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Background: Probiotic supplementation has been popular and widespread,

yet we still lack a comprehensive understanding of how probiotic

supplementation during pregnancy affects the gut microbial networks of

pregnant women and infants. In this study, we firstly used network analysis to

compare the gut microbiota of pregnant women with and without probiotic

supplementation, as well as their infants.

Methods: Thirty-one pairs of healthy pregnant women and infants were

recruited and randomly divided into the probiotic group (15 mother-infant

pairs) and the control group (16 mother-infant pairs). Pregnant women in the

probiotic group consumed combined probiotics from 32 weeks to delivery.

Fecal samples were collected from pregnant women and infants at several

time points. Gut microbiota was evaluated using 16S rRNA gene sequencing.

Intestinal microbial network and topological properties were performed using

the molecular ecological network analysis.

Results: No significant difference was found between the probiotic and

control groups on the microbial alpha and beta diversity. As the gestational

age increased, the total links, average degree, average clustering coefficient,

robustness, and the proportion of positive correlations were increased in

pregnant women with probiotics administration. In contrast, these indices

were decreased in infants in the probiotic group.

Conclusion: Probiotic supplement does not change the microbial diversity of

pregnant women and infants, but significantly alters the intestinal microbial

network structure and properties. Although pregnant women have more

complicated and stable networks after probiotic administration, their infants

have less stable networks.

KEYWORDS
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Introduction

Gut microbiota plays a key role in host immune,
physiological, and pathological processes. Dysbiosis of the
gut microbiota affects disease initiation and progression, such
as pregnancy complications, adverse pregnancy outcomes,
metabolic diseases, immune-related diseases, neurologic and
psychiatric diseases (Wang et al., 2019; Gomaa, 2020; Hasain
et al., 2020). Therefore, it is significant to explore the
microorganisms that inhabit human intestines.

Probiotics are considered as living microorganisms that
can be beneficial to the host (Sanders, 2008; Hill et al., 2014),
which could modulate imbalanced microbial communities and
human health. The consumption of probiotics become popular
in recent years. Furthermore, probiotic, as a non-prescription
drug in China, is available in pharmacies and online stores.
Some pregnant women may purchase their own probiotic tablets
or yogurt. In our previous study, we found that probiotic
supplementation did not influence the composition of the
gut microbiota and the corresponding bacteria of ingested
probiotics (Chen et al., 2019). However, other gut bacteria
changed in pregnant women who took probiotics (Chen et al.,
2019). We speculated that probiotics may act not by increasing
their abundance, but rather by influencing the overall gut
microbial community and interactions. The current research
on probiotics has focused primarily on the changes in the
abundance of intestinal bacteria. The potential role of probiotics
on microbial interactions remains unclear, and requires further
research. Additionally, research showed that early life microbial
colonization may begin in utero (Al Alam et al., 2020), and
whether probiotic administration during pregnancy alters infant
gut microbiota remains unknown. Consequently, it is necessary
to examine the influence of probiotic supplementation during
pregnancy on infant gut microbiota.

Most intestinal microbial studies paid attention to dominant
microbes, microbial diversity, and the identification of
biomarkers. However, microbes do not exist in isolation,
their interactions play an important role in maintenance of
microbial community homeostasis. Fewer studies explored
intestinal microbial interactions. Network analysis could help
us understand microbial interactions and community structure
comprehensively (Fuhrman, 2009; Faust and Raes, 2012).
Therefore, network analysis is suitable for us to evaluate the
effect of probiotics supplementation on intestinal microbiota
interactions. Molecular ecological network analysis (MENA) is
an algorithm that is capable of automatically determining an
appropriate threshold for constructing a network (Deng et al.,
2012). And MENA’s results are more objective than those of
other network analysis algorithms that determine the threshold
artificially. Recently, MENA has been used to assess complex
microbial communities in humans (Cong et al., 2019), animals
(Xiao et al., 2022), lakes (Liu et al., 2022), and soils (Yuan, 2021).

In this study, we constructed MENA networks for
pregnant women with and without probiotic supplement and
their infants. The primary aim was to determine whether
probiotic administration during pregnancy affects infant gut
microbiota structure and development. Additionally, we also
analyzed the alteration of microbial networks in pregnant
women. We assessed alterations from the aspect of time and
probiotic intervention. This study offers new insight into
the intestinal microbiota of pregnant women and infants
response to probiotics and provides a reference for the
application of probiotics.

Materials and methods

Participants and study design

This study was conducted at The First Affiliated Hospital
of Jinan University (Guangzhou, China). Pregnant women
were recruited before 32 weeks of gestation. Exclusion criteria
were pregnancy complications, multiple pregnancy, vaginitis,
preterm birth, and other chronic diseases. A total of 31
pregnant women were recruited in this study and were
randomly assigned to the probiotic group (n = 15) and the
control group (n = 16). During follow-up, three women in
the probiotic group were excluded due to obesity, irregular
medication, and lost to follow-up. In the control group,
four women were eliminated (including one with gestational
hypertension, one with threatened premature birth and two lost
to follow-up). Finally, 24 pregnant women were enrolled in
this study (Figure 1). Women in the probiotic group took two
probiotic tablets (Golden Bifid, from Inner Mongolia Shuang
qi Pharmaceutical Company, China) twice a day until delivery.
They were instructed to return the packages of tablets to evaluate
their compliance, and the total number of unused tablets was
< 10%. Golden Bifid consisted of tablets containing 5 million
live bacteria of Bifidobacterium longum (0.5 × 107 CFU),
Lactobacillus delbrueckii bulgaricus (0.5 × 106 CFU), and
Streptococcus thermophilus (0.5 × 106 CFU). Participants
who take antibiotics or other probiotic products during
the experiment were excluded. Meanwhile, infants were also
enrolled in this study. All infants in our study were exclusively
breastfed until 4 months of age. Then they begin adding
complementary foods to the diet. Participants were asked for
feedback on the episodes of gastrointestinal symptoms during
the follow-up period. The baseline characteristics, such as
maternal age, BMI, and gestational weeks at delivery, were
obtained from electronic medical records.

This study was approved by the Institutional Review Board
for Human Subject Research at The First Affiliated Hospital of
Jinan University and conducted according to the regulations of
the Declaration of Helsinki. All women have signed informed
consent before participating in this study.
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FIGURE 1

Flow chart for screening participants.

Sample collection

We collected fecal samples from each pregnant woman
before probiotic supplementation (32 weeks of gestation) and
labor began, respectively. Additionally, fecal samples series
including infants aged 1 day, 3 days, 14 days, and 6 months
were also collected. Fecal samples were divided into 12 groups:
feces from pregnant women in the control group at the first
collection and the second collection (PC1, PC2), feces from
pregnant women in the probiotic group at the first collection
and the second collection (PP1, PP2), feces from infants in the
control group at day 1, 3, 14 and month 6 after birth (CD1,
CD3, CD14, CM6), feces from infants in the probiotic group at
day 1, 3, 14 and month 6 (PD1, PD3, PD14, PM6) after birth.
One sample in the PP2 group and another in the PD14 group
were missed because the participants were absent at the time
of planned collection and women failed to collect the sample
despite being reminded. A total of 142 samples were finally
collected. Fecal samples were collected in sterile tubes and stored
at –80◦C until sent for sequencing.

DNA extraction, sequencing, and
species annotation

Total bacterial DNA was extracted from sample using
CTAB/SDS technique. DNA concentration and purity were

monitored on a 1% agarose gel. We used a specific primer
(515F/806R) to amplify the V4 hypervariable region of the
16S rRNA gene in each sample. All PCR reactions were
carried out with Phusion R© High-Fidelity PCR Master Mix (New
England Biolabs). The PCR products were mixed with the
same volume of 1X loading buffer (containing SYB Green) and
electrophoresed on a 2 percent agarose gel. PCR products were
mixed in equal density ratio. The mixed PCR products were
then purified using the GeneJET Gel Extraction Kit (K0692,
Thermo Scientific, USA). Sequencing libraries were generated
by using the Ion Plus Fragment Library Kit 48 rxns (Thermo
Scientific). The library was sequenced on a Ion S5TM XL
platform after assessing on the Qubit@ 2.0 Fluorometer. Clean
reads were obtained after data split, filtration, and chimera
removal. Uparse software were used to cluster sequences
into operational taxonomic units (OTUs) at a 97% similarity
threshold. Finally, representative sequences for each OTU were
annotated taxonomic information based on the Silva Database.

Microbial diversity analysis

Shannon index and Simpson index were calculated to
evaluate alpha diversity. Differences in Shannon and Simpson
indices between groups were tested with one-way ANOVA.
Principal coordinates analysis (PCoA) was performed based
on the unweighted UniFrac distances to assess community
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diversity. Alpha diversity and unweighted UniFrac distances
were calculated with QIIME software (Version 1.9.1) and
displayed with RStudio software (Version 1.4.1717).

Co-occurrence network construction
and topological properties

To avoid interference with the results by rare species or
species that contaminate the samples, OTUs presented in less
than 50% of samples were filtered before constructing the
microbial network. Co-occurrence networks were generated
using the Molecular Ecological Network Analysis Pipeline
(MENAP)1 based on log-transformed OTU relative abundance
(Zhou et al., 2010; Deng et al., 2012). The adjacency matrix was
generated by a random matrix theory (RMT)-based approach.
The advantage of MENAP is that the threshold for network
construction is automatically determined on the basis of an
RMT-based approach (Deng et al., 2012). This method could
avoid the inaccuracy of network results generated by arbitrary
thresholds. The microbial networks were visualized by Gephi
(Version 0.9.2) or Cytoscape (Version 3.7.1).

Network topological properties, including the number of
nodes, links, average degree, average clustering coefficient,
average path distance, and modularity, were calculated in the
MENAP. To prove the significance of the molecular ecological
networks, we constructed 100 random networks. The mean and
standard deviation of network topological properties from the
100 random networks were calculated and then compared with
molecular ecological networks.

Network stability analysis

To assess the gut microbial network stability, robustness was
carried out as described by Yuan et al. (Yuan, 2021). A network’s
robustness is measured by the percentage of species left in the
network following the removal of random or targeted nodes
(Dunne et al., 2002; Montesinos-Navarro et al., 2017). Microbial
communities with higher robustness are more stable. In this
study, robustness was calculated after randomly removing 50%
of nodes or 50% of potential keystones. Potential keystones were
identified according to Guimerà (Guimerà and Nunes Amaral,
2005).

Statistical analysis

The significance of baseline characteristics between the
control group and the probiotic group was assessed using

1 http://ieg2.ou.edu/MENA/

the Student’s t-test or Chi-square test. The comparison of
robustness between groups was evaluated by the one-way
ANOVA. Statistical differences between groups were analyzed
using Graphpad Prism software (Version 8.0.2).

Results

Characteristics of participants

The characteristic of the participants were presented in
Table 1. All clinical data showed no significant difference
between the two groups. The duration of probiotic
administration was 52 ± 7.08 days. The mothers and their
infants did not report any gastrointestinal symptoms until the
end of the follow-up.

Microbial diversities were not changed
after probiotic supplementation

Shannon index, Simpson index, and PCoA were performed
to assess microbial diversity between the probiotic group and the
control group. There were no significant differences on Shannon
and Simpson index of pregnant women between the two
groups (Supplementary Figures 1A,B). PCoA demonstrated
that fecal samples from the same period clustered together
(Supplementary Figure 1C). Infant alpha diversity fluctuated
over time, but no significant change between the control group
and probiotic group at the same time point (Supplementary
Figures 1D,E). As shown in Supplementary Figure 1F,
microbial communities were divided into three clusters
according to time periods. These results indicated that the
intestinal microbial diversity of pregnant women was not
influenced by probiotic intervention. Infant microbial diversity
altered with increasing infant age instead of maternal probiotic
supplementation.

Microbial networks and topological
properties of pregnant women and
infants

Network analysis could illustrate interactions between
microbes and provide novel insight to explore community
structure. We constructed co-occurrence networks to compare
gut microbiota in the control group and the probiotic
group by using MENA methods (Figure 2). All networks
demonstrated scale-free features under the same similarity
threshold (0.860), with R2 of power-law ranging from 0.725
to 0.929 (Supplementary Table 1), indicating that most nodes
have few links, whereas few nodes have many links (Barabási,
2009). Meanwhile, empirical networks had higher clustering
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TABLE 1 Characteristics of participants.

Control
group
(n = 12)

Probiotic
group
(n = 12)

P-value

Maternal characteristics

Age (year) 27.33 ± 2.90 27.42 ± 3.09 0.95

Prepregnancy
BMI (kg/m2)

20.38 ± 2.69 21.00 ± 2.90 0.59

BMI at delivery
(kg/m2)

25.00 ± 2.52 25.88 ± 2.86 0.43

Gestational days
(days)

278.33 ± 4.68 276.00 ± 7.40 0.37

Delivery mode 0.58

Vaginal, n 11 9

Cesarean, n 1 3

No smoking
during
pregnancy, n

12 12

No drinking
during
pregnancy, n

12 12

Education level 0.38

High school, n 2 1

University, n 10 11

Infant characteristics

One-minute
Apgar score

9 9

Gender 0.67

Male, n 5 3

Female, n 7 9

Weight at birth
(kg)

3.27 ± 0.44 3.38 ± 0.48 0.54

Length at birth
(cm)

49.92 ± 1.68 49.83 ± 1.75 0.91

BMI at birth
(kg/m2)

13.05 ± 1.05 13.56 ± 1.09 0.26

Head
circumference
(cm)

36.25 ± 8.18 33.83 ± 1.03 0.33

coefficients and modularity indices than their corresponding
random networks (Supplementary Table 1), which implied that
empirical networks are non-random.

Microbial networks and several topological properties of
pregnant women with and without probiotic supplementation
had different trends over time. The total nodes and average
path distance of pregnant women in both the control group
and probiotic group decreased with the increasing gestational
age (Figures 3A,B). The number of links, average degree,
and average clustering coefficient of pregnant women in the
control group decreased with gestational weeks (Figures 3C–E),
suggesting that intestinal microbial networks of healthy

pregnant women become less complex as gestational age
increases. In contrast, these topological properties increased
among pregnant women receiving probiotics (Figures 3C–E).
These results suggested that microbial networks of pregnant
women become more complicated and tighter in response to
probiotics.

Characteristics of microbial community networks varied
across infant developmental stages. Specifically, 1-day-old infant
networks contained more nodes and links (Figures 3A,C),
which increased the complexity of networks. The 14-day-old
infants had cohesive microbial networks, which was reflected
by the shorter average path distance and higher clustering
coefficient (Figures 3B,E). As infants grew, their network
modularity indices increased and were close to that of their
mothers (Figure 3F). Notably, although infants in the probiotic
group showed similar changes in topological features as the
control group, there were differences in the values of topological
features at the same period between the two groups. For
instance, infants in the probiotic group had lower complicated
networks than those in the control group at the first three
sampling time points (Figures 3C,D). In addition, modularity
indices of infants in the probiotic group were lower than
those in the control group at each sampling time point
(Figure 3F). These findings revealed that maternal probiotic
supplementation may not alter overall trends in infant network
topological properties over time, but decrease the network
complexity and modularity.

Modularity and interactions of
microbial networks analysis

Given the modularity of networks was changed in
participants in the probiotic group, we divided all network nodes
into different modules according to modularity and highlighted
large modules (at least five nodes) (Figures 4–6). Then,
we analyzed interactions between microbes and taxonomic
composition of modules. Overall, microbes tended to co-
occur in all networks (72.50–98.68%), but probiotic supplement
changed the proportion of positive correlations in both pregnant
women and infants. More specifically, the proportion of positive
correlations increased by 7.8% in the probiotic group with
increasing gestational age, while it only increased by 2.7% in the
control group (Figure 4). In infant microbial networks, a lower
proportion of positive correlations was observed in the probiotic
group at all periods compared to the control group (76.5 vs.
92.10%, 96.31 vs. 98.68%, and 73.95 vs. 86.06%), except for day 3
after birth (Figures 5, 6). Collectively, the above results indicated
that probiotic administration during the third trimester may
enhance women’s intestinal microbial symbiosis, but weaken
infants’ microbial symbiosis.

In terms of the taxa composition of modules, Firmicutes
presented in almost all large modules of women’s networks, and
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FIGURE 2

Overview of the networks in pregnant women and infants. Each node represents one OTU, edges indicate significant correlations between
OTUs. Different color represents different modules. PC1 and PP1 represent feces from pregnant women in the control group and the probiotic
group at the first sampling time, respectively; PC2 and PP2 represent feces from pregnant women in the control group and the probiotic group
at the second sampling time CD1, CD3, CD14, and CM6 represent feces from infants in the control group at day 1, 3, 14, and month 6 after birth,
respectively; PD1, PD3, PD14, and PM6 represent feces from infants in the probiotic group at day 1, 3, 14, and month 6 after birth, respectively.

it was a prominent phylum in most large modules. Of note,
the number of large modules in the probiotic group decreased
by seven as gestational weeks increased, whereas there was no
obvious change in the control group, suggesting that probiotic
supplementation may reduce network modularity. This result
corresponds to the above modularity index (Figure 3F). In
aspect of infant network modules, a similar trend was observed
in number of modules between the probiotic and control groups
over time. The number of modules in both groups of infants was

lowest on day three and then increased with age (Figures 5, 6).
However, the dominant phyla of infant modules changed
with time and maternal probiotic intervention. At the first
sampling, Firmicutes dominated most modules in the control
group, while Proteobacteria was a prominent member of the
large modules in the probiotic group. At the second sampling,
the proportion of Proteobacteria in module composition of
the control group increased, whereas a higher proportion of
Firmicutes was observed in the probiotic group. At the last
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FIGURE 3

Topological properties of microbial networks, including total nodes (A), average path distance (B), total links (C), average degree (D), average
clustering coefficient (E), and modularity (F). P1 = Fecal samples of pregnant women at the first time collection; P2 = Fecal samples of pregnant
women at the second time collection; D1 = Infant fecal samples collected at day 1 after birth; D3 = Infant fecal samples collected at day 3 after
birth; D14 = Infant fecal samples collected at day 14 after birth; M6 = Infant fecal samples collected at month 6 after birth.

two samplings, Firmicutes, Proteobacteria, and Actinobacteria
dominated various modules in both the control group and the
probiotic group.

Stability of microbial community
networks

To evaluate whether and how microbial network stability
of pregnant women alters with probiotic supplementation,
robustness was calculated. As pregnancy progressed toward
term, there was no significant alteration in robustness of the
control group (P = 0.99, P = 0.49) (Figures 7A,B). However,
the robustness of the probiotic group markedly increased, and
was higher than that of the control group (P = 0.01, P < 0.001)

(Figures 7A,B). This confirmed that probiotic intake may
improve the stability of the gut microbiome network in pregnant
women.

We then measured the robustness of infants to investigate
whether infants in the probiotic group had more stable
microbial networks. Contrary to our expectation, infants in the
probiotic group had lower robustness than the control group
at three periods (1 day, 14 days and 6 months after birth,
P-values were all less than 0.01) (Figures 7C,D). The robustness
of microbial network at 3 days after birth had no obvious
differences among the probiotic group and control group
(P = 0.18, P = 0.97). These results implied that probiotics during
pregnancy may reduce the stability of infant gut microbiota.
Additionally, we found that a more stable microbial network
contained more positive connections (Figures 4–6).
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FIGURE 4

Modules within gut microbial networks of pregnant women with or without probiotic supplementation. The colors of nodes represent different
major phyla; pie charts exhibit the phylum level composition of modules with ≥ 5 nodes. Red edges indicate positive correlations between
nodes, whereas green edges indicate negative correlations. The bar underneath each networks demonstrate the proportion of positive and
negative correlations.
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FIGURE 5

Modules within gut microbial networks of infants in the control group. The colors of nodes represent different major phyla; pie charts exhibit
the phylum level composition of modules with ≥ 5 nodes. Red edges indicate positive correlations between nodes, whereas green edges
indicate negative correlations. The bar underneath each networks demonstrate the proportion of positive and negative correlations.

Discussion

Revealing intestinal microbial interactions and stability
are critical but easily ignored issues. Through analyzing
molecular ecological networks of gut microbiota from pregnant
women and infants, we confirmed that microbial networks
of pregnant women and infants will change as time goes
on, and probiotic supplementation may interfere with these

changes and microbial stability. These results increase our
understanding of the influence of probiotics on gut microbiota.
Meanwhile, our findings also provide a reference for the clinical
application of probiotics.

In our research, no significant differences were found in
alpha and beta diversity between the control group and the
probiotic group. Several studies also reported that probiotic
supplementation does not alter the intestinal microbial diversity
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FIGURE 6

Modules within gut microbial networks of infants in the probiotic group. The colors of nodes represent different major phyla; pie charts exhibit
the phylum level composition of modules with ≥ 5 nodes. Red edges indicate positive correlations between nodes, whereas green edges
indicate negative correlations. The bar underneath each networks demonstrate the proportion of positive and negative correlations.

of adults (Kristensen et al., 2016; Singh et al., 2018).
Additionally, early life probiotic exposure was also confirmed
not to change infant gut microbiota diversity (Ismail et al., 2012;
Dotterud et al., 2015; Murphy et al., 2019). Our results are
consistent with the above findings.

Given no remarkable changes were observed in terms of
microbial diversity, we constructed co-occurrence networks of
participants in the probiotic group and control group. Although

the probiotic is known to exert effects on pregnancy outcomes,
its influence on the intestinal microbial networks was first
explored in this study. We found that probiotic supplementation
may be beneficial to the gut microbiota of pregnant women.
For instance, average degree, which represents the complexity
of networks, was increased in pregnant women with probiotics
supplements. A recent study reported that networks with higher
complexity tend to be more stable (Liu et al., 2022). Robustness,
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FIGURE 7

Microbial network stability of pregnant women and infants. Robustness of pregnant women is measured as the proportion of the remaining taxa
after (A) randomly removing 50% of nodes and (B) 50% of potential keystones taxa. Statistical significance was determined by the one-way
ANOVA. *P < 0.05; ***P < 0.001. Panels (C,D) showed the robustness of infants. The calculation method is the same as panels (A,B),
respectively. Different lowercase letters above the bars indicate differences with P < 0.05, whereas the same letter indicates no significant
difference.

an index used to evaluate the stability of networks, was observed
elevated in women with probiotics administration. In addition,
our results showed that the proportion of positive correlations
of pregnant women in the probiotic group was increased.
Cooperation may be a major interaction between microbes in
a relatively healthy gut (Jain and Krishna, 2001; Ma, 2018; Cong
et al., 2019). These findings suggested that women treated with
probiotics during the third trimester may have a more stable and
healthy microbial network.

Early life periods are critical windows for individual growth
and establishment of the immune system. Several studies have
demonstrated that gut microbiota colonization may begin in
utero, and microbial exposure during early life can activate the
host immune system (Walker et al., 2017; Mishra et al., 2021).
The normal colonization process of microbiota during this
period is vital for individual health. Hence, we further explored
the effect of maternal probiotic supplementation on infant gut
microbiota. Contrary to our expectation, the intestinal microbial
networks of infants in the probiotic group were less complex
and stable than the control group. In most sampling time
points, the probiotic group had a lower proportion of positive
correlations than the control group. We speculated that this is
because the process of microbiota transmission from mother to
infant is complicated and has not been fully explored. Maternal

vaginal, skin, oral, gut, uterus, and breast milk communities
were reported to contribute to early life microbiota (Collado
et al., 2016; Ferretti et al., 2018; Differding and Mueller, 2020).
Moreover, probiotics may influence the communities of breast
milk and the vagina (Liang et al., 2021; Shin et al., 2021).
In this study, it was confirmed that probiotic intake could
alter maternal gut microbial network and interactions. Changes
in the microbiome at any of the above sites may alter the
infant microbiota. Furthermore, we found that infants in the
probiotic group had a different dominant phylum of network
modules compared to the control group, and their network
modularity was lower as well. Recent studies showed that
healthy humans have higher modularity of microbial networks
than individuals with colorectal cancer or inflammatory bowel
disease (Baldassano and Bassett, 2016; Cong et al., 2019).
This seems to suggest that a healthy gut microbiome is more
modular. Currently, we do not know whether these infants will
have different health outcomes in the future, which require
long-term follow-up research with a large sample size.

Limitations

Our study had several limitations. Firstly, this study is
limited by its small sample size. Despite this, our results
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showed significant differences in microbial networks between
the control group and the probiotic group. Secondly, we did
not record infant weight and height after birth. Long-term
follow-up is needed to evaluate the influence of probiotic
supplementation during pregnancy on infant growth and long-
term health outcomes.

Conclusion

Probiotic supplementation during the third trimester may
not change the microbial diversity of healthy pregnant women
and infants but alter their microbial network properties and
stability. Although pregnant women have more complicated and
stable networks after probiotic administration, their infants have
less stable networks. Therefore, we suggest that healthy pregnant
women should use probiotics with caution.
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