST2 clone-harboring blaNDM-1 
and blaOXA-23, which are widely distributed in ICUs, could 
prompt increased mortality (Ejaz et al., 2021). Notably, a study 
in another Chinese hospital in Shanghai reported the presence 
of blaOXA-23 in all CRAB strains (Wang et al., 2021), and it was 
found that the predominant clone of CRAB was ST208,  

which was consistent with the results obtained by Qian 
et al. (2015).

Unlike these studies, Zhang et al. found patterns of blaOXA-23 
(93.4%), ISAba1/blaOXA-51-like (27.5%), blaOXA-24 (2.2%), blaOXA-58 
(2.2%), and blaNDM-1 (8.8%) in CRAB strains (Zhang Y. et al., 
2021). On the basis of their results (Zhang Y. et al., 2021), the 
ISAba1/blaOXA-51-like and blaOXA-23-like might be more relevant to 
resistance in CRAB. Although the ARGs in CRAB varied in 
different regions, blaOXA-23 was always the principal ARG in 
CRAB (Mahamat et al., 2016; Neves et al., 2016; Salehi et al., 
2019). The blaOXA-23 is mostly found on plasmids, and Corvec 
et al. (2007) found that ISAba1 and ISAba4 which were detected 
upstream of the blaOXA-23 gene, provided promoter sequences for 
its expression.

In addition to blaOXA-23, ARGs such as blaOXA-24/40, blaOXA-51, 
blaOXA-58, and blaOXA-72 also play prominent roles in the drug 
resistance of CRAB (Schultz et al., 2016; Mavroidi et al., 2017; 
Chen et al., 2018b; Salehi et al., 2019; Zhang Y. et al., 2021). 
The blaOXA-24-like genes have been identified as chromosomally 
encoded. And Azizi et  al. found that the isolates of 
A. baumannii with both blaOXA-23 and blaOXA-24 had strong 
biofilm-forming capability (Azizi et al., 2015). It is well known 
that biofilms can facilitate the development of antibiotic 
resistance by limiting bacterial exposure to antibiotics. Apart 
from the aforementioned genes, biofilms and AdeABC efflux-
pump genes have also been detected in CRAB isolated from 
ICUs (Mavroidi et al., 2017; Chen et al., 2018a; Khalil et al., 

FIGURE 1

Transmission relationship of CRAB in ICUs. Solid arrow: bacterial infection and dissemination; dotted arrow: patients recently infected and 
colonized with CRAB are viewed as the new transmission source.
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TABLE 1 Studies on CRAB and its ARGs isolated from ICU patients.

Country References Period of study Number of 
CRAB

Wards ARGs Molecular 
Typing

Tunisia Maamar et al. (2018) Dec 2014 to Feb 

2015

13 ICU blaOXA-23 (84.6%), blaNDM-1 

(15.4%), armA (84.6%), tetB 

(84.6%), sul1 (84.6%), catB 

(84.6%), aph(3′)-VIa (69.2%), 

aph(3′)-Ia (15.4%), ant(2′)-Ia 

(15.4%), blaTEM-1 (30.8%)

ST195 (84.6%), ST1089 

(15.4%)

Egypt Ramadan et al. (2018) Jul 2017 to Dec 2017 30 ICU blaOXA-23 (90%), blaNDM (66.7%), 

blaGES (50%)

Unknown

Uganda   Aruhomukama et al. 

(2019)

Jan 2015 to Dec 2017 21 ICU (16) bla  VIM (100%), blaVIM + class 1 

integron (61.9%), blaOXA-23 

(29%), blaOXA-24 (24%), blaOXA-51 

(100%)

Unknown

Other wards (5)

Egypt Khalil et al. (2021) May 2019 to Feb 

2021

54 ICU blaOXA-23-like (88.9%), blaNDM 

(27.7%), blaOXA-51 (9.2%), Bap 

(25.9%), blaPER-1 (11.1%)

REP-PCR Genotyping: 

four distinctive REP-

PCR clusters (A-D) 

and two (746A, 715A) 

singleton isolates

Nigeria Odih et al. (2022) Aug 2017 to Jun 

2018

34 ICU blaOXA-51-like (100%), blaOXA-23-like 

(50%), blaNDM-1 (44.1%), 

blaOXA-420 (5.9%), blaTEM-84 

(29.4%), sul1 (29.4%), sul2 

(29.4%)

ST2 (29.4%), ST85 

(23.5%), ST149 (8.8%), 

ST25 (5.8%), ST164 

(5.9%), other STs 

(17.6%)

China   Zhao et al. (2019) Jan 2010 to Dec 2017 21 ICU bla  OXA-23 (100%), blaOXA-24 

(28.6%), blaOXA-51 (100%), blaADC 

(100%), blaTEM (95.2%), ISAbal 

(95.2%), ISA-23 (95.2%), ISA-

ADC (28.6%)

ST2 (95.2%)

ST1119 (4.8%)

China   Qian et al. (2015) Jan 2010 to Jan 2014 140 ICU (48) bla  OXA-23 (81.3%), blaOXA-24 

(5.3%), blaOXA-51 (61.3%), imp 

(12.3%), intl1 (57.9%), qacEΔ1-

sul1 (61.2%)

ST208 (52.1%)

Respiration 

Medicine (49)

ST218 (47.9%)

Burn and Plastic 

Surgery (43)

China Zhang et al. (2021c) Jul 2018 to Jun 2019 91 ICU blaOXA-51-like (100%), blaOXA-23-like 

(93.4%), blaOXA-24-like (2.2%), 

blaOXA-58-like (2.2%), 

ISAba1/blaOXA-51-like (27.5%), 

blaNDM-1 (8.8%)

Unknown

China Wang et al. (2021) Jul 2017 to Dec 2017 61 ICU blaOXA-51-like (100%), blaOXA-23-like 

(100%), blaAmpC (100%), ISAba1 

(100%), gyrA mutation (95.1%)

ST208 (93.5%), ST369 

(1.6%), ST373 (4.9%)

China Zhang et al. (2021b) Jan 2013 to Dec 2018 105 ICU blaOXA-23 (100%), blaOXA-66 

(100%), blaADC-25 (100%), blaTEM-

1D (81.9%), aac(6′)-Ib (15.2%), 

aac(6’)Ib-cr (15.2%), aph(3′)-Ia 

(16.2%), aph(3′)-Ib (81.0%), 

aph(6′)-Id (83.8%), armA 

(97.1%), aadA (83.8%), mph(E) 

(97.1%), msr(E) (97.1%), catB8 

(15.2%), tet(B) (83.8%), sul1 

(16.2%), sul2 (44.8%)

ST2 (100%)

(Continued)
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TABLE 1 (Continued)

Country References Period of study Number of 
CRAB

Wards ARGs Molecular 
Typing

China   Chen et al. (2018b) Jan 2014 to Dec 2016 78 ICU (51) bla  OXA-51-like (100%), blaOXA-72 

(57.7%), blaOXA-23-like (42.3%), 

blaOXA-58-like (1.3%)

ST2 (100%)

Other wards 

(27)

China Zhou et al. (2015) May 2012 to Nov 

2013

46 ICU blaOXA-51 (100%), blaOXA-23 

(100%), blaOXA-51-like + ISAba1-

blaOXA-23-like (84.8%)

ST195 (54.4%), ST365 

(19.3%), ST92 (8.8%), 

ST381 (5.3%), ST75 

(1.8%), five novel ST 

isolates (10.7%)

China   Liu and Liu (2021) Jul 2019 to Jan 2020 60 ICU (30) bla  OXA-23 (80%), blaVIM-2 

(23.3%), blaIMP-4 (40%), blaNDM-1 

(20%), ampC (16.7%), mutation 

of CarO (86.7%)

ST92 (63.3%), ST111 

(20.0%), ST244 

(10.0%), ST357 (6.7%)

Respiratory

Department (30)

China Guo and Li (2019) Jan 2017 to Jan 2018 82 ICU blaOXA-51 (100%), blaOXA-23 

(100%), qacΔE1 (76.8%), qacE 

(30.5%)

ST540 (36.6%), ST195 

(22.0%), ST208 

(18.3%), ST191 

(13.4%), ST369 (4.9%), 

ST469 (2.4%), ST381 

(1.2%), ST136 (1.2%)

Pakistan   Ejaz et al. (2021) Sep 2020 to Dec 

2020

113 ICU (81) bla  OXA-51 (100%), blaOXA-23 

(49.5%), blaNDM-1 (24.7%), 

blaOXA-58 (19.4%), blaOXA-143 

(2.6%)

ST2 (46.9%), ST1 

(15.9%), ST589 

(12.3%), ST7 (9.7%), 

ST158 (8.8%), ST23 

(4.4%), ST25 (1.7%)

Other wards 

(32)

Iran Shirmohammadlou 

et al. (2018)

Jun 2014 to Mar 

2016

100 ICU blaOXA-23 (89%), blaOXA-24 (29%), 

blaOXA-51 (100%), blaVIM (8%), 

qacΔE1 (91%), qacG (10%), 

qacE (4%)

unknown

Iran   Salehi et al. (2019) Aug 2016 to Feb 

2017

180 ICU (134) bla  OXA-23 (60.5%), blaOXA-58 

(17.2%), blaOXA-24 (1.7%)

Unknown

Other wards 

(46)

Thailand Kiddee et al. (2018) Dec 2014 to Dec 

2015

43 ICU blaIMP (2.3%), blaNDM (2.3%), 

blaOXA-23 (4.7%), blaOXA-24 (2.3%), 

blaOXA-51 (14.0%), blaOXA-23/51 

(46.5%), blaOXA-51/58 (9.3%), 

blaOXA-23/51/58 (11.6%), 

blaOXA-24/51/58 (2.3%)

Unknown

Croatia Bandić-Pavlović et al. 

(2020)

Sep 2017 to Mar 

2018

23 ICU AmpC (100%), blaOXA-23 (34.8%), 

blaOXA-24 (52.2%)

ST1 (13.0%), ST2 

(87.0%)

Italy Mammina et al. 

(2012)

Oct 2010 to Mar 

2011

61 ICU blaOXA-51-like (100%), blaOXA-23 

(80.3%), blaOXA-58 (3.3%)

ST2 (96.7%), ST78 

(3.3%)

Italy Mezzatesta et al. 

(2014)

Jan 2013 to Jul 2013 52 ICU blaOXA-51 (100%), blaOXA-23  

(100%)

ST2 (100%)

Italy   Venditti et al. (2019) Dec 2016 to Apr 

2017

13 ICU (12) bla  OXA-51-like (100%), blaOXA-23 

(100%)

ST2 (100%)

Other wards  

(1)

Brazil Neves et al. (2016) Dec 2009 to Dec 

2010

56 ICU blaOXA-51 (100%), blaOXA-23 

(51.2%), blaOXA-143 (18.6%)

Unknown

Uruguay Bado et al. (2018) Aug 2010 to Jul 2011 78 ICU blaOXA-51 (100%), blaOXA-23 

(79.5%), blaOXA-58 (3.8%)

ST79 (95.5%), ST958 

(4.5%)
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2021). However, there are relatively few studies on biofilms and 
efflux-pump of CRAB in ICUs. It seems highly likely that the 
biofilms and efflux-pump of CRAB have not gained enough 
attention in ICUs.

The emergence of CRAB may be  promoted by the 
adaptation and dissemination of a diverse group of successful 
clones. In a retrospective study of the drug resistance and 
distribution of pathogens isolated from the ICUs of 12 
hospitals, Liu et al. found homology in the PFGE typing of 
CRAB (Liu W. et al., 2020). Moreover, Salehi et al. demonstrated 
that nine cross-existing clones consisting of eight cluster types 
and one ST were present between two hospitals (Salehi et al., 
2019). Likewise, in South  Africa, a study involving two 
hospitals found that ST106, ST229, ST258, and ST208 were 
established in both hospitals; meanwhile, ST339, ST502, and 
the novel ST1552 were established in Hospital B only, whereas 
ST848 was established in Hospital A only (Lowe et al., 2018). 
ST2 was identified as the most predominant isolate in Italy in 
several studies (Mammina et al., 2012; Mezzatesta et al., 2014; 
Schultz et  al., 2016). It seems quite different from the 
distribution in other areas. In addition, resistance mechanisms 
and molecular epidemiology in the CRAB isolates varied 
between the general wards and ICUs. This result is supported 
by the PCR detection results of resistance genes, PFGE, and 
multilocus sequence typing (MLST) analysis in a recent study 
(Liu and Liu, 2021). The diverse ST types in different countries 
and regions have been listed in Table  1. Although CRAB 
infections have been reported all over the world, the lack of 
reports of molecular characterization targeted CRAB in ICUs 
is noticeable in some regions. Thus, further studies are needed 
to provide further evidence.

Overall, despite a certain degree of homology in CRAB from 
different ICUs, a high genetic diversity could not be overlooked. 
Further studies and investigations on the homology and drug 
resistance mechanism of CRAB in ICUs have important 
implications for reversing and reducing drug resistance, as well as 
developing control and treatment strategies.

Strategies and advice

Treatment strategies for CRAB infections

Guidelines for the treatment of CRAB 
infections

As previously mentioned, CRAB infections have become 
increasingly prevalent worldwide. The increasing healthcare 
burden caused by CRAB in ICUs has directed widespread 
attention to the treatment and control of CRAB. However, 
limited therapeutic options, as well as the long study period 
and task difficulty involved in new drug development, have 
prompted the increased interest among researchers devoting 
themselves to evaluating and improving treatment regimens on 
the basis of existing drugs. As clinical treatment options 

continued to be evaluated and studied, the European Society of 
Clinical Microbiology and Infectious Diseases (ESCMID) set 
guidelines in 2021 for the treatment of multidrug-resistant 
Gram-negative bacilli infections (Paul et  al., 2022). The 
Infectious Diseases Society of America (IDSA) also recently 
updated the guidance document on the treatment of AmpC 
β-lactamase-producing Enterobacterales, CRAB, and infections 
caused by Stenotrophomonas maltophilia (Tamma et al., 2022). 
Both guidelines include therapeutic choices for CRAB 
infections. Subtle differences between these two guidance 
documents are observed despite the similarity of the majority 
of treatment strategies for CRAB. The current study presents a 
summary in Figure 2.

In addition to the two guidelines by IDSA and ESCMID, 
similar guidelines including the treatment strategies related to 
CRAB infections have also been published in other regions and 
countries, such as China, Italy, and Arab countries of the Middle 
East (Guan et  al., 2016; Al Salman et  al., 2020; Tiseo et  al., 
2022). These recommendations present the distribution of 
diverse social and healthcare structures of different regions, as 
well as compensates for the deficiencies of international 
consensus guidelines. It is worth noting that, Table 1 lists China, 
Italy, and Arab countries of the Middle East as the main regions 
reporting CRAB infections in ICUs. In the consensus statement 
in Arab countries of the Middle East, A. baumannii infections 
are divided into two parts: (1) bacteremia and nosocomial 
pneumonia; (2) complicated urinary tract infection, and 
complicated skin and soft tissue infection. The treatment 
schemes, including first-choice therapy and duration, can vary 
based on the type of infection (Al Salman et  al., 2020). In 
addition, three recommendations are presented in the guidance 
document in Italy with the following brief overview: (1) 
Consultation with specialists is recommended; (2) Rigorous 
monitoring of renal function is strongly recommended when 
colistin is administered; (3) Although cefiderocol represents a 
high-potential alternative for patients with CRAB infections, 
further studies need to be  conducted to estimate the use of 
cefiderocol (Tiseo et al., 2022). In 2016, the Chinese consensus 
statement on the antimicrobial treatment of extensively drug-
resistant Gram-negative bacilli (XDR-GNB) infections was 
released (Guan et  al., 2016). This statement included the 
treatment strategies of XDR-GNB and was regarded as a 
reference for the treatment of CRAB infections. In 2019, the 
recommendations for antimicrobial treatment of CRAB 
infections were explicitly proposed in “Technical Guidelines for 
Prevention and Control of Carbapenem-resistant Gram-Negative 
Bacilli Infection in China” (Hu, 2019). An overview of these 
three guidelines is presented in Table  2 for a more intuitive 
comparison. The Table  2 shows that compared with the 
guidelines in Arab countries of the Middle East and China, the 
guidance document in Italy contains no detailed treatment 
strategies. Medical institutions in Italy were likely to comply 
with the guideline-recommended treatment strategies 
in ESCMID.
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In summary, although many regions have proposed 
treatment guidelines and consensus on CRAB, the 
recommendations for the antimicrobial treatment of CRAB 
infections differed widely among different areas on the basis of 
the variations in antimicrobial availability, local preferences, 
and resistance patterns. Moreover, these recommendations 
need to be updated periodically in accordance to the evolution 
and spread of antibiotic resistance, and the advent of novel 
therapeutic strategies.

Other studies for treatment strategies
Despite the growing availability of guidelines, numerous 

questions about the treatment of CRAB infections arise. 
Ehrentraut et al. found that the use of colistin without drug 
concentration monitoring might be  unsafe for critically ill 

patients, and treatment in accordance with guidelines does not 
ensure efficient target levels (Ehrentraut et al., 2020). The high 
frequency of isolation of CRAB in ICUs requires accurate 
antimicrobial susceptibility testing (AST), particularly to 
colistin, to ensure treatment precision (Sacco et  al., 2021). 
Accordingly, drug concentration monitoring and the accurate 
application of AST are indispensable when treating with 
colistin; in addition, the safety assessment of colistin 
monotherapy requires further study. Moreover, in treating the 
BSIs of carbapenem-resistant NFGNB, high-dosage tigecycline 
(TGC) therapy was not superior to standard TGC dosing, and 
TGC-based combination antimicrobial therapy was not 
superior to monotherapy (Qu et al., 2021). Thus, whether TGC 
is suitable for the treatment of CRAB infections requires 
further research and verification.

FIGURE 2

Treatment guidelines of CRAB infections for 2022 IDSA guidance and 2021 ESCMID guidance. IDSA: Infectious Diseases Society of America, 
ESCMID: European Society of Clinical Microbiology and Infectious Diseases.
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In addition to the treatment alternatives included in these 
guidelines, other treatment strategies have also been recently 
examined in response to the development of antibiotic 
resistance. Phage therapy is regarded as a promising selection 
for treating pulmonary bacterial infections. Wu et al. reported 
that using a pre-optimized two-phage cocktail in ICUs can 
cause a significant decrease in CRAB burden (Wu et al., 2021). 
Other treatment strategies in recent years also included 
N-acetylcysteine plus antibiotics (Oliva et  al., 2021), 
trimethoprim–sulfamethoxazole (Raz-Pasteur et al., 2019), 
and other sulbactam-based combinations (Qu et al., 2020). 
These therapeutic strategies may be  further studied in the 
future. However, integrated strategies for the effective 
prevention and control of infection caused by drug-resistant 
bacteria have to be  urgently developed because of the 
evolution and spread of antibiotic resistance, as well as 
existing challenges and limitations in pharmaceutical research.

Infection control strategies

Awareness of infection prevention and control has increased 
with intensified research in epidemiology. Agodi et al. indicated 
that infection control measures are equally important as the 
cautious use of antibiotics (Agodi et al., 2015). In 2017, WHO 
published the first global guidelines for the prevention  
and control of carbapenem-resistant Enterobacteriaceae– 
A. baumannii–P. aeruginosa in health care facilities, including 
eight evidence-based recommendations distilled by leading 
global experts (World Health Organization, 2017). Subsequently, 
the WHO global report on infection prevention and control 

provided a global situation analysis for policymakers at different 
levels, which can be used to facilitate the development of disease 
control strategies (World Health Organization, 2022). 
Accordingly, a growing number of healthcare workers have 
devoted themselves to the prevention and control of drug-
resistant bacteria infections in ICUs. Thus, measures taken for 
CRAB infection control in ICUs are further discussed in the 
succeeding section.

Control of carbapenem use
The emergence, persistence, and dissemination of CRAB 

in ICUs limit therapeutic efficacy in critically ill patients. 
Antibiotic resistance is an ancient natural mechanism (Munita 
and Arias, 2016), but recent antibiotic usage effectively 
imposes selection pressure on ARGs. Selection pressure due 
to the use of antibiotics leads to the emergence, persistence, 
and dissemination of clinical resistant strains. Up to half of 
antibiotic courses might be  inappropriate for use in ICUs 
(Barnes et  al., 2017). Short-term carbapenem restriction 
effectively reduces the incidence of CRAB in ICUs (Ogutlu 
et al., 2014; Abdallah et al., 2019). Further, Munoz-Price et al. 
reported that every additive carbapenem-defined daily dose 
increased the risk of CRAB by 5.1% (Munoz-Price et  al., 
2016). Djordjevic et  al. showed that previous use of 
carbapenems was a risk factor for CRAB infections in ICUs, 
and also demonstrated that appropriate policy of antibiotic 
utilization was an important measure that may decrease the 
incidence of such infections (Djordjevic et  al., 2016). 
Therefore, controlling the usage of carbapenems to a certain 
degree can reduce the emergence and spread of CRAB in 
ICUs. However, the inevitable use of carbapenems prompts 

TABLE 2 Overview of the recommendations for antimicrobial treatment of CRAB infections in Arab countries in the Middle East, Italy, and China.

Arab countries of the Middle East Italy China

Bacteraemia and nosocomial 

pneumonia:

stable patients:

 •  Colistina or polymyxin B monotherapy

critically ill patients:

•    Colistina or polymyxin B in 

combination with one of the following:

 • Aminoglycosideb

 • Ampicillin/sulbactam

 • Carbapenem (high-dose, 

extended infusion)

 • Fosfomycin

 • Minocycline

 • Rifampicin

 • Tigecycline (high-dose)

cUTI and cSSTI

Monotherapy with one of the following:

 • Aminoglycoside

 • Ampicillin/sulbactam

 • Carbapenem (high-dose, 

extended infusion)

 • Colistin

 • Doxycyclinec

 • Fosfomycind

 • Tigecyclinec

 • Trimethoprim-sulfamethoxazole

 • Strongly recommend a 

consultation by specialists;

 • Rigorous monitoring of renal 

function is strongly recommend 

when colistin is administered;

 • Further studies are necessary to 

estimate the use of cefiderocol.

First choice according to drug 

sensitivity results:

 • Compound preparation 

containing sulbactam

 • Aminoglycoside

 • Fluoroquinolone

 • Minocycline

 • SMZ-TMP

Secondary choice according to drug 

sensitivity results:

 • Tigecycline

 • Polymyxin

 • Other β Lactamase inhibitor compound 

preparations

cUTI, complicated urinary tract infection; cSSTI, complicated skin and soft tissue infection; SMZ-TMP, sulfamethoxazole-trimethoprim. a intravenous and inhaled (nebulized) for 
patients with pneumonia. b for bacteraemia only. c for cSSTI only. d for cUTI only.
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the need for stronger evidence to support and guide the use 
of antibiotics.

Early epidemiological screening for CRAB
As described previously (2.1), colonization by CRAB is a 

crucial step before nosocomial infection. Patients with CRAB 
intestinal colonization are more likely to develop CRAB 
infections, and admission screening of fecal carriage can 
prevent its spread (Maamar et  al., 2018; Qiao et  al., 2020). 
Culture processes and polymerase chain reaction (PCR) have 
long been regarded as the most common means of 
epidemiological screening for pathogens. Technological 
advancements have led to the development of new techniques 
to assist clinicians in early epidemiological screening 
for pathogens.

Investigators have detected A. baumannii and carbapenem 
resistance by loop-mediated isothermal amplification (LAMP) 
assay and found that LAMP was expected to act as an effective 
mean for early detection (Garciglia-Mercado et al., 2021; Sharma 
and Gaind, 2021). Rapid screening using LAMP assay followed 
by early intervention has also been reported to potentially 
decrease the transmission rates of CRAB in ICUs (Yamamoto 
et al., 2019). Li et al. optimized and evaluated the LAMP method, 
and their results showed that in A. baumannii detection, the 
sensitivity of LAMP was tenfold higher than that of PCR (Li et al., 
2015). Garciglia-Mercado et  al. reached a similar conclusion 
(Garciglia-Mercado et al., 2020). In addition to the LAMP assay, 
WGS was a valuable tool in epidemiological studies (Venditti 
et  al., 2019). However, although the cost of sequencing has 
significantly decreased in recent years, WGS in epidemiological 
investigations remains extremely costly. Therefore, LAMP can 
potentially be  used as an available screening method in 
epidemiologic investigations of CRAB, balancing sensitivity with 
the cost of detection.

Interventions
On the basis of the screening results, adequate control and 

disinfection measures can effectively limit the transmission of 
CRAB in ICUs. Chung et al. observed a 51.8% reduction in 
CRAB infection rates after daily chlorhexidine bathing in ICUs 
with CRAB endemicity (Chung et al., 2015). Other studies also 
indicated that daily bathing with 2% chlorhexidine gluconate 
can reduce CRAB cross-transmission among patients in ICUs 
with high CRAB endemicity (Hong et al., 2018; Metan et al., 
2020; Suh et  al., 2021). Moreover, environmental cleaning, 
isolation, and enhanced contact precautions are also integrated 
into strategies preventing CRAB cross-transmission among 
patients in ICUs because of the environmental reservoirs 
of CRAB.

Numerous studies have devoted themselves to preventing 
and addressing the environmental contamination and cross-
transmission of CRAB in ICUs in recent years (Karampatakis 
et al., 2020; Dickstein et al., 2021; Jung et al., 2021; Kelly et al., 
2021). First, the most significant point is that healthcare 

personnel education should be  promoted to strengthen 
awareness and preparedness. Karampatakis et al. associated the 
increased infection rates for CRAB with work programs and 
behavioral factors (Karampatakis et  al., 2020). Similarly, 
Kousouli et  al. identified reduced compliance with hand 
hygiene and participation in educational courses as the most 
significant factor for CRAB bloodstream infection (Kousouli 
et  al., 2018). A study in China found that after targeted 
surveillance, further implementation of infection control, 
including staff education, hand hygiene, and environmental 
cleaning can effectively prevent the spread of nosocomial 
CRAB infections (Zhao et al., 2019).

Second, new admissions should be separated from patients 
with colonization and infection, and their treatment should 
be  handled by different medical staff members. An et  al. 
isolated and grouped patients by CRAB culture results. They 
observed that the rate of CRAB infections and the use of 
colistin significantly decreased during the study period (An 
et al., 2017). Further, single-person isolation in ICUs was found 
to be  an efficient method to prevent the transmission and 
hospital-acquired infections of CRAB (Guth et al., 2016; Jung 
et al., 2021).

Third, adequate environmental cleaning and disinfection 
also decrease the risk of transmission and infection of 
CRAB. Ben-Chetrit et  al. showed that after environmental 
cleaning and hand hygiene, CRAB acquisition in ICUs 
considerably decreased from 54.6 to 1.9 (year 1) and 5.6 cases 
(year 2)/1,000 admissions (Ben-Chetrit et al., 2018). Various 
cleaning and disinfectant techniques have been widely used in 
health care settings to minimize HAIs. The use of phages as 
environmental sanitizers has been considered an alternative 
approach to removing bacterial contamination from the 
environment. Among the techniques reported, the use of 
phages as environmental sanitizers successfully decreased the 
rates of CRAB infection in ICUs (Ho et al., 2016; Chen et al., 
2022). Steam technology (Oztoprak et  al., 2019), terminal 
cleaning with sodium troclosene (Dickstein et  al., 2021), 
installation of heat and moisture exchangers (Thatrimontrichai 
et al., 2020), ultraviolet-C, and aerosolized hydrogen peroxide 
(Kelly et  al., 2021) have been successfully applied in 
environmental disinfection. By contrast, another study 
reported that strengthened environmental cleaning exhibited 
no association with the incidence (p = 0.156) and colonization 
pressure (p = 0.825) of CRAB in ICUs (Seok et al., 2021). The 
argument of whether decreasing the use of ventilators is more 
important than environmental cleaning was presented. A 
synthesis of the results of these studies indicates that 
controlling the use of ventilators for environmental disinfection 
may achieve significantly improved outcomes in infection  
control.

Figure 3 recapitulates the treatment and infection control 
of CRAB in ICUs. Collectively, developing an integrated 
system to monitor the microbial profiles, usage of antibiotics, 
and resistance profiles in ICUs, as well as combining multiple 
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interventions, is necessary for infection control of CRAB 
in ICUs.

Conclusion

CRAB has progressed as a leading cause of HAIs worldwide, 
particularly in ICUs. Its spread and multiple-drug resistance 
considerably impedes the treatment of critically ill patients. On the 
basis of epidemiology and antibiotic resistance, the combined 
application of multiple interventions can effectively control the 
emergence and spread of CRAB, as well as provides hope for the 
control of CRAB infections in ICUs. Certainly, the implementation 
of control measures is of crucial importance and has to be extended 
to other wards for the eradication of CRAB from hospitals.
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