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Bacteriophages function as a regulator of host communities and metabolism. 

Many phages have been isolated and sequenced in environments such 

as the ocean, but very little is known about hypersaline environments. 

Phages infecting members of the genus Chromohalobacter remain poorly 

understood, and no Chromohalobacter phage genome has been reported. 

In this study, a halovirus infecting Chromohalobacter sp. F3, YPCBV-1, was 

isolated from Yipinglang salt mine. YPCBV-1 could only infect host strain F3 

with burst size of 6.3 PFU/cell. It could produce progeny in 5%–20% (w/v) 

NaCl with an optimal concentration of 10% (w/v), but the optimal adsorption 

NaCl concentration was 5%–8% (w/v). YPCBV-1 is sensitive to pure water 

and depends on NaCl or KCl solutions to survive. YPCBV-1 stability increased 

with increasing salinity but decreased in NaCl saturated solutions, and it has 

a broader salinity adaptation than the host. YPCBV-1 has a double-stranded 

DNA of 36,002 bp with a G + C content of 67.09% and contains a total of 55 

predicted ORFs and no tRNA genes. Phylogenetic analysis and genomic 

network analysis suggested that YPCBV-1 is a novel Mu-like phage under the 

class Caudoviricetes. Auxiliary metabolic gene, SUMF1/EgtB/PvdO family non-

heme iron enzyme, with possible roles in antioxidant was found in YPCBV-1. 

Moreover, DGR-associated genes were predicted in YPCBV-1 genome, which 

potentially produce hypervariable phage tail fiber. These findings shed light on 

the halovirus-host interaction in hypersaline environments.
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Introduction

Viruses are noncellular organisms and exist wherever life is found (Suttle, 2005). 
They are the most abundant biological entity on earth, with an estimated population 
of 1031 (Cobián-Güemes et al., 2016), an order of magnitude greater than their hosts 
(Wommack and Colwell, 2000; Suttle, 2007). Viruses play an important role in 
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processes such as material cycling, energy flow, and host 
community structure regulation (Suttle, 2005; Suttle, 2007). 
Viruses inhabiting hypersaline environments, such as salt 
mines and salt lakes, are called haloviruses (Oren, 2002; 
Atanasova et al., 2016), and the number of viruses in some 
hypersaline waters can be as high as 1010 VLP/ml (Boujelben 
et al., 2012).

Haloarchaea are dominant in hypersaline environments, 
where halobacteria may account for 20% of the microbiota (Oren 
et al., 1997; Ghai et al., 2011). The majority of haloviruses isolated 
to date are haloarchaeal viruses, with a few halobacterial viruses. 
Since the isolation of the first halobacterial virus F9-11  in a 
hypersaline soil in 1988 (Calvo et  al., 1988), a total of 29 
halobacterial viruses have been reported (Calvo et al., 1988, 1991; 
Kauri et al., 1991; Calvo et al., 1994; Goel et al., 1996; Seaman and 
Day, 2007; Mobberley et al., 2008; Kukkaro and Bamford, 2009; 
Aalto et al., 2012; Atanasova et al., 2012; Shen et al., 2012; Yu et al., 
2015; Atanasova et al., 2015b; Fu et al., 2016; Villamor et al., 2017; 
Wang and Li, 2018; Rodela et  al., 2019; Zrelovs et  al., 2020; 
Olonade et  al., 2021; Wang et  al., 2022), with hosts including 
Halomonas, Salicola, Pseudomonas, Salinivibrio, Salisaeta, 
Salinibacter, Chromohalobacter, and Virgibacillus. Most studies 
have focused on virus morphology as well as physiological and 
biochemical characteristics, while only 15 halobacterial virus 
genomes have been published in GenBank.

Chromohalobacter is a moderate halobacteria commonly 
found in hypersaline environments (Zhang et al., 2021; Lülf et al., 
2022; Sirichoat et al., 2022), and some strains of Chromohalobacter 
are considered to have potential value in biotechnology due to 
their ability to produce tetrahydropyrimidines, proteases, and 
lipases (Vidyasagar et al., 2006; Rodríguez-Moya et al., 2013; Salar-
García et al., 2017; Ai et al., 2018; Tanaka et al., 2020). To the best 
of our knowledge, only one phage infecting Chromohalobacter, 
JMT-1, has been isolated, from the saline lake Yuncheng, China, 
using Chromohalobacter sp. LY7-3 as a host (Wang and Li, 2018), 
but its genome has not been sequenced. In this study, the halovirus 
YPCBV-1 was isolated from Yipinglang salt mine in Yunnan 
Province using C. beijerinckii F3 as a host. It was found to possess 
SUMF1/EgtB/PvdO family non-heme iron enzyme and 
represented a novel phage. Combined with the biological features, 
this study provides new insights into the possible interactions 
between hosts and halovirus.

Materials and methods

Isolation of host Chromohalobacter sp. 
F3 and phage YPCBV-1

Chromohalobacter sp. F3 and its phage YPCBV-1 were both 
isolated from saline soil samples collected from the Yipinglang salt 
mine in Yunnan Province (101°90′E, 25°28′N), China (Xiao et al., 
2013). The host was isolated by the standard dilution-plating 
technique on Marine agar 2,216 (MA, Difco), while the strains 

were purified and cultured in modified LB (MLB, NaCl 100 g/l, 
tryptone 8.0 g/l, yeast extract 4.0 g/l, [pH 7.2–7.6]).

To obtain the phages enrichment, 23 g of soil samples and 1 ml 
host culture were inoculated into 100 ml of MLB liquid medium 
and shaken at 28°C, 120 rpm for 48 h, centrifuged at 6000 × g for 
15 min, the supernatant was collected and filtered through 0.22 μm 
pore-size filter (Millipore). Subsequently, the filtered lysate was 
diluted and mixed with 0.5 ml exponentially growing host culture. 
After adsorption for 15 min at 28°C, the mixture was added to 
4 ml of the semi-solid medium, which was then poured onto a 
pre-prepared solid monolayer plate. The double-layer plates were 
incubated right-side-up at 28°C and examined for the presence of 
plaques. Individual plaques were selected and purified three times 
by repeated single-plaque propagation on strain F3 (Fu 
et al., 2016).

Transmission electron microscopy

To determine the morphologies of the host cells and phage 
virions, the cell or phage suspensions were stained with 2% (w/v) 
sodium phosphotungstate for 1 min, air dried, and placed under 
TEM (JEM-2100; 200 kV) to observe the morphology.

Phylogenetic analysis

16S rRNA gene of strains were compared at the Ezbiocloud.1 
Phylogenetic trees were constructed from similarity sequences using 
the neighbor-joining method by Mega 7.0 (Kumar et al., 2016). All 
parameters are default except the Bootstrap value is 1,000, the 
p-distance model is used to calculate the distance, and the Gap/
Missing Data Treatment cutoff of 50%. Phylogenetic analysis was 
carried out based on the amino acid sequences of the gene encoding 
major capsid proteins (MCP) of the YPCBV-1 and 20 best hit viruses 
found in the GenBank database, using a BLASTp with E-value cutoff 
of 1e-05. The phylogenetic tree including YPCBV-1 genome and 20 
best hit genomes in GenBank was generated using the VICTOR 
(Meier-Kolthoff and Goker, 2017) online server2 with default 
parameters. In addition, 15 halobacterial virus genomes and best hit 
viruses in network analysis were including in the genome tree.

Salinity range and optimal salinity for 
host growth

To test NaCl tolerance, strain F3 were cultured in liquid 
MLB with different concentrations of NaCl (0, 2, 5, 8, 10, 12, 15, 
20, and 25% [w/v]) at 28°C, 160 rpm for 10 h and the OD600 was 
determined. The experiment was conducted in single replicate.

1 http://www.ezbiocloud.net/identify

2 https://ggdc.dsmz.de/victor.php
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Host range

The host range was assessed using other 7 bacteria: three 
halobacteria isolated from the Yipinglang salt mine 
(Chromohalobacter canadensis F7、Halomonas titanicae H5) and 
Qiaohou salt mine (H. ventosae QH52-2)in Yunnan by our 
laboratory (Fu et al., 2016), four Chromohalobacter strains purchased 
from the China General Microbiological Culture Collection Center 
(CGMCC; C. beijerinckii 1.9020、C. japonicus 1.7474
、C. canadensis 1.7979、C. marismotui 1.2321). Virus suspensions 
were dropped on MLB solid medium spread with potential hosts 
and incubated at 28°C for 24 h to observe plaque formation.

One-step growth curve

The host was cultured with MLB liquid medium to 
OD600 = 0.3 and then centrifuged at 5,000 × g for 10 min. The 
phage suspension (108–109 PFU/ml) was mixed with host at 
MOI = 1. After adsorbed for 15 min at 28°C. The cells were 
collected by centrifugation at 10,000 × g for 10 min and 
resuspended in 1 ml of fresh medium. This process was repeated 
3 times to remove unadsorbed phage particles. The cells were 
added to liquid medium (50 ml) and incubated at 28°C, 120 rpm 
for 120 min. The titers were determined by double-layer plates at 
the indicative time. The experiment was conducted in triplicate.

Sensitivity to pH, temperature, organic 
solvent, detergents, and proteinase K

The phage suspensions (108–109 PFU/ml) were incubated 
at 28, 50, 60, and 70°C and sampled at intervals. In addition, 
phage suspensions were inoculated in MLB liquid medium 
with different pH (3–12) at 28°C for 1 h. Phage suspensions and 
anhydrous ethanol were mixed at a volume ratio of 1:9 and 
incubated at 28°C for 30 min. Chloroform was added to the 
phage suspension to the final concentration of 20% and 
incubated at 120 rpm, 28°C for 12 h. Proteinase K was added to 
the phage suspension to the final concentration of 2 mg/ml, 
incubated at 56°C for 1 h. SDS solution was added to the phage 
suspensions to the final concentration of 0.1% (w/v) and 
incubated at 28°C for 1 h. Phage titer were tested by the double-
layer agar plate method at the indicative time. Except for 
temperature, other experiments were conducted in triplicate.

Percent survival = (phage titer detected after experiment / 
initial phage titer) × 100%.

Effect of salinity and ions on phage 
stability

To assess the viability of free phage particles in a hypersaline 
environment, we analyzed the stability of YPCBV-1 over 28 days at 

different salt concentrations. An aliquot of 10 μl of phage suspensions 
(108–109 PFU/ml) was inoculated in 0, 1, 5, 10, 15, 20, 25, and 30% 
(w/v) NaCl or KCl solutions. Similarly, phage suspensions were 
inoculated in NaBr or CaCl2 solutions (0, 1, 10, 20, and 30% [w/v]). 
The phage titers were determined by double-layer agar plate method 
at the indicative time. The percent survival were calculated as 
described above. The experiment was conducted in triplicate.

Salinity range of phage infecting host

Phage infection assays (MOI = 1) were conducted in liquid 
MLB with different NaCl concentrations of 0%, 2%, 5%, 8%, 10%, 
12%, 15%, 20%, 25%, and 30% (w/v). The phage titers were tested 
by double-layer agar plate method at the end of the exponential 
phase. The experiment was conducted in single replicate.

Effect of salinity on phage adsorption

The log phase host strain F3 and phage lysate were mixed 
(MOI = 1) in liquid MLB with different NaCl concentrations of 
0%, 5%, 8%, 10%, 12%, 15%, 20%, 25%, and 30% (w/v). Adsorption 
for 15 min at room temperature, centrifugation at 10,000 × g for 
5 min, phage amounts in supernatant were test by double-layer 
agar plate method. The experiment was conducted in triplicate. 
The percent of adsorption at 10% salinity was considered as 100%.

Percent adsorption = (initial phage titer − phage titer in 
supernatant)/ initial phage titer × 100%.

Extraction and restriction endonuclease 
digestion of phage DNA

Enrichment and concentration of phage particles were carried 
out as described previously (John et al., 2011; Fu et al., 2016). 
Briefly, the purified phage particles (109 PFU/ml) were filtered 
through 0.22 μm pore size filter, then treated with DNase I and 
RNase A, and incubated at 37°C for 1 h. The genomic DNA of 
phages was extracted using the TIANamp Virus DNA/RNA Kit 
(TIANGEN, China) according to the manufacturer’s instructions. 
The purified phage DNA was treated with restriction 
endonucleases EcoRI, XhoI, BamHI, and HindIII, followed by 1% 
(w/v) agarose gel electrophoresis for detection.

Genome analysis

To construct the DNA library, the DNA was first fragmented 
using Covaris M220, followed by end-flattening, addition of A and 
adapter. The target fragments were selected by agarose gel 
electrophoresis and then PCR was performed to amplify the target 
fragments (TruSeq™ DNA Sample Prep Kit). After the PCR 
product is purified by magnetic particles, the library is qualified 
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by detecting the length (Agilent Bioanalyzer), concentration 
(Qubit) and A260/280 (Nanodrop). DNA library was sequenced 
at the Majorbio Cooperation (Shanghai, China) using Illumina 
MiSeq (PE250). Controls were performed using trimmomatic 
(Bolger et al., 2014). The adapter sequences in the reads are first 
removed, and then the bases containing non-A, G, C, and T at the 
5′ end are removed before trimming. The reads with low 
sequencing quality (sequencing quality value less than Q20) were 
trimmed and the reads containing N up to 10% were removed. 
Finally, we discard the adapter and the small fragments with a 
length of less than 25 bp after quality trimming. The optimized 
sequences were assembled with multiple Kmer parameters using 
SOAP denovo (v2.04; Luo et  al., 2012) to obtain the optimal 
assembly results. Next, GapCloser (v1.12) was used to perform 
gap filling and base correction on the assembly results. Then 
Barrnap (v0.4.2)3 and tRNAscan-SE (v1.3.1; Chan and Lowe, 
2019) were used to predict the rRNA and tRNA in the genome, 
respectively. Gene prediction was performed using Prokka 
(v1.14.6; Seemann, 2014). The predicted gene sequences were 
Blastx-matched (Altschul et al., 1997) against the GenBank nr 
database to obtain annotation information. Phage genome 
mapping was performed using SnapGene Viewer (v6.0.2; from 
Insightful Science; available at4). Conserved structural domains 
were matched against the Conserved domains Database (CDD; 
Marchler-Bauer et al., 2002). And whole genome sequences were 
compared with viral sequences in GenBank by Blast. Similarities 
between phage whole genomes were calculated by VIRIDIC using 
default parameters (Moraru et  al., 2020). Genomic network 
analysis was performed by vConTACT2 (v0.9.19; Jang et al., 2019), 
ClusterONE (v1.0; Nepusz et al., 2012), and Cytoscape (v3.9.1; 
Shannon et al., 2003). The phage genome was submitted to NCBI 
with the accession number OP380511.

Results

Biological features of phage YPCBV-1

Strain F3 was isolated from the saline soil collected from 
Yipinglang salt mine using MBA medium. Phylogenetic analysis 
based on 16S rRNA gene sequences showed that F3 clustered 
with Chromohalobacter. beijerinckii ATCC 19372T, with 98.74% 
identity (Figure  1A). F3 showed pale yellow opaque round 
colonies on solid MLB medium. The cell was rod-shaped with a 
length of 1.2–2.1 μm and a width of 0.46–0.6 μm 
(Supplementary Figures S1, S2). F3 can grow at NaCl 
concentrations of 2%–25% (w/v) and has an optimal growth 
salinity of 8% (w/v; Supplementary Figure S3).

The phage Yipinglang Chromohalobacter Beijerinckii Virus 1 
(YPCBV-1) was isolated from the saline soil from Yipinglang salt 

3 https://github.com/tseemann/barrnap

4 snapgene.com

mine using F3 as the host. YPCBV-1 produced plaques with a 
diameter of 0.5–1.5 mm after 24 h (Figure  1B). TEM analysis 
revealed YPCBV-1 exhibits head-tail morphology with a head 
diameter of approximately 54 ± 8 (n  = 4) and a tail length of 
approximately 136 ± 7 (n = 4; Figure 1B). The one-step growth 
curve showed a burst size of 6.3 PFU/cell at 10% (w/v) NaCl 
concentration (Figure  1C). The host range of YPCBV-1was 
narrow and only infected the host F3, but not C. beijerinckii 
CGMCC 1.9020. The YPCBV-1 genome could be cleaved by EcoR 
I  and Xho I  but not by BamH I  and Hind III 
(Supplementary Figure S4), indicating the genome is double-
stranded DNA.

Response of YPCBV-1 to salinity

The phage YPCBV-1 survived well in higher concentrations 
of NaCl (10% to saturation) and KCl (25% to saturation) but could 
not survive in pure water, indicating a strong dependence on NaCl 
or KCl (Figures  2A,B). YPCBV-1 can survive in NaBr 
concentrations ranging from 5 to 10% (w/v), and CaCl2 
concentrations ranging from 1 to 10% (w/v; 
Supplementary Figure S5). YPCBV-1 survives in different 
concentrations of YPCBV-1 but only produces viral progeny at 
5–20% (w/v), with an optimal salinity of 10% (w/v; Figure 2C). In 
addition, the adsorption efficiency of YPCBV-1 increased and 
then decreased with increasing NaCl concentrations. YPCBV-1 
showed maximum adsorption efficiency at 5 and 8% (w/v) NaCl 
with 99.0 and 98.5% adsorption efficiency at 15 min, respectively. 
Ninety-four point nine % (±3%) of adsorption efficiency was 
retained up to 10% NaCl and dropped to 7.1% ± 1% at 30% NaCl 
(Figure 2D). Interesting, YPCBV-1 stability decreased sharply in 
pure water but 77% adsorption efficiency was retained. Although 
the maximum adsorption efficiency was found at 5–8% (w/v) 
NaCl, YPCBV-1 produced more progeny at 10–20% (w/v) NaCl, 
indicating higher adsorption efficiency do not produce more viral 
progeny and salinity affects the post-adsorption process.

Effect of pH, temperature, organic 
solvent, detergents, and proteolytic 
degradation on YPCBV-1

The YPCBV-1 was stable at range of pH 5–10. The percent 
survival at pH 9 and pH 10 is much lower than at pH 5–8 and the 
optimal survival pH was 7, with a percent survival of 98.7% 
(Figure 3A). The percent survival of YPCBV-1 decreased with the 
increase of temperature, and the percent survival was 60.0% at 
50°C for 1 h (Figure 3B).

YPCBV-1 was inactivated after 0.5 h treated with anhydrous 
ethanol. While, after 12 h incubation with chloroform, percent 
survival of phage YPCBV-1 was 40% ± 20%. In addition, the 
percent survival of YPCBV-1 was 73.1 ± 3 and 66.7% ± 8% after 1 h 
of treatment with proteinase K and SDS, respectively.
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Genome overview of YPCBV-1

Sequencing reads of YPCBV-1 assembly resulted in two 
contigs. These two contigs was assembled as one scaffold but no 
terminal repeats were found. Overall, we considered that scaffold 
represents nearly complete (draft) genome of the phage 
YPCBV-1. The size of the draft genome of YPCBV-1 was 
36,002 bp with a C + G content 67.09%. In total 55 ORFs were 
predicted in the genome, and the length of all ORFs was 
34,101 bp, accounting for 94.74% of the genome. ORF1 and 
ORF44 were found on the negative strand, while the remaining 
53 ORFs were found on the positive strand. No tRNA or rRNA 
gene was found in YPCBV-1 genome. Among all the predicted 
ORFs, the predominant start codon was AUG (50 ORFs), but 
there were also incidences of alternative start codons, i.e., UUG 

(ORF55) and GUG (ORF10, ORF21, ORF42, and ORF46). The 
predicted ORFs were compared with the GenBank nr database 
by Blastx (Supplementary Table S1). Except for ORF12, which 
was not annotated with any information, 24 ORFs were annotated 
as putative proteins, 8 ORFs were annotated as domain of 
unknown function (DUF) family proteins (Punta et al., 2011), 
and 22 ORFs were annotated with a clear function (Figure 4). 
Consistent with the results of many previous haloviruses, 
YPCBV-1 also has many genes with unknown functions. These 
proteins were compared with the Conserved Domains Database 
(CDD; Marchler-Bauer et al., 2002) to understand the conserved 
structural domains and their possible functions. Based on the 
predicted protein functions, the YPCBV-1 genome can 
be roughly classified into four major categories: structural, lytic/
lysogenic, regulatory, and other genes.

A

B C

FIGURE 1

(A) Phylogenetic analysis of F3 based on the 16S rRNA gene sequence. Phylogenetic trees were constructed using the neighbor-joining method by 
Mega 7.0. All parameters are default except the Bootstrap value is 1,000, the p-distance model is used to calculate the distance, and the Gap/
Missing Data Treatment cutoff of 50%. (B) TEM micrographs of YPCBV-1. Scale bar, 50 nm. Inset shows plaques morphology of YPCBV-1. Scale bar, 
8.5 mm. (C) One-step growth curve of YPCBV-1. Error bars represent the standard deviation of three replicates.
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Structure and assembly of YPCBV-1

Among the structural genes, ORF34 is predicted to encode 
the major capsid protein, which is the main component of the 
phage capsid (Becker et al., 1997). In addition to the major capsid 
protein, other proteins which are important to stabilize the 
capsid. For example, there is a 9-kDa protein, P30, in phage PRD 
deletion of P30 leads to incomplete particle assembly and the 
formation of empty phage-specific membrane vesicles (Rydman 
et al., 2001). There is a pfam04233 structural domain in ORF30 
of YPCBV-1, which belonging to the Phage_Mu_F superfamily, a 
minor head protein, implies that the ORF30 may be involved in 
YPCBV-1 capsid formation and play a possible role in stabilizing 
the capsid.

The phage tail is a very complex structure that plays an important 
role in host recognition, attachment, and cell membrane penetration 
(Leiman and Shneider, 2012). Among the 13 ORFs from 39 to 51, 
ORF42, 43, 44, 46, and 51 are predicted to encode putative proteins; 
ORF50 is predicted to encode a DUF2313 family protein; and other 
ORFs are predicted to encode tail proteins.

ORF39 and ORF40 encode tail sheath proteins and tail tube 
protein (TTP), respectively, which are important components of 
the tail and play an important role in the injection of DNA 
(Aksyuk et al., 2009; Zoued et al., 2016). In addition, the successful 
assembly of the tail requires the presence of a tail assembly 
chaperone (TAC; encoded by ORF41). Tape measure protein 
(TMP) is rapidly hydrolyzed if TAC is not present in phage P2 
(Pell et al., 2013). TMP determines the length of the tail tube 
(Arnaud et al., 2017), and TAC is present between the genes that 
encode TTP and TMP (Maxwell and Davidson, 2013). ORF41 
encodes TAC and ORF40 encodes TTP in YPCBV-1. The putative 
protein encoded by ORF42 have the possible function of TMP.

The baseplate is a key component of the tail that mediates host 
binding and genome injection (Büttner et al., 2016). ORF47, 48, 
and 49 in YPCBV-1 encode phage baseplate assembly protein V, 
phage GP46 family protein, and baseplate J/gp47 family protein, 
respectively. The protein encoded by ORF 48 has a pfam07409 
structural domain, a GP46 protein (baseplate protein) similar to 
that of Escherichia coli phage Mu (Büttner et al., 2016). In addition, 
ORF43 encodes a putative protein with a COG5280 structural 
domain that belongs to the YQBO superfamily, a small-tailed 

A B

C D

FIGURE 2

The percent survival of YPCBV-1 at different NaCl (A) and KCl (B) concentrations. The range of NaCl concentrations for YPCBV-1 proliferation 
(C) and the percent adsorption at different NaCl concentrations (D). Error bars represent the standard deviation of three replicates. (C) has only 
one repetition.
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protein associated with phage. ORF45 encodes a DNA cyclized 
N-terminal structural domain protein, which is a protein 
necessary for tail assembly as well as responsible for DNA injection.

In addition to the correct assembly of the phage prohead, 
packaging of the DNA is essential. ORF27 and ORF28 are 
predicted to encode the DUF3486 family protein, a terminase 
similar to E.coli phage Mu (Yuan et al., 2014). Meanwhile, ORF29 
is predicted to encode the DUF935 family protein (Petrovski et al., 
2011), which points to the portal protein in the CDD database. 
The portal protein plays an important role in the packaging 
process of DNA by transferring DNA into the prohead and is a 
central part of the DNA packaging motor (Isidro et al., 2004), as 
well as a key point between the head and tail proteins (Bazinet and 
King, 1985). In summary, ORF27, ORF28, and ORF29 may 
be involved in the packaging of DNA. Stable attachment of the tail 
to the head is mediated by the protein putatively encoded 
by ORF31.

Lysis and lysogenesis of YPCBV-1

The lytic transglycosylase putatively encoded by ORF22 allow 
the genome to cross the cell wall without excessive harm to the 
host by locally expanding the gap in the peptidoglycan network 
(Lehnherr et  al., 1998; Koraimann, 2003). YPCBV-1 releasing 
progeny may rely mainly on peptidases (Endolysin) putatively 
encoded by ORF32 (Pei and Grishin, 2005). In addition, 
endolysins have no signal sequence and require the presence of 
Holin to lyse the host cell wall (Wang et al., 2000, 2003; Fischetti, 
2005; Catalão et  al., 2013). In YPCBV-1, holin is putatively 
encoded by ORF20.

In phage Mu, the key to DNA integration in the host genome 
is the Mu transposase (MuA), which has 663 amino acids (Baker 
et al., 1993; Au et al., 2006). The protein putatively encoded by 
YPCBV-1 ORF4 (671 amino acids) is a Mu transposase C-terminal 

A B

FIGURE 3

Tolerance of phage YPCBV-1 to pH (1 h; A), temperature (1 h; B). Error bars represent the standard deviation of three replicates and (B) has only one 
repetition.

FIGURE 4

Genomic map of YPCBV-1. Gray represents predicted putative protein/DUF family protein genes; orange represents predicted lytic/lysogenic 
genes; blue represents predicted regulatory genes; and red represents predicted structural genes.
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structural domain protein. In addition, DNA translocation of 
phage Mu is dependent on MuA, while MuB was found to play a 
role in regulating MuA activity as well as translocation as an 
ATP-dependent non-specific DNA-binding protein. This study 
also demonstrated that MuB is an AAA+ ATPase (Mizuno et al., 
2013). It is speculated that the AAA family ATPase putatively 
encoded by ORF5 have MuB-like functions. To summarize, 
YPCBV-1 not only lyses the host to complete survival but also may 
have a lysogenic lifestyle.

YPCBV-1-host interaction

ORF1 and ORF2 in the YPCBV-1 genome are predicted to 
encode helix-turn-helix (HTH) structural domain protein. HTH 
proteins have a short DNA-binding region that functions in many 
biological transcription processes (Rosinski and Atchley, 1999). 
The membrane protein putatively encoded by ORF19 then 
be involved in DNA replication (Meijer et al., 2010). ORF10 is 
predicted to encode a host nuclease inhibitor Gam family protein 
that keeps the YPCBV-1 genome from being lysed by inhibiting 
host nuclease activity. This is probably a protective mechanism 
arising from the long-term interaction between the phage and the 
host. ORF15 is predicted to encode the regulatory protein GemA, 
which is similar to the product encoded by GemA in the Gem 
operon in phage Mu, regulates the expression of a variety of host 
genes, including cell division and DNA replication as well as 
reducing host DNA gyrase activity and DNA relaxation 
(Ghelardini et al., 1994). In addition, some putative proteins may 
have regulatory roles, such as ORF18 is predicted to encode 
putative protein that has a pfam08765 structural domain and 
belongs to the Mor superfamily, a sequence-specific DNA-binding 
protein that mediates transcriptional activation by interacting 
with the C-terminal structural domains of the α and σ subunits of 
RNA polymerases.

We annotated to some specific proteins in the YPCBV-1 
genome. Non-heme iron enzymes can catalyze a series of 
important metabolic transformations in various organisms (Lange 
and Que, 1998; Neidig and Solomon, 2005). It was putatively 
encoded by ORF53. In addition, two genes that can assemble 
diversity-generating retrotransposons (DGRs) are present in the 
YPCBV-1 genome, named ORF54 and ORF55, which are 
predicted to encode accessory variability determinant (bAvd) 
protein and reverse transcriptase (bRT), respectively. They can 
accelerate ligand–receptor interactions (Alayyoubi et al., 2013; 
Guo et al., 2014).

YPCBV-1 Is a novel Mu-like phage

MCP, terminase, etc. are commonly used for virus 
classification (Rodela et al., 2019; Kwon et al., 2020; Olonade et al., 
2021). Therefore, a phylogenetic tree was constructed based on the 
MCP of YPCBV-1 and 20 best hit viruses in BLASTp. The results 

shown that YPCBV-1 grouped with Mu-like phages but presents 
a separate branch and is far from the other sequences (Figure 5). 
In the whole genome phylogenetic analysis based on 20 best hit 
viruses in BLAST and 15 halobacterial viral genomes, YPCBV-1 
and Marinobacter phage B23 (KY939598) clustered together and 
form a large group with halobacterial viruses (Figure  6). 
Marinobacter phage B23 was isolated from seawater and has a 
35,132 bp genome with the G + C content of 59.8% (Zhu et al., 
2018). The relatedness between YPCBV-1 and other viruses was 
further confirmed by genomic network analysis using 
vConTACT2. The results shown that 33 viruses have direct 
association with YPCBV-1 and most of them are Mu-like phages, 
such as B3, Mu, BcepMu, phiE255, RcapMu, etc. Although 
YPCBV-1 and 33 viruses were related within the network, 
YPCBV-1 was not classified into any of the virus clusters (Figure 7; 
Supplementary Table S2). In addition, nucleotide-based 
intergenomic similarities were calculated by VIRIDIC and showed 
the highest value of only 13.4% between YPCBV-1 and 
Marinobacter phage B23. Except B23, the average similarities 
between YPCBV-1 and VC175_0 (Beetrevirus) was the higher 
(average 4.63%; Supplementary Table S3). In conclusion, 
YPCBV-1 should be  classified as a novel Mu-like phage 
under Caudoviricetes.

Discussion

Salinity is the most important abiotic factor affecting viruses 
and their hosts in hypersaline environments (Kukkaro and 
Bamford, 2009; Junger et  al., 2018). In this study, YPCBV-1 
produced progeny within a NaCl concentration of 5–20% (w/v), 
and the optimal salinity was 10% (w/v), similar to the soil sample 
salinity (12.1%; Xiao et al., 2013). The burst size of YPCBV-1 at 
5% (w/v) NaCl was lower than that of 8–20% (w/v) NaCl, but the 
highest percent adsorption (99%) was observed at 5% (w/v) NaCl, 
indicating that the high percent adsorption was not accompanied 
by a high burst size. Future studies should focus on the molecular 
mechanisms by which salinity affects virus infection of hosts.

Although YPCBV-1 produce progeny at NaCl concentrations 
of 5–20% (w/v), it can survive for longer times in different 
concentrations of NaCl or KCl ranging from 1% (w/v) to 
saturation. YPCBV-1 has a broader salinity adaptation compared 
to the host, which is similar to SCTP-1, SCTP-2, and QHHSV-1 
(Kukkaro and Bamford, 2009; Fu et al., 2016).

These results suggested that low salinity is more suitable for 
host growth, while medium salinity is more favorable for halovirus 
YPCBV-1 to infect the hosts, and high salinity is favorable for 
halovirus YPCBV-1 survival. This characteristic may be the result 
of the adaptation of halovirus to the natural hypersaline 
environment, where the decrease in salinity due to precipitation 
promotes rapid host growth, and when drought occurs, salinity 
increases and halovirus infects the host and produce progeny, 
which enables them to survive in the environment for a longer 
time. Although YPCBV-1 can survive in different concentrations 
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of NaCl and KCl, it can only survive in 5–10% (w/v) NaBr and 
1%–10% (w/v) CaCl2. The mechanism of the different responses 
of YPCBV-1 to different ions is also well worth 
further investigation.

YPCBV-1 was found to form plaques in F3 lawn, indicating 
the existence of a lytic lifestyle. However, lysogenicity-related 
genes were also found in the genome, suggesting that YPCBV-1 
may have both lysogenic and lytic lifestyles, and the existence of 
this feature may greatly improve the chances of survival of 
YPCBV-1. Salinity may be the switch that regulates the life cycles 
of halovirus (Atanasova et al., 2016). For example, haloarchaeal 
virus SNJ1 survives in the host as a lysogen at a salinity of 18% 
(w/v) and lysis at a high salinity of 25%–30% (w/v; Mei 
et al., 2015).

YPCBV-1 form one cluster with phage B23  in the whole 
genome phylogenetic analysis with 13.36% similarity (calculated 
by VIRIDIC). Marinobacter phage B23 was isolated from Bohai 
Sea, China, with a genome of 35,112 bp and GC% content of 59.8% 
(Zhu et al., 2018). YPCBV-1 has a larger genome (36,002 bp) and 
higher GC% content (67.9%) than phage B23. However, genomic 
network analysis did not classify them into one VC. In addition, 
MCP phylogenetic analysis and genomic network analysis 
revealed that YPCBV-1 is associated with many Mu-like phages 
(B3, Mu, SfMu, BcepMu, phiE255, etc.). The above results shown 

that YPCBV-1 may be a novel Mu-like phage close to Marinobacter 
phage B23 under Caudoviricetes. It is noteworthy that phages 
related to YPCBV-1 such as B3 (siphovirus), Mu (myovirus), and 
Becpmu (myovirus) have different morphologies. Hulo et  al. 
(2015) proposed classifying these phages as Saltoviridae, with tail 
morphology as a subfamily. In the whole genome phylogenetic 
analysis of YPCBV-1, phages such as B3, Mu, Becpmu, and 
YPCBV-1 were evaluated as a family. And these phages were also 
found to form a cluster (probably at the family level) in the 
genomic network analysis. These results suggest that the 
classification of phages into a family by tail morphology may not 
be  appropriate. A more comprehensive system is needed for 
virus classification.

A recent study analyzing a dataset of more than 30,000 DGRs 
in public metagenomics established six major DGR lineages, three 
of which are predominantly encoded by phages and appear to 
be used to diversify host attachment proteins, demonstrating that 
DGRs are broadly active and responsible for more than 10% of 
amino acid changes in some organisms (Roux et al., 2021). These 
results suggested that the presence of DGR in YPCBV-1 will 
be  highly resilient to unpredictable hosts, environments, 
and so on.

In addition, we  identified genes putatively encoding 
SUMF1/EgtB/PvdO family non-heme iron enzymes in the 

FIGURE 5

Major capsid protein phylogenetic tree. Phylogenetic trees were constructed using the neighbor-joining method by Mega 7.0. All parameters are 
default except the Bootstrap value is 1,000, the p-distance model is used to calculate the distance, and the Gap/Missing Data Treatment cutoff of 
50%. Phage phiHAP-1 was selected as outgroup.
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YPCBV-1 genome. Ergothioneine synthase (EgtB) is a unique 
non-heme mononuclear iron enzyme that is a key step in 
ergothioneine synthesis (Goncharenko and Seebeck, 2016; 
Tian et al., 2018). Ergothioneine is a natural antioxidant with 
special physicochemical properties and a specific distribution 
that make it significantly more stable than common 
antioxidants and comparable to conventionally recognized 

antioxidants such as glutathione and ascorbic acid (Huang and 
Donk, 2015; Cumming et al., 2018; Halliwell et al., 2018). In 
summary, these results imply that YPCBV-1 infection of the 
host may enhance host antioxidant activity and strengthen 
host survival in hypersaline environments, which is beneficial 
not only for host growth but also for the survival of the 
halovirus itself. Of course, the pros and cons are 

FIGURE 6

Phylogenetic analysis of the genome sequence of YPCBV-1 using VICTOR. The classification of family and genu is derived from 
VICTOR’s evaluation results. Squares represent families, circles represent genus, and different colors indicate different family/genus. 
Genus names were derived from ICTV (July 2021). Viruses with no genus name indicate that ICTV is not currently publishing their 
classification status.
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interchangeable, and this property may also lead to the 
possibility that some harmful microorganisms may also 
acquire this ability through certain means such as horizontal 
gene transfer.

With the development of science and technology, many 
strain resources have been obtained, but most microorganisms 
in hypersaline environments cannot be  cultured, and the 
majority of haloviruses and their hosts are still unknown 
(Atanasova et  al., 2015a). Therefore, strengthening the 
isolation and characterization of haloviruses is one of the 

important objectives in the future, which will provide 
experimental materials for studying halovirus–host 
interactions and physiological and biochemical characteristics 
and contribute to the discovery of new genes and enzymes. As 
predators feeding mainly on prokaryotes in hypersaline 
environments (Pedrós-Alió et al., 2000), haloviruses have a 
very important role in the ecological functions. Therefore, it 
is also important to study the roles of haloviruses in regulating 
biomes, mediating gene transfer, and participating in the 
material cycle.

FIGURE 7

Genomic network diagram. Genomic network analysis was performed by vConTACT2, ClusterONE, and Cytoscape. The reference database is 
Prokaryotic Viral RefSeq211-Merged (Last updated in June 2022) and the top 20 similarity sequences in Genbank were added. Duplicate and 
unassociated sequences are removed. Edges indicate the presence of correlation between viral sequences, and virus clusters are shown as 
differently colored boxes. The classification status of viruses is derived from the ICTV (July 2021).
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