
Frontiers in Microbiology 01 frontiersin.org

Effects of black soldier fly larvae 
as protein or fat sources on 
apparent nutrient digestibility, 
fecal microbiota, and metabolic 
profiles in beagle dogs
Shiyan Jian 1†, Limeng Zhang 2†, Ning Ding 3, Kang Yang 1, 
Zhongquan Xin 1, Minhua Hu 4, Zhidong Zhou 4, Zhihong Zhao 4, 
Baichuan Deng 1* and Jinping Deng 1*
1 Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial 
Key Laboratory of Animal Nutrition Control, National Engineering Laboratory for Pollution Control 
and Waste Utilization in Livestock and Poultry Production, National Engineering Research Center 
for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 
Guangzhou, China, 2 Guangzhou Qingke Biotechnology Co., Ltd., Guangzhou, Guangdong, China, 
3 Guangzhou Customs Technology Center, Guangzhou, Guangdong, China, 4 Guangzhou General 
Pharmaceutical Research Institute Co., Ltd. (National Canine Laboratory Animal Resources Center), 
Guangzhou, Guangdong, China

Black soldier fly (Hermetia illucens) larvae (BSFL) act as a biological system 

converting organic waste into protein and fat with great potential application 

as pet food. To evaluate the feasibility of BSFL as a protein and fat source, 20 

healthy beagle dogs were fed three dietary treatments for 65 days, including 

(1) a basal diet group (CON group), (2) a basal diet that replaced 20% chicken 

meal with defatted black soldier fly larvae protein group (DBP group), and (3) 

a basal diet that replaced 8% mixed oil with black soldier fly larvae fat group 

(BF group). This study demonstrated that the serum biochemical parameters 

among the three groups were within the normal range. No difference (p > 0.05) 

was observed in body weight, body condition score, or antioxidant capacity 

among the three groups. The mean IFN-γ level in the BF group was lower 

than that in the CON group, but there was no significant difference (p > 0.05). 

Compared with the CON group, the DBP group had decreasing (p < 0.05) 

apparent crude protein and organic matter digestibility. Furthermore, the 

DBP group had decreasing (p < 0.05) fecal propionate, butyrate, total short-

chain fatty acids (SCFAs), isobutyrate, isovalerate, and total branched-chain 

fatty acids (BCFAs) and increased (p < 0.05) fecal pH. Nevertheless, there 

was no difference (p > 0.05) in SCFAs or BCFAs between the CON and BF 

groups. The fecal microbiota revealed that Lachnoclostridium, Clostridioides, 

Blautia, and Enterococcus were significantly enriched in the DBP group, and 

Terrisporobacter and Ralstonia were significantly enriched in the BF group. 

The fecal metabolome showed that the DBP group significantly influenced 18 

metabolic pathways. Integrating biological and statistical correlation analysis 

on differential fecal microbiota and metabolites between the CON and DBP 

groups found that Lachnoclostridium, Clostridioides, and Enterococcus 

were positively associated with biotin. In addition, Lachnoclostridium, 

Clostridioides, Blautia, and Enterococcus were positively associated with 

niacinamide, phenylalanine acid, fumaric acid, and citrulline and negatively 
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associated with cadavrine, putrescine, saccharopine, and butyrate. In all, 20% 

DBP restrained the apparent CP and OM digestibility, thereby affecting hindgut 

microbial metabolism. In contrast, 8% BF in the dog diet showed no adverse 

effects on body condition, apparent nutrient digestibility, fecal microbiota, or 

metabolic profiles. Our findings are conducive to opening a new avenue for 

the exploitation of DBP and BF as protein and fat resources in dog food.

KEYWORDS

black soldier fly larvae, pet food, beagle dog, protein and fat, apparent nutrient 
digestibility, microbiota, metabolomics

Introduction

With the increase in the population of humans and animals, 
the shortages of protein and fat, mainly referring to fishmeal 
(Dawood and Koshio, 2020; Luthada-Raswiswi et al., 2021) and 
soybean (Herrera et al., 2022), is an urgent problem. Apart from 
traditional economic animals, the amount of pets, mainly dogs and 
cats, is also in a booming development stage, and the demand for 
pet food has further increased (De Marchi et al., 2018). In addition, 
meats, such as chicken, swine, bovine, fish, and exotic meats, and 
meat and bone byproducts are the major protein sources of dog 
food, which also fail to meet the increasing demands of the pet 
industry (Swanson et al., 2013). It is well known that dogs are 
omnivorous animals, cats are carnivorous animals, and the levels 
of animal protein and fat are high in their diets, which has 
promoted the development of new high-quality and sustainable 
protein and fat sources for pet food (Bosch et al., 2016). Hence, it 
is necessary to develop novel protein and fat sources.

Insects, which have been successfully introduced in animal diets 
(poultry, swine, rabbits, fish, and pets) in recent years, have bright 
prospects as alternate protein and fat sources (Benzertiha et  al., 
2020). Protein from insects shows high biological value, and fat may 
replace palm (i.e., kernel) fat and hence contribute to the 
conservation of tropical forests (Müller et al., 2017). The three most 
evaluated insects, black soldier fly (Hermetia illucens) larvae (BSFL), 
mealworm, and adult cricket, have high protein contents (dry matter 
basis) and are similar to soybean meal and meat meal (Valdés et al., 
2022). Moreover, these insects are rich in essential amino acids 
(Bosch et al., 2014), such as aspartic acid, glutamic acid, valine, 
leucine, and alanine, which are similar to those of animals 
(Churchward-Venne et  al., 2017) and have a high digestibility 
(76–98%; Ramos-Elorduy et al., 1997). Particularly, among these 
insects, BSFL is a highly investigated insect due to its strong 
fecundity, high conversion rate, high nutrition, low cost, and easy 
management (Yildirim Aksoy et al., 2020), and it is most commonly 
used in pet food (Valdés et  al., 2022). In detail, BSFL promote 
environmental sustainability by converting a vast amount of 
low-value organic wastes, such as vegetables, fruits, and garbage, into 
protein and fat (Kim et al., 2011; Kelemu et al., 2015), leaving behind 
a compost-like residue that can be used as a soil conditioner (Somroo 

et al., 2019). Moreover, BSFL is rich in fatty acids (Tschirner and 
Simon, 2015; Ewald et al., 2020), including lauric acid, palmitic acid, 
oleic acid, linoleic acid, and linolenic acid, and contains abundant 
amino acids (Do et al., 2020), such as arginine, histidine, isoleucine, 
leucine, and lysine, which suggests that BSFL is an excellent raw feed 
material. Early studies have demonstrated that BSFL showed 
accelerative effects on the growth performance and nutrient 
digestibility of finishing pigs (Hong and Kim, 2022), was a suitable 
substitute for soybean meal in the diet of poultry (Józefiak et al., 
2016; Mwaniki et  al., 2018; Secci et  al., 2018), and acted as a 
complementary protein source in dog diets with characteristics 
comparable to fish meal (Freel et al., 2021). Recently, a similar study 
was conducted to assess the digestibility and safety, including dry 
matter, protein, fat, energy, and hematology parameters of BSFL and 
BSFL fat, in beagle dogs, and some referential results were obtained 
(Freel et al., 2021). However, the investigation of BSFL as a protein 
or fat material in pets is highly limited and not profound enough to 
explore the relationship between intestinal health (Bruno et al., 2019) 
and metabolic variation.

Thus, the purpose of this study was to explore the effects of 
protein and fat isolated from BSFL on apparent nutrient digestibility, 
serum biochemistry, antioxidant and anti-inflammatory properties, 
and fecal SCFAs in dogs. In addition, we  further detected fecal 
microbiota and metabolic profiles through 16S rRNA amplicon 
sequencing and ultra-performance liquid chromatography-Orbitrap-
tandem mass spectrometry (UPLC-Orbitrap-MS/MS) and mined 
the potential relationships between microbiota and metabolites. This 
study is conducive to providing a new understanding of the 
exploitation of defatted black soldier fly larvae protein (DBP) and 
black soldier fly larvae (BF) as protein and fat resources.

Materials and methods

Preparation of defatted black soldier fly 
larvae protein and black soldier fly larvae 
fat

The DBP and BF were purchased from Guangzhou Unique 
Biotechnology Co., Ltd., and BSFL aged 10–12 days were reared 
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with kitchen waste under constant temperature and humidity 
(28°C, 80%). The BSFL were killed by the refrigeration technique 
by keeping the temperature under − 20°C for 24 h and then oven 
drying under 65°C for 24 h. The dried BSFL were boiled in a 
steamer for 20–30 min and then stir-fried in a wok for 10–20 min. 
Afterward, the stir-fried BSFL was finely pulverized and prepared 
using n-hexane as the solvent in the press, and the leach solution 
was collected as the BF. Next, the DBP was extracted by alkaline 
solution and acid precipitation, dialysis desalting, 
and lyophilization.

Animals, diets, and experimental design

The animal experimental procedures mentioned in this study 
were reviewed and approved by the Experimental Animal Ethics 
Committee of South China Agricultural University (approval 
code 2021E028).

After a month of adaptation, 20 beagle dogs [mean age: 
10 months; mean body weight (BW): 12.67 ± 1.48 kg; mean body 
condition score (BCS): 5.84 ± 0.71] were randomly allotted to 
three dietary treatments according to their gender and BW. The 
dietary treatments included the following: (1) a basal diet group 
(CON group; n = 6, 2 male and 4 female); (2) a basal diet that 
replaced 20% chicken meal with 20% defatted black soldier fly 
larvae protein group (DBP group; n = 7, 3 male and 4 female); 
and (3) a basal diet that replaced 8% mixed oil with 8% black 
soldier fly larvae fat group (BF group; n = 7, 3 male and 4 
female). These extruded diets exceeded the nutrient 
requirements of adult dogs recommended by the Association of 
American Feed Control Officials (AFFCO; AAFCO Official 
Publication, 2022). Table 1 shows the ingredients and nutrient 
levels of the experimental diets, and Supplementary Table 1 
presents the proximate analysis data of chicken meal and 
DBP. The three kinds of dog food were made at Guangzhou 
Qingke Biotechnology Co., Ltd., and the experimental period 
lasted for 65 days, including a 5-day preliminary trial period 
and a 60-day formal trial period.

All dogs were housed individually in custom-made stainless 
steel metabolism cages (1.2 × 1.0 × 1.1 m kennels) under a constant 
temperature and humidity (23°C, 70%) with a 12 h light/dark 
cycle. A restricted diet of 130 g per dog was offered at each of the 
two daily meals at 8:00 am and 5:00 pm. All dogs were dewormed 
and vaccinated before the experiment, and no drugs were used 
throughout the entire experiment. All dogs were always given 
fresh water and toys and socialized with humans at least once a 
day. Final BW and BCS (Cline et al., 2021) were performed on day 
65 before the morning feeding.

Diets, feces collection and analysis

Three diet samples (100 g) were collected when each bag of the 
three kinds of dog food was opened throughout the experimental 

period. Whole feces were collected, and 10% HCl was added to the 
nitrogen fixation on days 62–65. Diet and feces samples were 
stored at −20°C, oven-dried at 65°C for 48 h and finely ground to 
pass through a 1-mm mesh screen for subsequent analysis. The 
dry matter (DM) and organic matter (OM) contents of the diet 
and feces samples were determined according to the methods of 
the Association of Official Analytical Chemists (AOAC, 2000; 
Hortwitz and Latimer, 2007). Based on AOAC, crude protein 
(CP), ether extract (EE), and gross energy (GE) were determined 
with a semiautomatic Kjeldahl apparatus (VAPODEST 200, 
C. Gerhardt GmbH & Co. KG, Germany), fatty analyzer (FT640, 
Grand Analytical Instrument Co., Ltd., Guangzhou, China), and 
oxygen bomb calorimeter [IKA C 200, IKA (Guangzhou) 

TABLE 1 Ingredients and nutrient levels of the experimental diets 
(as-fed basis, %).

Items CON DBP BF

Ingredients as-fed basis, %
Corn 25.00 25.00 25.00

Sweet potato flour 12.00 12.00 12.00

Wheat flour 10.00 10.00 10.00

Corn gluten meal 5.00 5.00 5. 00

Beet pulp 2.50 2.50 2.50

Duck meal 8.00 8.00 8.00

Fish meal 2.50 2.50 2.50

Meat and bone meal 3.00 3.00 3.00

Calcium bicarbonate 1.00 1.00 1.00

Solid flavor enhancer 2.00 2.00 2.00

Vitamin and mineral 

premix1

1.00 1.00 1.00

Chicken meal 20.00 0 20.00

Mixed oil2 8.00 8.00 0

Defatted black soldier 

fly protein

0 20.00 0

Black solider fly fat 0 0 8.00

Nutrient levels3

DM (%) 91.20 91.29 92.66

OM (%) 93.68 92.49 93.25

CP (%) 32.72 30.21 32.55

EE (%) 14.30 16.15 15.99

GE (kcal/kg) 4759.86 4560.91 4598.08

Calcium (%) 0.57 0.53 0.50

Phosphorus (%) 0.46 0.42 0.41

Calcium and 

phosphorus ratio

1.24 1.26 1.22

CON: basal diet group; DBP: defatted black soldier fly larvae protein group; BF: black 
soldier fly larvae fat group; DM: dry matter; OM: organic matter; CP: crude protein; EE: 
ether extract; GE: gross energy.
1Vitamin and mineral premix provided the following per kilogram of diet: vitamin A, 
2,260,000 IU; vitamin D3, 50,000 IU; vitamin E, 5,400 mg; vitamin K3, 10 mg; vitamin B1 
(thiamine), 1,680 mg; vitamin B2 (riboflavin), 740 mg; vitamin B6, 840 mg; vitamin B12, 
3 mg; niacin, 9,800 mg; calcium pantothenate 948 mg; biotin, 11 mg; folacin, 90 mg; 
choline chloride, 264,180 mg; Fe, 8,000 mg; Cu, 1,500 mg; Mn, 780 mg; Zn, 7,520 mg; I, 
180 mg; Se, 30 mg.
2Mixed oil contained 2% fish oil and 6% chicken oil.
3Measured values in dry matter basis.
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Instrument Equipment Co., Ltd., Guangzhou, China], respectively. 
Finally, the apparent digestibility of nutrients was calculated by 
referencing the following formula: 

Apparent nutrient digestibility (%) = (Nutrient 
intake – Nutrient in feces)/Nutrient intake*100 (g/d, DM basis).

Serum sample collection and analysis

On day 65, fasting blood was collected and placed for 
30 min and centrifuged at 1,811 × g at room temperature for 
15 min. Finally, aliquots for serum biochemical, antioxidant, 
inflammatory parameters and metabolomics analysis were 
snap-frozen in liquid N2 and stored at −80°C until analysis. The 
serum biochemical parameters, including albumin (ALB), total 
protein (TP), globulin (GLO), albumin/globulin (ALB/GLO), 
aspartate aminotransferase (AST), alanine transaminase (ALT), 
amylase (AMY), creatine kinase (CK), creatinine (CRE), urea 
nitrogen (BUN), glucose (GLU), calcium (Ca), and inorganic 
phosphorus (IP), were detected using an automatic biochemical 
analyzer (SMT-120VP, Chengdu Seamaty Technology Co., Ltd., 
Chengdu, China). According to the manufacturer’s protocol of 
commercial kits (Nanjing Jiancheng Bioengineering Institute, 
Nanjing, China), the serum contents of total antioxidant 
capacity (T-AOC), glutathione peroxidase (GSH-Px), 
malondialdehyde (MDA), catalase (CAT), and superoxide 
dismutase (SOD) were detected. Serum tumor necrosis factor-α 
(TNF-α), interferon-γ (IFN-γ), interleukin 6 (IL-6), IL-8, IL-10, 
IL-1β, immunoglobulin A (IgA), IgG, and IgM were measured 
using canine enzyme-linked immunosorbent assay (ELISA) kits 
(MEIMIAN, Jiangsu Meimian Industrial Co., Ltd., 
Jiangsu, China).

Fecal 16S rRNA high-throughput 
sequencing analysis

On day 65, fresh fecal samples of each dog were collected 
within 15 min of defecation. A total of 0.5 g of each fecal sample 
was taken for the extraction of total fecal DNA using the CTAB 
method according to the manufacturer’s instructions. 
Determination of DNA concentration and purity using a 
NanoDrop2000. The 16S rRNA genes of V3–V4 were amplified 
with the barcode using the primers 515F (5′-GTGYCAGCMGCC 
GCGGTAA-3′) and 805R (5′-GGACTACHVGGGTW 
CTAAT-3′). PCRs were carried out with approximately 10 ng of 
template DNA and 15 μl of Phusion® High-Fidelity PCR Master 
Mix (New England Biolabs) with 2 μM forward and reverse 
primers. The cycling parameters consisted of 98°C for 30 s, 
followed by 32 cycles of denaturation at 98°C for 10 s, annealing at 
54°C for 30 s, and elongation at 72°C for 45 s, followed by 72°C for 
10 min. PCR amplification products were detected by 2% agarose 
gel electrophoresis, and the target fragments were recovered using 

the AxyPrep PCR Cleanup Kit. The purified PCR products were 
quantified by a Quant-iT PicoGreen dsDNA Assay Kit on a Qbit 
fluorescence quantitative system, and the qualified library 
concentration was above 2 nM. The qualified libraries (index 
sequence could not be repeated) were gradient diluted, mixed 
according to the required amount of sequencing in proportion, 
and denatured by NaOH into a single chain for on-machine 
sequencing. A NovaSeq  6000 sequence analyzer was used for 
2 × 250 bp double-end sequencing, and the corresponding reagent 
was a NovaSeq 6000 SP Reagent Kit (500 cycles).

After the on-board sequencing was completed, we obtained 
the original off-board data RawData, used overlap to splice the 
dual-end data, and performed quality control chimaism filtering 
to obtain the high-quality CleanData. DADA2 (Divisive 
Amplicon Denoising Algorithm; Callahan et  al., 2016) no 
longer clusters in sequence similarity but instead clusters by 
dereplication (Dereplication, equivalent to clustering with 100% 
similarity) to obtain representative sequences with single base 
accuracy, which greatly improves data accuracy and species 
resolution. The core of DADA2 was denoised, and then 
amplicon sequence variants (ASVs) were constructed (Blaxter 
et al., 2005) to obtain the final ASV feature table and feature 
sequence and to further conduct diversity analysis, species 
classification annotation, difference analysis, etc. Based on these 
output-normalized data, subsequent analyses of alpha diversity 
and beta diversity were performed. Alpha diversity, including 
Observed_species, Chao1, Shannon, Simpson, and Pielou_e, 
was applied to analyze species diversity and richness. All these 
indices were calculated using QIIME 2 (Version QIIME2-
202006). We calculated the linear discriminant analysis (LDA) 
effect size (LEfSe) using LEfSe software1 with the default setting 
of LDA score ≥ 3.

Fecal fermentation metabolite analysis

Fresh fecal samples from each dog were collected within 
15 min of defecation at the end of the 65-day intervention, and 
pH was measured immediately after mixing the 10% fecal 
suspension with ultrapure water using a portable pH meter 
(Starter 3,100, Ohaus Instruments Co., Ltd., Shanghai, China). 
Fecal samples were snap-frozen in liquid N2 and stored at −80°C 
for further analysis. The fecal short-chain fatty acids (SCFAs) and 
branched-chain fatty acids (BCFAs) were measured by gas 
chromatography–mass spectrometry (GC–MS; Shimadzu, Tokyo, 
Japan) with a DB-FFAP capillary column 
(30 m × 0.25 mm × 0.25 μm, Onlysci, China). The instrument 
parameters and sample processing procedures were performed 
according to Yang et al. (2021).

1 http://huttenhower.sph.harvard.edu/lefse/
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Fecal and serum untargeted 
metabolomics analysis

Fecal untargeted metabolomics analysis
Frozen fecal samples were thawed at 4°C, and approximately 

60 mg of sample was put into 2-ml round-bottom centrifuge tubes. 
Magnetic beads and 600 μl of methanol:water (1:1, v/v) were 
added to the centrifuge tubes for homogenization to extract the 
fecal metabolites. Ultrasonic crushing was performed at a low 
temperature for 10 min and placed at −20°C for 30 min. The 
samples were then centrifuged at 19,745 × g and 4°C for 15 min, 
and 200 μl of supernatant was dried in a vacuum centrifuge. Then, 
the samples were redissolved with 200 μl of methanol 
(chromatographic grade) water and vortexed for 2 min. After ice 
bath ultrasonication for 10 min at low temperature, the 
microcentrifuge tube was centrifuged again at 19,745 × g and 4°C 
for 15 min. The supernatant was placed in a sample bottle with a 
lined tube and stored at −80°C. Fecal untargeted metabolomic 
analysis was performed using the UPLC-Orbitrap-MS/MS system 
from Thermo Fisher Scientific (Q-Exactive Focus, United States).

Serum untargeted metabolomics processing
Frozen serum samples were thawed at 4°C and vortexed for 

2 min. Then, 200 μl of each serum sample was added to 800 μl of 
methanol (chromatographic grade). Then, the mixed solution was 
sequentially vortexed for 2 min and centrifuged at 19745 × g and 
4°C for 15 min (Eppendorf, Centrifuge 5,424, Germany), after 
which 800 μl of the supernatant was dried in a vacuum centrifuge 
and processed immediately. The detection procedure was similar 
to that for the fecal samples.

Ultra-performance liquid 
chromatography-Orbitrap-MS/MS analysis and 
metabolite profiling analysis

The UPLC-Orbitrap-MS/MS analysis method was described 
in a previous work (Xin et al., 2018). Briefly, the raw data were 
processed by Compound Discoverer 2.1 software (Thermo Fisher 
Scientific, USA) to produce a data matrix including retention time 
(RT), mass spectrometry (m/z), and peak intensity. Meanwhile, 
metabolic features with a relative standard deviation greater than 
30% were excluded. Then, we searched the mzCloud and mzVault 
libraries to identify metabolites from these data.

Principal component analysis (PCA), orthogonal partial least 
squares discriminant analysis (OPLS-DA) and response 
permutation testing (RPT) were performed using SIMCA-P 14.1 
software (Umetrics, Umea, Sweden). OPLS-DA was applied to 
better understand the different metabolic patterns, and RPT was 
conducted to examine the accuracy of the OPLS-DA models.

MetOrigin analysis

MetOrigin is a web server analysis system that integrates 
microbiome and metabolome data by providing the quick 

identification of microbiota-related metabolites and their 
metabolic functions in metabolomics studies (Yu et al., 2022). 
We performed the origin analysis, function analysis, correlation 
analysis, and network summary using MetOrigin analysis. 
Functional analysis was performed to perform metabolic 
pathway enrichment analysis according to different categories 
of metabolites: metabolites belonging to the host, bacteria, or 
both. Correlation analysis was performed to determine the 
correlation between microbiota at different levels and 
metabolites by Spearman analysis. Network summary highlights 
the interactions with both biological and statistical signification. 
MetOrigin analysis is freely available at http://metorigin.
met-bioinformatics.cn/.

Statistical analysis

All data were analyzed by SPSS 26.0, graphical presentation 
was performed using GraphPad Prism 8.0 software, and the 
results were expressed as the mean ± standard error (mean ± SE). 
p-values were determined using an unpaired Student’s t test for 
comparisons between two groups. p < 0.05 and p < 0.10 indicated 
significant differences and tendencies, respectively. Furthermore, 
variable importance in the projection (VIP) was calculated in the 
OPLS-DA model. The metabolites with VIP > 1 and p < 0.05 were 
deemed differential metabolites. The KEGG database was applied 
to functionally annotate these differential metabolites, which 
were further mapped to the KEGG pathway database using 
MetaboAnalyst 5.0.2

Results

Effects of DBP and BF on BW, BCS, and 
apparent nutrient digestibility in dogs

The effects of DBP and BF on BW, BCS, and the apparent 
nutrient digestibility of dogs are shown in Table 2. At the end of 
the experiment, BW and BCS among the three groups showed no 
difference (p > 0.05). Compared to the CON group, the apparent 
CP and OM digestibility in the DBP group were significantly 
decreased (p < 0.05), while apparent DM, EE, and GE digestibility 
were not different (p > 0.05). All apparent nutrient digestibilities 
in the BF group showed no differences compared with the CON 
group (p > 0.05).

2 https://www.metaboanalyst.ca
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Effects of DBP and BF on serum 
biochemistry, antioxidant, and 
inflammatory parameters in dogs

The effects of DBP and BF on serum biochemistry, antioxidant, 
and inflammatory parameters are presented in 
Supplementary Table 2. Neither the DBP group nor the BF group 
affected the serum biochemical parameters ALB, GLO, ALB/GLO, 
AST, ALT, AMY, CK, CRE, BUN, GLU, Ca, and IP compared with 
the CON group (p > 0.05).

The effects of DBP and BF on serum antioxidant and 
inflammatory parameters are presented in Table 3. Neither the 
DBP group nor the BF group affected the serum antioxidant 
parameters GSH-Px, MDA, T-AOC, CAT, and SOD and serum 
inflammatory parameters TNF-α, IL-6, IL-8, IL-10, IL-1β, IgA, 
IgG, and IgM compared with the CON group (p > 0.05). However, 
the mean IFN-γ level in the BF group was lower than that in the 
CON group but showed no significant difference (p > 0.05).

Effects of DBP and BF on serum 
metabolomics in dogs

To further explore the influence of DBP and BF on host 
metabolic profiles in dogs, the serum metabolome among the 
three groups was monitored. The PCA score plots showed no 
obvious separation after DBP and BF administration (Figure 1A). 
Ultimately, the OPLS-DA score plot demonstrated that the DBP 
and BF groups were separated from the CON group 
(Figures 1B,D). Additionally, RPT models showed that the models 
were reliable and had good accuracy and fitness (Figures 1C, E).

Differential serum metabolites were screened out using the 
standard of VIP (threshold > 1) combined with the p value 
(threshold < 0.05), which was applied to select the significant 

differential metabolites. We  found no differential metabolites 
between the CON and DBP or BF groups, indicating that feeding 
20% DBP or 8% BF had no effect on serum metabolic profiles.

Effects of DBP and BF on the fecal 
microbiota in dogs

As demonstrated in Supplementary Figure  1, the Venn 
diagram revealed 393 shared features between the CON and DBP 
groups and 864 and 703 in the CON and DBP groups, respectively. 
The Venn analysis identified 479 shared features between the 
CON and BF groups and 778 and 617 in the BF and CON groups, 
respectively. The Venn analysis identified 423 shared features 
between the DBP and BF groups and 673 and 673 in the DBP and 
BF groups, respectively. As presented in Supplementary Figure 2A, 
the alpha diversity, including Observed_species, Shannon, 
Simpson, Chao1, Goods_coverage, and Pielou_e, of the fecal 
microbiota showed no difference between the CON and DBP or 
BF groups (p > 0.05). Principal component analysis revealed 
distinct separation among the three groups 
(Supplementary Figure 2B), indicating that environment and DBP 
or BF exhibited no influence on gut microbiota composition or 
diversity in dogs.

At the phylum level, Firmicutes, Bacteroidetes, Fusobacteria, 
Actinobacteria, and Proteobacteria were the dominant bacteria 
and showed no difference among the three groups (Figure 2A). 
At the genus level, Fusobacterium, Faecalibacterium, Collinsella, 
Bacteroides, Ligilactobacillus, Alloprevotella, Blautia, and 
Phascolarctobacterium constituted the dominant genera in the 
top 20 among the three groups (Figure 2B). We identified ASV 
biomarkers using the LEfSe algorithm. A cladogram representing 
the fecal microbiota and the predominant species is shown in 
Figures 2C,D. Compared with the CON group, the DBP group 
had an elevated relative abundance of Blautia, Allobaculum, 
Prevotellaceae_Ga6A1_group, Escherichia_shigella, Enterococcus, 
Holdemanella, Lachnoclostridium, Erysipelotrichaceae_
unclassified, Flavonifractor, Erysipelotrichaceae_UCG_003, 
Clostridia_UCG_014_unclassified, and Clostridium_innocuum_
group (Figure 2C). Meanwhile, the BF group was more enriched 
in Terrisporobacter and Ralstonia than the CON group 
(Figure 2D).

Effects of DBP and BF on the fecal 
metabolomics in dogs

The effects of DBP and BF on fecal fermentation metabolites 
are shown in Figure 3. Fecal pH was markedly elevated (p < 0.05), 
and propionate, butyrate, total SCFAs, isobutyrate, isovalerate, and 
total BCFAs were significantly lowered in the DBP group 
compared to in the CON group (p < 0.05), while all the SCFAs and 
BCFAs showed no difference between the BF and CON groups 
(p > 0.05).

TABLE 2 Effects of DBP and BF on BW, BCS, and apparent nutrient 
digestibility in dogs.

Items1 CON DBP BF p-Value 
(CON/
DBP)

p-Value 
(CON/
BF)

BW 13.70 ± 2.07 13.47 ± 2.02 13.14 ± 1.71 0.847 0.602

BCS 6.33 ± 1.25 6.21 ± 1.11 5.86 ± 0.56 0.860 0.381

DM (%) 82.2 ± 0.01 79.86 ± 0.03 78.91 ± 0.61 0.106 0.281

OM (% 

DM)

87.01 ± 0.20 83.93 ± 0.71 85.90 ± 0.98 0.046 0.203

CP (% 

DM)

82.46 ± 0.37 72.70 ± 0.85 79.64 ± 0.56 0.001 0.132

EE (% 

DM)

95.47 ± 0.81 95.95 ± 0.68 93.92 ± 0.51 0.226 0.254

GE (% 

DM)

87.80 ± 0.51 86.63 ± 0.02 86.01 ± 0.21 0.180 0.135

1CON: basal diet group; DBP: defatted black soldier fly larvae protein group; BF: black 
soldier fly larvae fat group; BW: body weight; BCS: body condition score; DM: dry 
matter; CP: crude protein; EE: ether extract; OM: organic matter; GE: gross energy.
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To further investigate the effects of DBP and BF on intestinal 
microbiota, untargeted metabolomics techniques were used to 
analyze the contents of metabolites in feces. The PCA score plots 
showed obvious separation after DBP and BF administration 
(Figure  4A). In addition, the OPLS-DA model (Figures  4B,E) 
further separately distinguished the separation in the fecal 
metabolites between the CON and DBP or BF groups. The quality 
of the resulting discriminant models between the CON and DBP 
or BF groups is shown in Figures 4C,F, demonstrating that the 
models were reliable and predicted.

Differential fecal metabolites were screened out using the 
standard of VIP > 1 and p < 0.05. There were 54 identified potential 
markers between the CON and DBP groups 
(Supplementary Table  3), while there were no differential 
metabolites between the CON and BF groups. In addition, the 
KEGG analysis further revealed that DBP mainly impacted 18 
metabolic pathways, the most dominant of which were 
arachidonic acid metabolism, arginine biosynthesis, pentose and 
glucuronate interconversions, biotin metabolism, nicotinate and 
nicotinamide metabolism, arginine and proline metabolism, 
alanine, aspartate and glutamate metabolism, and lysine 
degradation (Figure 4D).

Effects of DBP and BF on the MetOrigin 
analysis in dogs

To further understand the association between the gut 
microbiota and metabolic changes, we  employed MetOrigin 
analysis on the differential fecal microbiota and metabolites 
between the CON and DBP groups. A total of 49 identified 
metabolites were initially classified into three groups: 10 bacteria-
specific metabolites, 17 bacteria-host cometabolites, and 22 others 

(drug, food, and unknown; Figure 5A). Origin-based metabolic 
pathway enrichment analysis identified 8 bacteria-specific 
metabolites and 25 bacteria-host metabolites (Figure  5B). 
Spearman analysis indicated a strong correlation between the fecal 
microbiota and metabolites (Figure 5C). The microbiota network 
of biotin metabolism illustrated that Clostridioides, 
Lachnoclostridium, and Enterococcus were positively associated 
with biotin in the microbiota network (p < 0.05), which had been 
validated by both biological and statistical correlation analysis 
(Figure  5D). The cometabolism network of nicotinate and 
nicotinamide metabolism, glutathione metabolism, lysine 
degradation, arginine biosynthesis, phenylalanine metabolism, 
styrene degradation, butanoate metabolism, and alanine, aspartate 
and glutamate metabolism showed that eight metabolites were 
biologically and statistically associated with eight differential 
bacteria (p < 0.05). Among them, six bacteria (i.e., 
Lachnoclostridium, Clostridioides, Blautia, Enterococcus, 
Gordonibacter, and Flavonifractor) and four metabolites (i.e., 
niacinamide, fumaric acid, citrulline, and phenylacetic acid) were 
upregulated, while two bacteria (i.e., Romboutsia and Turicibacter) 
and another four metabolites (i.e., cadaverine, putrescine, 
saccharopine, and butyrate) were downregulated by DBF 
(Figure 5E).

Discussion

Meat and byproduct meals of poultry, cattle, pig, lamb, and 
fish are most commonly used as the main protein and fat sources 
in pet formula (Bosch and Swanson, 2021). These traditional 
sources of protein and fat are not sufficient to meet the demand 
for additional feed production; thus, there is an urgent need for 
alternative protein and fat sources for pet diets (Benzertiha et al., 

TABLE 3 Effects of DBP and BF on serum biochemical parameters in dogs.

Items1 CON DBP BF P-value (CON/DBP) P-value (CON/BF)

GSH-Px (U) 922.17 ± 158.94 952.97 ± 234.50 991.57 ± 189.98 0.792 0.508

SOD (U/ml) 134.59 ± 12.70 132.82 ± 6.91 121.20 ± 15.34 0.756 0.113

T-AOC (mM) 0.542 ± 0.04 0.545 ± 0.06 0.550 ± 0.10 0.943 0.861

CAT (U/ml) 2.43 ± 1.00 2.36 ± 1.37 2.29 ± 1.13 0.911 0.809

MDA (nmol/ml) 7.44 ± 5.81 6.04 ± 5.40 4.25 ± 2.12 0.646 0.593

TNF-α (ng/l) 149.82 ± 17.27 158.77 ± 18.28 159.84 ± 9.62 0.384 0.244

IFN-γ (ng/l) 39.16 ± 2.44 40.06 ± 3.62 36.45 ± 2.85 0.605 0.092#

IL-6 (g/l) 268.10 ± 32.42 246.46 ± 22.73 268.61 ± 25.82 0.204 0.976

IL-8 (ng/l) 90.42 ± 8.19 94.69 ± 12.30 95.32 ± 9.11 0.472 0.329

IL-10 (ng/l) 47.48 ± 3.41 47.32 ± 4.22 48.06 ± 1.95 0.943 0.721

IL-1β (ng/l) 78.89 ± 7.63 79.13 ± 7.18 74.68 ± 7.75 0.954 0.346

IgA (μg/ml) 9.54 ± 1.15 9.69 ± 0.75 9.09 ± 1.03 0.795 0.473

IgG (ng/l) 46.88 ± 4.07 51.66 ± 2.47 50.18 ± 2.93 0.461 0.133

IgM (ng/l) 5.10 ± 0.42 5.02 ± 0.47 4.92 ± 0.57 0.748 0.525

1CON: basal diet group; DBP: defatted black soldier fly larvae protein group; BF: black soldier fly larvae fat group; GSH-Px: glutathione peroxidase; MDA: malondialdehyde; T-AOC: total 
antioxidant capacity; CAT: catalase; SOD: superoxide dismutase; IFN-γ: interferon-γ; IL-6: interleukin 6; IL-8: interleukin 8; IL-10: interleukin 10; IL-1β: interleukin 1β; IgA: 
immunoglobulin A; IgG: immunoglobulin G; IgM: immunoglobulin M; TNF-α: tumour necrosis factor-α. The symbol (#) indicates p < 0.10 calculated by Student’s t-test.
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2020). The amount of protein and fat in insects is comparable to 
meat (Baiano, 2020), and several novel insect protein and fat 
sources have been proposed since the last decade (Feng et al., 
2018; Hua, 2021). Among them, BSFL has gained substantial 
attention worldwide as protein (Lalander et  al., 2019) and fat 
(Spranghers et al., 2018; Pinotti et al., 2019; Kim et al., 2020; Li 
et al., 2022a) substitutes in pet food in recent years due to its 
economic, nutritional, and environmental advantages (Do et al., 
2020). To our knowledge, previous studies have not systematically 
explored the fungibility of the protein or fat in BSFL. Hence, a 
65-day randomized controlled-feeding trial among healthy dogs 
was implemented. We evaluated apparent nutrient digestibility, 
serum biochemistry, antioxidant and anti-inflammatory 

properties, and metabolomics, as well as fecal microbiota and 
metabolic profiles in the DBP and BF groups compared to the 
CON group.

The apparent nutrient digestibility reflects the degree of 
absorption and utilization of the dietary nutrient. In poultry 
research, DBP meals have been assessed as an excellent source of 
apparent metabolizable energy and ileal amino acid digestibility 
(Schiavone et al., 2017). A recent report demonstrated that 1% and 
2% DBP elevated CP digestibility in beagle dogs (Lei et al., 2019). 
In contrast, our findings suggested that 20% DBP reduced the 
apparent CP and OM digestibility, while 8% BF had no effect on 
apparent nutrient digestibility. Similar to 20% DBP, previous 
studies in beagle dogs and cats showed that feeding 20% or 5% 

A

B C

D E

FIGURE 1

Effects of defatted black soldier fly larvae protein (DBP) and black soldier fly larvae fat (BF) on serum metabolites in dogs. Principal component 
analysis (PCA) of serum metabolites among the three groups (A). Orthogonal partial least squares discriminant analysis (OPLS-DA) plot of serum 
metabolites after DBP (B), and BF (D), administration in dogs. Response permutation testing (RPT) derived from the DBP group (C), or the BF group 
(E), compared with the CON group.

https://doi.org/10.3389/fmicb.2022.1044986
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Jian et al. 10.3389/fmicb.2022.1044986

Frontiers in Microbiology 09 frontiersin.org

BSFL also decreased the apparent CP digestibility (Kröger et al., 
2020; Do et  al., 2022). Moreover, several studies of BSFL in 
economic animals (Cullere et al., 2016; Hartinger et al., 2021) and 
cricket meal in beagle dogs (Kilburn et al., 2020) yielded similar 
results. Thus, we speculate that the reduction in apparent CP and 
OM digestibility may be related to the 4.65 ~ 6.43% concentration 
of chitin in the BSFL (Gariglio et al., 2019; Caimi et al., 2020). 
Chitin, a linear polymer of β-(1–4) N-acetyl-D-glucosamine units, 
has high molecular weight, poor water solubility, and protein-
binding activity, which makes it difficult to be  digested by 
monogastric animals, has an anti-nutritional effect and has a 
negative effect on protein digestibility (Longvah et  al., 2011). 
Taking into account the increased proportion of chitin caused by 
the defatted process, about 5.0 ~ 7.21% (Schiavone et al., 2017; 
Traksele et al., 2021), the anti-nutritional effect of chitin could 
explain the reduction of apparent CP and OM digestibility. 
However, the underlying mechanisms remain to be elucidated 
(Penazzi et al., 2021).

The serum biochemistry, antioxidant, and anti-inflammatory 
properties and metabolomics were analyzed to confirm the safety 
of feeding DBP and BF. Our results revealed that the serum 
biochemistry and metabolomics were within the normal range 
with no difference among the three groups, illustrating that 
neither 20% DBP nor 8% BF affected the heath of all dogs in the 
experiment. A study by Kröger et al. (2020) reached a similar 
conclusion that 20% BSFL had no effect on serum biochemistry 
in adult dogs, and a cricket meal evaluation on beagle dogs also 
found that all blood values remained within desired reference 
intervals (Kilburn et al., 2020). In weaning piglets, 2% BF regulated 
serum GLO, TP, and TG, decreased IFN-γ levels and increased 
IL-10 and IgA levels (Yu et al., 2020). Likewise, in this study, a 
lower level but no significant difference in serum IFN-γ level was 
observed in the BF group, indicating that the anti-inflammatory 
potential of BF may be due to the anti-inflammatory effects of 
lauric acid and linoleic acid in BSFL (Kim et al., 2020; Darwish 
et al., 2021). In addition, a study on beagle dogs found a decreasing 

A B

C D

FIGURE 2

Effects of DBP and BF on gut microbiota and structure in dogs. Histogram of abundance distribution at phylum (A), and genus (B). The LEfSe 
analysis between the CON group and the DBP (C), or the BF groups (D).
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serum TNF-α level and an increasing GSH-Px level that linearly 
altered with increasing DBP (0, 1, and 2%; Lei et al., 2019), and 
beagle dogs treated with house flies revealed a lower serum MDA 
level (Hong et al., 2020). However, no difference was observed 
between the CON and DBP groups in our study, indicating that a 
high proportion of DBP (20%) did not exert antioxidant or anti-
inflammatory effects.

Insects are known to contain nondigestible components that 
are important fermentable substrates for the colonic microbiota 
(Bosch et al., 2016). Thus, we further explored the changes in gut 
microbial composition of the DBP and BF groups. No differences 
were noted in the α- and β-diversity of the fecal microbiota among 
the three groups, indicating that 20% DBP and 8% BF had no 

obvious effect on the gut microbial richness or diversity in adult 
dogs. Consistent with previous studies (Pilla and Suchodolski, 
2020; Yang K. et  al., 2022a,b), Firmicutes, Bacteroidetes, 
Fusobacteria, Actinobacteria, and Proteobacteria were the 
dominant bacterial phyla. Moreover, Fusobacterium, 
Faecalibacterium, Collinsella, and Bacteroides were the dominant 
bacterial genera among the three groups and showed no difference 
between the CON and DBP or BF groups. Upon further analysis 
of bacterial genera, we found that 20% DBP decreased the relative 
abundance of SCFA-producing bacteria, including Prevotella_9 (Li 
et  al., 2022b), Lachnospiraceae_NC2004_group (Egerton et  al., 
2022), Catenibacterium (Liu et al., 2021), Allisonella (Zhao et al., 
2021), Turicibacter, and Romboutsia (Li et  al., 2021), and a 
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FIGURE 3

Effects of DBP and BF on fecal pH (A), acetate (B), propionate (C), butyrate (D), total SCFAs (E), isobutyrate (F), isovalerate (G), valerate (H), and 
total BCFAs (I) in dogs. Data are presented as mean ± SE (n = 6, 7, or 7). The symbol (*) indicates a significant correlation (*p < 0.05, **p < 0.01, and 
***p < 0.001). Total SCFAs = acetate + propionate + butyrate; Total BCFAs = isobutyrate + isovalerate + valerate.
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previous study confirmed that Flavonifractor (Hong et al., 2021), 
Blautia, and Enterococcus (Kellingray et  al., 2018) acted as 
inhibitors of butyrate, resulting in a reduction in butyrate in feces, 
thereby increasing fecal pH. SCFAs are produced by the microbial 
fermentation of undigestible carbohydrates (Kawauchi et  al., 
2011). Numerous studies have demonstrated the beneficial roles 
of SCFAs, including maintaining host immunity and nutritional 
metabolism (Song et  al., 2021) and positively affecting the 
regulation of inflammation and intestinal barrier function (Liu 
et al., 2021). In addition, we found that 20% DBP increased the 
relative abundance of Blautia, which exhibited a negative 
correlation with the levels of fecal SCFAs (Pérez-Burillo et al., 
2019; Lin et al., 2021). Meanwhile, increasing Escherichia_shigella 
(Cattaneo et  al., 2017; Yang L. et  al., 2022), Enterococcus, 

Holdemanella (Xu et al., 2021), Lachnoclostridium (Chen et al., 
2021), and Flavonifractor (Straub et al., 2021) in the DBP group 
have potentially negative consequences for gut health (Sekirov 
et  al., 2010). Unlike our results, a study of cricket on the gut 
microbiota in beagle dogs demonstrated that cricket decreased the 
abundance of Faecalibacterium and Bacteroides (Jarett et al., 2019). 
It is known that the gut microbiota generates BCFAs as a result of 
proteolysis of undigested proteins and deamination of branched-
chain amino acids (Badri et al., 2021). We found that the microbial 
alterations obviously reduced the concentrations of isobutyrate, 
isovalerate, and total BCFAs in the DBP group. One of the key 
reasons for this was that the high proportion of chitin constrained 
the utilizability of protein (Gariglio et al., 2019), thereby affecting 
BCFA production. In brief, long-term feeding with 20% DBP may 
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FIGURE 4

Effects of DBP and BF on fecal metabolites in dogs. PCA of fecal metabolites among the three groups (A). OPLS-DA plot of fecal metabolites 
between the CON group and DBP group (B), or the BF group (E), in dogs. RPT between the CON group and the DBP group (C), or the BF group 
(F), in dogs. KEGG metabolic pathways enrichment analysis based on differential fecal metabolites after DBP treatment compared with group (D).
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have adverse effects on canine health. The present study also found 
that the BF group recruited more Terrisporobacter, which played 
a key role as a beneficial intestinal bacterium (Lin et al., 2020), 
indicating that 8% BF may act as an anti-inflammatory (a lower 
level of serum IFN-γ) effect by enhancing the production of 
beneficial bacteria.

Gut microbial metabolites are closely associated with 
nutritional status, metabolism, and stress response (Yang et al., 
2021). Therefore, untargeted metabolomics was performed to 
determine the effects of DBP and BF on fecal metabolic profiles. 
The PCA and OPLS-DA plots showed that the DBP group rather 
than the BF group had a distinct separation of fecal metabolites 
from the CON group. To further confirm the biological 
relationships of metabolites to gut microbiota, MetOrigin, an 
interactive web server that discriminates metabolites originating 
from the microbiome, was applied to explore their relationship 
(Yu et al., 2022). From the outcome of the microbiota network via 
MetOrigin analysis, we found that feeding 20% DBP increased the 
relative abundances of Lachnoclostridium, Clostridioides, and 
Enterococcus, which metabolized desthiobiotin to produce biotin 
by secreting biotin synthase, in turn modulating the biotin 
metabolic pathway. Biotin, a cofactor of intermediary metabolism, 
is covalently attached to enzymes (Sirithanakorn and Cronan, 
2021), which may have therapeutic potential for patients with 
inflammatory bowel disease (Skupsky et al., 2020). Moreover, in 
the cometabolism network, we  found that Lachnoclostridium, 

Blautia, Enterococcus, and Clostridioides upregulated niacinamide, 
phenylalanine acid, fumaric acid, and citrulline and downregulated 
cadavrine, putrescine, saccharopine, and butyrate. Among them, 
glutathione metabolism and nicotinate and nicotinamide 
metabolism participate in antioxidant activity (Seo et al., 2018) 
and protect against aging (Si et al., 2019), respectively, which may 
benefit gut health in dogs. Moreover, 20% DBP increased the 
relative abundances of Flavonifractor, Blautia, and Enterococcus, 
which inhibited the secretion of acetoacetate CoA-transferase, 
thereby reducing the production of butyrate (Kellingray et al., 
2018; Hong et al., 2021). This further verified our conclusion.

Overall, our findings confirmed that 20% DBP restrained the 
apparent CP and OM digestibility, thereby affecting hindgut 
microbial metabolism, while 8% BF had no negative effect on 
canine gut health. Specifically, taking into account the increased 
proportion of chitin caused by the defatted process, continued 
efforts are warranted in understanding the chitin effects. 
We suggest that adding high-quality chitinase to dog food may 
be  an effective way to improve the apparent nutrient 
digestibility of DBP.

Conclusion

The current findings suggested that neither 20% DBP nor 8% 
BF affected the body condition of all dogs in this experiment. 20% 
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FIGURE 5

MetOrigin analysis on the differential fecal microbiota and metabolites between the CON and DBP groups. Bar plot of the number of metabolites 
in different categories (A). Venn diagram and bar plot of the number of enriched metabolic pathways from origin-based MPEA analysis (B). 
Correlation analysis between the differential fecal microbiota and metabolites using Spearman (C). Network summary of DBP on beagle dogs for 
microbiota (D), and co-metabolism (E). Diamond and dot shapes indicate correlate metabolites and bacteria, correspondingly. The red/green 
color of nodes indicates up/down regulation. The red/green lines indicate the positive/negative correlations between microbes and metabolites. 
The symbol (*) indicates a significant correlation (*p < 0.05 and **p < 0.01).
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DBP had decreasing apparent CP and OM digestibility on day 65, 
while 8% BF had no effect on apparent nutrient digestibility. 
Furthermore, the DBP group had decreasing fecal propionate, 
butyrate, total SCFAs, isobutyrate, isovalerate, and total BCFAs 
and increased fecal pH. Nevertheless, there was no difference in 
SCFAs and BCFAs between the CON and BF groups. The fecal 
microbiota revealed that Lachnoclostridium, Clostridioides, 
Blautia, and Enterococcus were enriched in the DBP group, and 
Terrisporobacter and Ralstonia were enriched in the BF group. The 
fecal metabolome further showed that the DBP group significantly 
influenced 18 metabolic pathways. Additionally, MetOrigin 
analysis between the CON and DBP groups found that 
Lachnoclostridium, Clostridioides, and Enterococcus were positively 
associated with biotin. In addition, Lachnoclostridium, 
Clostridioides, Blautia, and Enterococcus were positively associated 
with niacinamide, phenylalanine acid, fumaric acid, and citrulline 
and negatively associated with cadavrine, putrescine, saccharopine, 
and butyrate. Overall, 20% DBP restrained the apparent CP and 
OM digestibility, thereby affecting hindgut microbial metabolism. 
In contrast, 8% BF in the dog diet showed no adverse effects on 
body condition, apparent nutrient digestibility, fecal microbiota, 
or metabolic profiles. Our findings are conducive to opening a 
new avenue for the exploitation of DBP and BF as protein and fat 
resources in dog food.
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