
Frontiers in Microbiology 01 frontiersin.org

Comparative genomic analysis of 
Lacticaseibacillus paracasei 
SMN-LBK from koumiss
Jianghan Wang 1, Tong Wang 1, Yandie Li 1, Zhexin Fan 1, 
Zhuoxia Lv 1, Linting Liu 1, Xu Li 2 and Baokun Li 1*
1 School of Food Science and Technology, Key Laboratory of Xinjiang Phytomedicine Resource and 
Utilization of Ministry of Education, Shihezi University, Shihezi, Xinjiang, China, 2 Guangdong Yikewei 
Biotechnology Co., Ltd., Guangzhou, China

Lacticaseibacillus paracasei SMN-LBK, which was isolated in Xinjiang, has 

been shown to be a probiotic strain and used as the auxiliary starter for dairy 

fermentation. Comparative genomic analysis was performed to investigate the 

metabolic preference and ethanol tolerance mechanisms of L. paracasei SMN-

LBK. The results of comparative genomics showed that L. paracasei strains 

had high conservation and genetic diversity. SMN-LBK encoded various genes 

related to carbohydrate and amino acid metabolism pathways, which endow 

this strain with good fermentation potential. In addition, 6 CRISPR sequences 

and 8 cas proteins were found in SMN-LBK, and these could play vital roles 

in the immune system. Furthermore, a unique cluster of potential secondary 

metabolism genes related to bacteriocins was detected in the genome of 

SMN-LBK, and this could be important for the preservation of fermented foods. 

Multiple genes related to alcohol tolerance were also identified. In conclusion, 

our study explained the traits that were previously demonstrated for SMN-LBK 

as phenotypes and provided a theoretical basis for the application of SMN-LBK 

in the food industry.
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Introduction

Lacticaseibacillus paracasei is a gram-positive bacterium (Yang et al., 2021) that is 
usually found in the oral tract, gastrointestinal tract, vagina, fermented foods, and feed 
(Rothstein et  al., 2020; Punia Bangar et  al., 2022; Sudhakar and Dharani, 2022); this 
bacterium has very important functions in the human body, such as its functions in 
lowering cholesterol and fat levels and its antihypertension and antitumor functions 
(Erginkaya and Konuray-Altun, 2022; Liu et al., 2022). As a member of an important 
branch of lactic acid bacteria (LAB), L. paracasei is primarily associated with fermented 
food products (Cuevas-González et al., 2021). L. paracasei has a stronger carbohydrate 
utilization capacity and efficiency than other LAB, which endows it with the ability to adapt 
to various carbohydrates in different environments (Liu et al., 2011; Cui and Qu, 2021). 
Some L. paracasei strains could also tolerance alcohol and alleviate the alcohol-induced 
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intestinal and alcoholic liver disease (Patel et al., 2021). Microbial 
genome sequencing is a powerful tool to predict certain important 
characteristics and reveal metabolic pathways. As of May 2022, 53 
L. paracasei strains have been sequenced at the whole-genome 
level. Genomic analysis showed that L. paracasei strains have a 
wide range of sugar utilization patterns and pathways and possess 
a large number of genes related to carbohydrate metabolism (Cui 
and Qu, 2021). L. paracasei SMN-LBK is a novel probiotic strain 
that was isolated from koumiss samples collected in Xinjiang. 
Koumiss is an alcoholic beverage prepared via fermentation with 
LAB and yeast. The alcohol produced by the yeast during the 
fermentation process imposes alcohol stress on the LAB (Guo 
et al., 2020). Genes related to the environmental stress response 
are activated in stressful environments, including genes associated 
with DNA damage repair, cell wall modification, and heat shock 
proteins (Galli et al., 2020). Transcriptomic analysis of SMN-LBK 
treated with alcohol at different concentrations showed that 
activation of multiple metabolic pathways helps the cells resist 
ethanol stress and improves the antibiotic of SMN-LBK (Guo 
et al., 2020), but this phenomenon was not characterized at the 
gene level.

Comparative genomics is an effective technique to explore the 
changes in genomic information that occur during interspecies and 
intraspecies evolution (Wassenaar and Lukjancenko, 2014; Huang 
D. et al., 2020). Our previous studies showed that SMN-LBK has 
good fermentation characteristics and probiotic properties and the 
ability to tolerate ethanol and ameliorate liver injury caused by 
ethanol in rats, but the underlying mechanism has not been clarified 
(Guo et al., 2020; Li et al., 2022). Moreover, SMN-LBK has been used 
in commercial yogurt fermentation as an auxiliary starter, which has 
extremely high research value and commercial prospects. 
Comparative analysis of genome sequences could provide 
information about their fermentation profiles and could be  an 
effective method for elucidating the adaptation of the species to 
specific environments; this method has been used for L. plantarum 
NCU116 and L. fermentum IMDO 130101 (Huang T. et al., 2020; 
Verce et al., 2020). This systematic based on a comparative analysis 
of 11 Lactobacillus strains provides an in-depth understanding of 
their genetic information, evolutionary diversity and metabolic 
characteristics at the gene level and will play an important role in 
further understanding the molecular mechanisms related to the 
fermentation properties and ethanol tolerance of SMN-LBK.

Materials and methods

Strains involved in the comparison

Lacticaseibacillus paracasei Zhang, which was isolated from 
koumiss, was the first sequenced L. paracasei strain, and its 
genome sequence has most frequently been used as a reference 
genome (Wang et al., 2009). L. paracasei BD-II, BL23, and N1115 
isolated from fermented dairy products (Maze et al., 2010; Ai 
et al., 2011; Wang et al., 2014) and L. paracasei LOCK919 isolated 

from human feces have all been used as probiotic LAB strains 
(Koryszewska-Baginska et al., 2013). L. paracasei ATCC334 is 
used as the type strain of L. paracasei, and L. paracasei W56 has 
immunomodulatory activity against human dendritic cells 
(Hochwind et al., 2012; Desfossés-Foucault et al., 2014). The other 
three strains used in the present study were isolated from yogurt, 
kimchi, and silage straw (Broadbent et al., 2012; Chen et al., 2012; 
Sun et al., 2019; Table 1).

Gene function prediction

Diamond software (Buchfink et al., 2021) was used to align 
the amino acid sequence of L. paracasei SMN-LBK against the 
Kyoto Encyclopedia of Genes and Genomes (KEGG; Kanehisa 
et al., 2019) and Carbohydrate-Active enZYme (CAZy; Lombard 
et al., 2014) databases. CRISPRdigger (Ge et al., 2016) and the 
antiSMASH-4.0.2 program (Medema et al., 2011) were used to 
predict the CRISPR and secondary metabolic gene clusters. R 4.1.2 
was used to create carbohydrate heatmaps.

Phylogenetic tree construction

The single-copy core genes were identified by core−/pan 
genome analysis, and MUSCLE software (Edgar, 2004) was used 

TABLE 1 Genomic informations used in the comparative genomic 
analysis collected from public databases.

Isolation Genome 
size (Mb) GC% CDSs Source Accession 

number

L. paracasei 

SMN-LBK

3.151087 46.96 2,703 koumiss CP101831.1

L. paracasei 

ATCC334

2.924330 46.56 2,608 missing CP000423.1

L. paracasei 

BD-II

3.127290 46.25 2,922 koumiss CP002618.1

L. paracasei 

BL23

3.079200 46.30 2,884 cheese FM177140.1

L. paracasei 

LOCK919

3.143370 46.18 2,928 child feces CP005486.1

L. paracasei 

N1115

3.064280 46.46 2,798 cheese CP007122.1

L. paracasei 

W56

3.132100 46.25 2,843 missing HE970764.1

L. paracasei 

Zhang

2.898460 46.42 2,631 koumiss CP001084.2

L. casei 12A 2.907890 46.40 2,669 silage 

straw

CP006690.1

L. rhamnosus 

GG

3.010110 46.70 2,703 yogurt CP031290.1

L. plantarum 

ST-III

3.307940 44.50 2,995 Kimchi CP002222.1
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for multiple protein sequence alignment. The phylogenetic tree 
was constructed with TreeBeST software (Vilella et al., 2009) using 
the neighbor-joining (NJ) method (Naruya and Masatoshi, 1987).

Comparative genomic analysis

The comparative genomic analysis included analysis of the 
average nucleotide identity (ANI), gene families, collinearity, 
and core−/pan genome. Pairwise ANI analysis was performed 
using fastANI (Jain et  al., 2017). Gene family clustering was 
performed by using BLAST software to perform pairwise 
alignment of the sequences of proteins encoded in the target 
genome, and Hcluster-sg (Xu et al., 2021) was used to align the 
protein sequences according to the alignment similarity with the 
clustering results. MUMmer software1 was used to determine 
collinearity between target and reference genomes. LASTZ2 was 
used to align the regions to confirm the local positional 
arrangement relationships and to find the regions of 
translocation, inversion, and translocation+inversion. CD-HIT 
software (Li and Godzik, 2006) was used to cluster multiple 
protein sequences of interest, and then the core−/pan genome 
results were obtained.

Results

Whole-genome phylogenetic analysis

A phylogenetic tree of 15 different species of LAB was 
constructed for evolutionary analysis based on the core genome 
(Supplementary Figure 1). The results showed that SMN-LBK was 
grouped with L. paracasei strains. Seven L. paracasei strains 
(ATCC334, BD-II, BL23, LOCK919, N1115, W56, and Zhang), 
Lacticaseibacillus casei 12A, Lacticaseibacillus rhamnosus GG, 
and Lactiplantibacillus plantarum ST-III were selected for the 
comparative analysis (Table 1). The strains examined here had 
relatively modest-sized genomes, with various predicted coding 
sequences, and therefore, the enriched functions could be inferred. 
In addition, the G + C content of the 10 genomes was relatively 
moderate, making them more suitable for comparative genomic 
research; thus, all the selected strains were suitable for 
comparative analysis.

To assess genetic distance, the ANI values of the genomes 
were assessed based on orthologous protein-coding genes. The 
ANI heatmap showed that all the strains were grouped into three 
distinct clusters (Supplementary Figure 2). The ANI values of the 
8 L. paracasei strains ranged from 98.0739 to 99.9779% (>95%), 
suggesting a close evolutionary relationship.

1 http://mummer.sourceforge.net/

2 https://github.com/lastz/lastz

Gene family analysis

The 29,393 orthologous genes of SMN-LBK and the 10 LAB 
strains were clustered into 2,494 gene families 
(Supplementary Table 1). Among the 2,494 gene families, 2,029 
gene families were present in SMN-LBK. The number of gene 
families in the other 7 L. paracasei strains ranged from 1,921 to 
2,135, similar to that in SMN-LBK, while only 1,346 gene families 
were found in L. plantarum ST-III, which may be due to a distant 
relationship with L. paracasei strains. The numbers of gene 
families in L. casei 12A and L. rhamnosus GG were 1,964 and 
1,816, respectively, similar to that in the L. paracasei strains, 
further indicating that the number of gene families was affected 
by genetic distance, which is also consistent with the previous 
whole-genome phylogenetic analysis and ANI results.

To gain insight into the evolutionary relationships of 
SMN-LBK, orthologs and paralogs in each strain were analyzed 
(Figure 1). Among the 1,112 shared gene families, there was no 
significant difference in the number of single-copy homologous 
genes and multicopy homologous genes present in the different 
LAB strains, with values ranging from 824 to 861 (L. paracasei 
SMN-LBK contained 832) and from 769 to 965 (L. paracasei 
SMN-LBK contains 894), respectively.

Collinearity analysis

The collinearity of the chromosomes was analyzed to explore 
the evolution of SMN-LBK. The results showed that the homology 
between the L. paracasei strains and SMN-LBK was relatively high 
(Figure  2) and that the L. paracasei strains had relatively few 
mutations and recombinations and were genetically stable 

FIGURE 1

Bar chart of orthologs and paralogs in each strain.
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compared to the other species. The Circos collinearity plot of 
ST-III and SMN-LBK had large insertions, indicating low 
homology, which was consistent with the phylogenetic tree and 
ANI analysis. A considerable number of collinear orthologous 
genes were identified in the three non-L. paracasei strains, 
indicating conservation among different species. In addition, a 
visualization study of the target and reference genomes was 
performed to determine collinearity (Supplementary Figure 3). 
Only a few insertions or inversions were detected, illustrating that 
SMN-LBK maintained a good linear relationship with the other 7 
strains of L. paracasei, which indicated that SMN-LBK had 
undergone a small number of gene recombination and 
transformation events during evolution in koumiss. A large 

number of translocations and inversions were found at 
1–585172 bp and 2,210,913–2,938,059 bp in the L. paracasei 
N1115 genome compared with those in SMN-LBK. Species from 
L. paracasei strains showed overall conservation because few 
rearrangements were found except for N1115. These results are 
consistent with the results of the phylogenetic tree analysis.

Core- and pan genome analyses

Core- and pan genome analyses were performed for eight 
(only L. paracasei strains) and 11 (all strains used in this study) 
LAB strains. A total of 1947 highly homologous genes among all 

FIGURE 2

Circos collinearity plot of L. paracasei SMN-LBK and ATCC334, BD-II, BL23, W56, Zhang, LOCK919, and N1115. Different colors in the outer 
circle represent different samples, the reference genome is marked in yellow, the left side is the sample information, and the scale represents 
the genome scale. The color of the inner circle is the same as that of the outer circle, and the genomes of other strains are connected with the 
reference genome by lines of corresponding colors. Deletion of the genomes of other strains relative to the reference genome is shown in 
blocks of corresponding colors. All green blocks indicate insertions in the sample relative to the reference genome (only insertion-deletions 
longer than 10,000 bp are indicated).
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the L. paracasei strains were classified as the core genome 
(Figure 3A), and the number sharply decreased to 736 when the 
comparison was extended to 11 genomes (Figure 3B), indicating 
the diversity among the strains at the genome level. In other 
words, the genomes of the three non-L. paracasei strains (L. casei 
12A, L. rhamnosus GG and L. plantarum ST-III) were different 
from those of the L. paracasei strains. The core genome is 
responsible for phenotypic features and basic biological functions 
(Huang D. et al., 2020). Most core genes of SMN-LBK were 
necessary for nucleotide, amino acid, ATP and H+ transport and 
metabolism (GM000641, GM001727, GM002796, GM000481, 
and GM002358). The pan genome showed the opposite trend 
compared to the core genome (Supplementary Figure 4). When 
the number of L. paracasei strains was increased, the number of 
the pan genome increased, indicating the genetic diversity of the 
L. paracasei strains. SMN-LBK seemed to harbor a richer genome 

because the numbers of unique genes was higher. A total of 215 
specific genes were identified in SMN-LBK, 96 of which were 
annotated with biological functions by KEGG pathway analysis 
(Supplementary Table 2).

CRISPR-Cas systems

Six CRISPR sequences were found in SMN-LBK, which were 
located at 674911–676831 bp, 968,866–969,152 bp, 1,418,571–
1,418,983 bp, 1,547,158–1,547,437 bp, 1,808,918–1,809,208 bp, and 
2,320,626–2,320,916 bp (Supplementary Table  3). Eight genes 
encoding cas proteins were also found in SMN-LBK, including 2 
Cas1 (GM000687 and GM000692), 2 Cas2 (GM000688 and 
GM000693), 2 Cas3 (GM000686 and GM000691), 1 Cas4 
(GM000689) and 1 Cas5 (GM000690) protein 
(Supplementary Table 3). All CRISPR-Cas systems include Cas1 
and Cas2 proteins that acquire new spacers from invasive elements.

Carbohydrate metabolism and amino 
acid metabolism

The number of carbohydrate-binding modules (CBMs), 
carbohydrate esterases (CEs), glycoside hydrolases (GHs), 
glycosyltransferases (GTs), and polysaccharide lyases (PLs) genes 
in L. paracasei SMN-LBK was similar to that in the other 7 
L. paracasei strains, and none of the strains encoded auxiliary 
activities (AAs; Supplementary Figure  5 and 
Supplementary Table 4). In addition, 1–3 PL-related genes were 
found in only the 8 L. paracasei strains and L. casei 12A but not in 
L. rhamnosus GG and L. plantarum ST-III, showing that the 
L. paracasei strains and L. casei 12A had a stronger ability to 
hydrolyze and utilize polysaccharides. L. paracasei SMN-LBK had 
potential genes encoding various carbohydrate metabolism and 
amino acid metabolism pathway-related enzymes. Genes involved 
in carbohydrate and amino acid transport and decomposition 
were used to reconstitute the metabolic pathways of L. paracasei 
SMN-LBK (Figure  4). The numbers of genes involved in the 
glycolysis pathway, the tricarboxylic acid (TCA) cycle and the 
pentose phosphate pathway were roughly similar among the 11 
strains (Supplementary Table 5). In addition, SMN-LBK encodes 
a complete proteolytic system and pathways for the transformation 
and metabolism of multiple amino acids, suggesting its potential 
ability to use proteins as substrates for fermentation.

Potential to produce bacteriocin and 
alcohol tolerance

To date, research on L. paracasei strains has mainly focused 
on its fermentative products, while research on the production of 
bacteriocins has been relatively limited. L. paracasei SMN-LBK 
encoded a bacteriocin secondary metabolism gene cluster 

A

B

FIGURE 3

Petaloid diagrams of core and specific genes in L. paracasei 
strains (A) and all strains (B). The numbers in the center of the 
petals represent the number of shared genes; the numbers at the 
top of the petals represent the number of unique genes.
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(Figure 5). The gene cluster of SMN-LBK (from GM002572 to 
GM002603) was 86% similar to that of 12A, while the other 9 
strains did not contain this gene cluster. Eleven LAB strains 
encoded various genes related to alcohol tolerance 
(Supplementary Table  6), which were related to key enzymes 
associated with glucose metabolism, heat shock proteins, DNA 
damage repair, and oxidative stress response proteins.

Discussion

Comparative genomic analysis

Whole-genome phylogenetic analysis, ANI values, gene 
family, collinearity analysis, core- and pan genome analysis are 
general genomic contents that reflect the bacterial genome 
evolution. The ANI values of the 8 L. paracasei strains isolated 
from different sources were not significantly different, suggesting 
that there was no correlation between the strain clustering and 
niches. However, as expected, the ANI of L. plantarum ST-III was 
0%, indicating a large genetic distance. Interestingly, the L. casei 
12A, L. rhamnosus GG, and L. paracasei strains were not strains 
of the same species, but their ANI values compared with the 

L. paracasei strains reached more than 80%, and the ANI values 
of L. casei 12A and L. paracasei Zhang reached 99.131%, which 
may be due to L. casei, L. rhamnosus and L. paracasei belonging to 
the Lacticaseibacillus casei group (LCG; Cui and Qu, 2021). This 
result is compatible with the genetically closely related LCG (Hill 
et al., 2018).

It is believed that some L. paracasei strains present 
remarkably strong ability to metabolize various carbohydrate 
(Stefanovic and McAuliffe, 2018; Cui and Qu, 2021). The results 
of Core- and pan showed that 20 specific genes were related to 
glucose metabolism, which may endow SMN-LBK with a 
stronger capacity for carbohydrate metabolism. Mannose and 
fructose phosphotransferase systems (PTSs) were found encoded 
among the unique genes of SMN-LBK, including mannose-
specific IIACD components and fructose-specific IIABC 
components, indicating the ability of SMN-LBK to transport 
mannose and fructose. The mannose PTS in SMN-LBK acts via 
a mechanism that couples translocation with substrate 
phosphorylation. Ten genes involved in energy metabolism were 
also found among the unique genes of SMN-LBK, including 
genes encoding 6  F-type H + -transporting ATPase subunits, 
which utilize the energy of the electrochemical H+ gradient 
generated by electron transfer to catalyze the synthesis of ATP 
during oxidative phosphorylation. In addition, 8 ABC 
transporter-related genes were encoded in SMN-LBK. ABC-2-
type transport system ATP-binding protein-related genes were 
also found in SMN-LBK; the encoded proteins can utilize the 
energy generated by ATP hydrolysis and mediate the transport of 
various endogenous and exogenous substances (Wang et  al., 
2021), suggesting that SMN-LBK has a stronger ATP transport 
capacity. The ability to transport ATP enables SMN-LBK to 
maintain normal growth in adverse environments.

In prokaryotes, the CRISPR-Cas system confers resistance to 
foreign plasmids and phage sequences and recognizes and silences 
invading functional elements, thereby acting as the immune 
system (Dong et al., 2022; Shin and Kim, 2022). Types I, II, III, IV, 
V, and VI of CRISPR systems have been reported so far (Wright 
et  al., 2016). A type I–E CRISPR-Cas system was found in 
ATCC334, and a type II-A CRISPR-Cas system was found in 
Zhang, BD-II, and LOCK919 (Yang et al., 2020). In each isotype, 
the repeat lengths were conserved. The lengths of the repeats of 
the six CRISPR sequences in SMN-LBK were 28, 41, 41, 41, 40, 
and 41 bp. Therefore, it was speculated that SMN-LBK may 
contain one incomplete type I-E repeat and five incomplete type 
II-A repeats based on the fact that type II-A repeats are 36 
nucleotides in length and type I-E repeats are 28 nucleotides in 
length (Hidalgo-Cantabrana et al., 2019), as previously described 
for other strains. Yang analyzed the CRISPR-Cas systems of 58 
L. paracasei strains and found that 43% of the L. paracasei strains 
encoded a CRISPR-Cas system, and a majority of the strains 
harbored type II-A CRISPR-Cas systems (Yang et al., 2020). The 
type II-A CRISPR-Cas system destroys the double-stranded DNA 
of invading genetic material and prevents DNA repair to achieve 
immunity (Bernheim et al., 2017). Therefore, further identification 

FIGURE 4

Overview of proposed pathways present in L. paracasei SMN-
LBK. Pink arrows represent the homolactic fermentation 
pathway. Orange arrows represent the heterolactic fermentation 
pathways. Green arrows represent the incomplete citrate 
metabolism pathways. Blue arrows represent the proteolysis and 
amino acid metabolism pathways. Blue squares embedded in the 
membrane represent PTSs and ABC transporters. Gray dashed 
arrows represent the absence of this pathway. Gray dashed boxes 
represent other metabolic pathways.
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of the CRISPR system is of great importance for obtaining a 
comprehensive understanding of SMN-LBK.

Carbohydrate metabolism

Various genes encoding starch and sucrose metabolism 
proteins in SMN-LBK, such as 1,4-alpha-glucan branching 
enzyme (glgB), glycogen phosphorylase (glgP), and 
neopullulanase (nplT), which degrade large-molecule sugars into 
small-molecule sugars, were found in the L. paracasei strains. 
Macromolecular carbohydrates such as oligosaccharides and 
starches can be transported into cells via consumption of ATP 
through the PTS and ABC transport systems and then degraded 
into monosaccharides (such as glucose, fructose, and mannose) 
by α-amylase (GM001083), 1,4-alpha-glucan branching enzyme 
(GM002209), and alpha-glucosidase (GM002295) secreted by 
SMN-LBK. Additionally, a complete mannitol operon, containing 
a mannitol operon transcriptional antiterminator (mtlR), 
mannitol-specific IIA component (mtlA), and mannitol-1-
phosphate 5-dehydrogenase (mtlD), was encoded by SMN-LBK; 
mannitol plays important roles in osmoregulation and stress 
tolerance (Jennings, 1985; Stoop and Mooibroek, 1998). Various 
specific monosaccharides and disaccharides PTSs have been 
characterized in L. paracasei via the sugar consumption analysis 
(Veyrat et  al., 1994). 99 genes related to PTSs were found in 
L. paracasei SMN-LBK, and 30 genes were associated with 
fructose and mannose metabolism. The numbers of genes 
associated with PTSs in SMN-LBK, BL23, LOCK919, and W56 
were roughly similar, all exceeding 100, while the remaining three 

strains of L. paracasei had fewer genes related to PTSs. Nutrients 
such as extracellular carbohydrates are mainly transported into 
cells through PTSs (Jeckelmann and Erni, 2020). PTSs transfer 
phosphate groups and nutrients such as extracellular 
carbohydrates into the intracellular space during sugar uptake and 
metabolism (Galinier and Deutscher, 2017).

The extensive studies have indicated that L. paracasei strains 
possess various sugar metabolism pathways (Wu and Shah, 2017). 
The genome of SMN-LBK contained genes encoding key enzymes 
involved in the glycolysis and pentose phosphate pathways 
(Figure 4), which are the main metabolic pathways for homolactic 
fermentation and heterolactic fermentation, respectively. Lactic 
acid fermentation is a hallmark metabolic process of LAB strains 
(Huang T. et al., 2020). Pyruvate is a common intermediate 
metabolite of the glycolysis and pentose phosphate pathways and 
plays an important role in carbohydrate metabolism, amino acid 
metabolism, and fat metabolism. Lactic acid is mainly formed by 
the reduction of the carbonyl group of pyruvate under the catalytic 
action of lactate dehydrogenase (Rao et  al., 2021). SMN-LBK 
harbors genes encoding D-lactate dehydrogenase (ldhA) and 
L-lactate dehydrogenase (ldh), which catalyze the transfer of H+ 
from NADH+ to pyruvate, which is then reduced to lactate under 
oxygen deficiency or anaerobic conditions. The strong lactate 
synthesis potential of SMN-LBK during milk fermentation may 
be because it encodes five ldh genes (unpublished). SMN-LBK 
also encodes various genes related to pyruvate production and 
conversion. Orthophosphate dikinase (ppdK) in SMN-LBK 
catalyzes the conversion of pyruvate to phosphoenolpyruvate. 
Phosphoenolpyruvate is catalytically acted upon by pyruvate 
kinase (pyk), which transfers the phosphate group originally 

A

B

FIGURE 5

Comparative analysis of bacteriocin-producing loci for L. paracasei SMN-LBK and L. casei 12A. (A) Represents the bacteriocin produced by  
L. paracasei  SMN-LBK. (B) Represents the bacteriocin produced by L. casei 12A. Different colors and sizes represent different genes.
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attached to the oxygen atom to ADP, generating pyruvate and a 
large amount of ATP. Pyruvate is converted to oxaloacetate, an 
important intermediate, by the action of pyruvate carboxylase 
(pyc) in SMN-LBK. The phosphoenolpyruvate-pyruvate-
oxaloacetate node is a major branch of central carbon metabolism 
and serves as a junction for glycolysis, gluconeogenesis, and the 
TCA cycle (Llamas-Ramírez et al., 2020). In addition, pyruvate 
oxidase (poxL), acetate kinase (ackA), and acyl phosphatase 
(acyP) catalyze the conversion of pyruvate to ATP and acetate, 
which is one of the main sources of the sour taste in fermented 
dairy products. Pyruvate can also be converted to acetyl-CoA by 
the pyruvate dehydrogenase complex, consisting of pyruvate 
dehydrogenase component (aceEF), dihydrolipoyl transacetylase, 
and dihydrolipoate dehydrogenase (pdhD). Acetyl-CoA is an 
important intermediate metabolite for energy substances, and it 
links the metabolic pathways of energy substances in the body, 
such as carbohydrate, amino acid and fat metabolism, including 
the TCA cycle and oxidative phosphorylation pathway (Shi and 
Tu, 2015). SMN-LBK encodes acetaldehyde dehydrogenase 
(adhA) to convert acetyl-CoA to acetaldehyde, which is the main 
volatile flavor compound in fermented dairy products, and 
aldehydes can be  used for the biosynthesis of other flavor 
compounds (Xiao et al., 2018). SMN-LBK encodes an incomplete 
TCA cycle that cannot complete the metabolism to CO2, as in 
eukaryotes (Figure  4). Oxaloacetate, malate, fumarate and 
succinate are interconverted in the incomplete TCA system. 
Oxaloacetate is a very important intermediate product that is 
mainly synthesized by pyruvate carboxylation, which is catalyzed 
by pyc in the metabolic pathway and can also be catalyzed by 
citrate lyase (citCDEF). Malate is produced from pyruvate by 
malate dehydrogenase (sfcA) and then finally converted to 
succinate by fumarate hydratase (fumA, fumB) and fumarate 
reductase flavoprotein subunit (frdA). The presence of this 
elaborate carbohydrate uptake and degradation machinery 
suggests that SMN-LBK may thrive and be predominant during 
dairy fermentation. However, some putative carbohydrate 
utilization related genes need further study to determine 
their functions.

Proteolysis and amino acid metabolism

Bacteria with the ability to degrade casein to peptides and 
amino acids can meet their growth requirements for nitrogen 
sources (Song et al., 2016). Proteins are degraded to oligopeptides 
by extracellular proteases, and the oligopeptides are then 
transported into cells through a specific peptide transport system. 
The peptides transported into the cell by the transport system are 
further degraded into smaller peptides or amino acids by various 
intracellular peptidases (Juillard et al., 2022). Several genes related 
to cellular envelope proteases were found in SMN-LBK 
(Supplementary Table 5), such as scpA (GM001565) and scpB 
(GM001566). SMN-LBK also encodes two types of peptide 
transport systems, including two complete Opp operons 

(oppABCDF), three separate oligopeptide transport system 
substrate-binding proteins (oppA), and one dipeptide transport 
system permease protein (dppC; Figure 4). Interestingly, except 
for BD-II, BL23, and W56, the other 7 LAB strains did not encode 
the Dpp transport system. In addition, genes encoding the 
branched-chain amino acid transport system substrate-binding 
protein (livFHKM) were found; these genes would enable 
SMN-LBK to capture amino acids from the fermentation 
environment for nitrogen metabolism. Various genes related to 
oligopeptidase activity were found in SMN-LBK, including those 
encoding dipeptidase (pepDA, pepDB), oligoendopeptidase 
(pepF), Xaa-Pro aminopeptidase (pepP), dipeptide 
aminopeptidase (pepT), aminopeptidase (pepNS), Xaa-Pro 
dipeptidase (pepQX), endopeptidase (pepO) and bleomycin 
hydrolase (pepC). Xaa-Pro dipeptidase is a proline-specific 
protease that plays an important role in industrial applications in 
cheese ripening by cleaving the proline-rich sequence of beta-
casein. Overall, the genome of SMN-LBK encodes a large number 
of proteases and peptidases that form a complete proteolytic 
system, which may endow SMN-LBK with strong 
proteolytic ability.

Eleven strains in this study encoded a transcriptional 
regulator of arginine metabolism (argR) and an arginine 
succinate metabolism operon composed of an argininosuccinate 
synthase (argG) and an argininosuccinate lyase (argH), the 
reaction processes of which are related to the coercion response 
(Figure 4). ArgR has been reported to play an important role in 
the regulation of arginine metabolism in LAB strains (Cunin 
et al., 1983). It has been demonstrated that upregulation of argG 
and argH gene expression was associated with the acid stress 
response in L. paracasei strains (Wu et al., 2011). ArgG and argH 
catalyze the conversion of aspartate to fumarate, which then 
enters the TCA cycle for oxidation. L-glutamine is converted to 
L-glutamate by glutamate synthase (GLT1), and the process is 
accompanied by the generation of NADH, which is finally 
converted to 2-oxoglutarate by glutamate dehydrogenase 
(gdhA); 2-oxoglutarate enters the TCA cycle to provide energy 
for the body. At the same time, 2-oxoglutarate can be used to 
regenerate L-glutamine by GLTI and glutamine synthetase 
(glnA), and the L-glutamine is then converted to carbamoyl-
phosphate by carbamoyl-phosphate synthase (CAD). 
Carbamoyl-phosphate then enters arginine biosynthesis and 
pyrimidine metabolism. Moreover, L-serine, glycine and 
L-cysteine are catalytically converted by L-threonine ammonia-
lyase (SDH), hydroxymethyltransferase (glyA) and cysteine-S-
conjugate beta-lyase (metC), respectively, to pyruvate, which 
enters the TCA cycle and pyruvate metabolism, linking amino 
acid metabolism and sugar metabolism. The genes in SMN-LBK 
also encode a phosphoribosyl-related enzyme (hisABCDEFGHI) 
that catalyzes the conversion of PRPP to L-histidine. SMN-LBK 
also encodes asnB, which converts asparate to asparagine. It has 
been proposed that the conversion of amino acids and aminoacyl 
generates ammonia, so various aminoacylases, including 
asparagine synthase (asnB), play an important role in 
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maintaining the intracellular pH balance to allow the cells to 
resist the acidic stress generated during fermentation and 
metabolism (Champomier Verges et al., 1999). SMN-LBK 
encodes the biosynthesis-related genes of various amino acids, 
which provide a special flavor to fermented dairy products 
(Widyastuti and Febrisiantosa, 2014).

Potential to produce bacteriocin and 
alcohol tolerance

The extensive studies have indicated that L. paracasei can 
produce bacteriocin, a bacteriostatic active substance, which can 
inhibit many spoilage bacteria and pathogenic bacteria in food (Qi 
et al., 2021; Ye et al., 2021). A bacteriocin secondary metabolism 
gene cluster was identified in SMN-LNK that was composed of 32 
genes, but only 6 genes (blpA, blpB, agrA, maa and fumC) were 
annotated. BlpA and blpB, which are bacteriocin exporters, enable 
SMN-LBK to export bacteriocins. The LytTR family-related genes 
(agrA) of SMN-LBK are response regulators that control the 
synthesis of virulence factors and other exoproteins. The agrA 
response regulator is also an accessory gene regulator protein A 
(agrA) in Staphylococcus aureus, which is a member of 
two-component regulatory systems (Rajasree et  al., 2016). 
Traditional antibiotics can accelerate the development of 
resistance in microorganisms, making various pathogens highly 
resistant to antibiotics. An inhibitor developed on the basis of the 
AgrA/C two-component signaling system could reduce infection 
by pathogenic microorganisms without the development of 
resistance, which is the next frontier in the innovative development 
of modern antibacterial drugs (Palaniappan et al., 2021). These 
properties allow SMN-LBK to thrive and endow it with the 
potential to inhibit the growth of undesirable microorganisms in 
fermented dairy products.

For most species of LAB, alcohol tolerance is closely related 
to key enzymes associated with glucose metabolism, heat shock 
proteins, DNA damage repair, and oxidative stress response 
proteins (Luo et al., 2014). Glucose metabolism-related genes, 
such as 6-phosphofructokinase (PFK), glycerol kinase (GK) and 
lactate dehydrogenase (ldh), were found in the genome of 
SMN-LBK. Guo overexpressed PFK and GK in Lactococcus 
lactis NZ9000 and found that the survival rate under 10% 
ethanol stress was significantly increased (Guo et al., 2020). To 
resist alcohol stress, SMN-LBK could accelerate the production 
of ATP by increasing the enzymatic activity of important 
enzymes in the glycolytic pathway to maintain cell stability. 
Transcriptional regulators (HrcA, CtsR), a heat stress protein 
(the chaperonin GroELS), a molecular chaperone (DnaJK) and 
an ATP-dependent Clp protease (ClpBCELPQX) were encoded 
in the 11 LAB strains. The CtsR regulon was previously shown 
to be involved in ethanol stress responses in L.plantarum (Van 
Bokhorst-van de Veen et al., 2011) and B. subtilis (Gerth et al., 
2002). GroELS and DnaJK were positively regulated by HrcA, 
ClpBCELPQX was negatively regulated by CtsR, and the 

transcription of HrcA and CtsR increased and reduced, 
respectively, under ethanol stress, indicating that GroELS, 
dnaJK and ClpBCELPQX may be related to ethanol tolerance. 
Moreover, the oxidative stress protein thioredoxin (trxA) was 
also significantly upregulated under ethanol stress (Van 
Bokhorst-van de Veen et  al., 2011). High concentrations of 
ethanol induced DNA damage, such as DNA strand breaks and 
base pair excision, and then triggered DNA repair (Nagaria 
et al., 2013). RecA is the most critical protein in the process of 
DNA homologous recombination repair (Horváth et al., 2008). 
Helicase (UvrD) can unwind double-stranded DNA for DNA 
repair by binding and hydrolyzing ATP (Feliciello et al., 2018). 
When alcohol damages DNA of L. paracasei, the recombination 
protein (RecA) and helicase (UvrD) in SMN-LBK will 
be  activated for DNA repairing to ensure the normal 
physiological activity in SMN-LBK. Genes related to glucose 
metabolism, heat stress, oxidative stress and DNA repair play 
important roles in the stress resistance mechanism of SMN-LBK 
under ethanol stress. The potential of SMN-LBK to tolerate 
ethanol was proved at the gene level, but the ethanol tolerance 
mechanism of SMN-LBK needs to be  further explored by 
designing experiments.

Conclusion

In this study, comparative genomic analysis provided a 
better opportunity to understand the metabolic preferences of 
L. paracasei SMN-LBK. The results of phylogenetic tree, ANI, 
gene family, collinearity and core−/pangenome analyses 
indicated the genetic diversity and conservation among 
L. paracasei strains. In addition, 6 CRISPR sequences and 8 cas 
proteins in SMN-LBK were investigated; the CRISPR-Cas system 
is associated with resistance to invasion by foreign plasmids and 
phage sequences. SMN-LBK encoded multiple essential genes 
required for carbohydrate metabolism and protein metabolism, 
which endowed SMN-LBK with a strong fermentation capacity. 
A unique bacteriocin-related gene cluster was identified in 
SMN-LBK, and this cluster was highly homologous with L. casei 
12A, suggesting that SMN-LBK may play an important role in 
the preservation of fermented food. Moreover, various genes 
associated with ethanol stress tolerance were identified, and the 
potential ethanol tolerance of SMN-LBK was confirmed at the 
gene level. The detailed and accurate genetic information for the 
probiotic SMN-LBK will be indispensable for further research 
on SMN-LBK and of its potential applications in the 
food industry.
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