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Daphnia galeata is a common and dominant species in warmer waters, 

and has a strong top-down effect on both phytoplankton and bacteria. 

The knowledge of its temporal and spatial patterns of genetic diversity 

is fundamental in understanding its population dynamics and potential 

ecological function in ecosystems. Its population genetics have been 

investigated at regional scales but few within regions or at smaller spatial 

scales. Here, we  examined the fine-scale spatial genetic variation of D. 

galeata within four large, deep reservoirs in wet and dry seasons and the 

six-year variation of genetic diversity in one of the reservoirs by using 

cytochrome c oxidase subunit I  and microsatellites (simple sequence 

repeat). Our study shows that fine-scale spatial genetic variation commonly 

occurred within the reservoirs, indicating strong environmental selection at 

least in the two of reservoirs with strong longitudinal gradients. Since the 

environmental gradients established in the dry season was largely reduced 

in the wet season, the fine-scale spatial genetic variation was much higher 

in the dry season. The dynamics of local genetic diversity did not follow the 

theoretical pattern of rapid erosion but peaked in mid or mid-late growth 

season. The local genetic diversity of D. galeata appears to be shaped and 

maintained not only by recruitment from resting egg banks but also by gene 

flow within reservoirs. The temporal and fine-scale genetic variation within 

a water body suggests that it is necessary to pay attention to sampling 

periods and locations of a given water body in regional studies.
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Introduction

Spatial patterns of biological composition and diversity are 
a major topic in modern ecology, providing core knowledge 
for conserving biodiversity and ecosystem management 
(Mittelbach, 2012). Species composition of a local community 
is determined not only by local processes such as biological 
interaction, adaptation, and stochastic variation but also by 
regional processes of species dispersal and geographic 
isolation and even species speciation (Ricklefs, 1987, 2004). 
There are two frameworks for viewing the composition of 
biological communities (Tilman, 2004). In niche theory, 
species composition is mainly determined by environmental 
or ecological selection (Tilman, 1994). In neutral theory, in 
contrast, species composition is determined by random drift 
and dispersal limitation or mass effects (Hubbell, 2001, 2006). 
In the two frameworks, species are differently assumed to 
be under selection or neutral. If species are equal or neutral, 
spatial patterns can be only observed in high dispersal species 
groups on a large scale. Due to their size, most plankton 
groups can be passively and highly dispersed through airborne 
and waterborne ways (Leibold and Norberg, 2004; Louette and 
De Meester, 2005; Incagnone et  al., 2015). However, their 
spatial patterns have been observed both across water bodies 
and within a water body (Grosbois et al., 2016; Rizo et al., 
2020). Such patterns strongly suggest that environmental 
filtering and selection play a role in shaping species 
composition and diversity.

Spatial patterns of genetic variation or diversity are 
structured in ways similar to those for patterns of species 
diversity at the community level (Gillespie, 2004; Hamilton, 
2009; Haileselasie et al., 2018). Intraspecific genetic structure 
commonly occurs between populations with limited gene flow 
or under strong selection. Fine-scale population structure has 
been observed for amphibians and fishes in a single water 
body or a single river basin (Wagner and McCune, 2009; Triest 
et al., 2014). Biological traits under selection strongly influence 
spatial genetic structure (Vekemans and Hardy, 2004). 
However, not all species have conspicuous morphological and 
behavioral traits that can easily be observed and/or measured. 
For example, many planktonic organisms have distinct traits 
at the genus level but quite similar traits at the species level 
within the genus (De Meester, 1997; Gómez et al., 2000, 2002). 
Although high-resolution markers such as microsatellites (or 
SSR: Simple Sequence Repeat) and SNPs have been developed 
to reveal population subdivision at the regional scale, there are 
few studies on the intraspecific genetic structure of plankton 
at small scales (Weider, 1985; Petrusek et  al., 2013). 
Nevertheless, plankton species have specific traits (e.g., 
physiological traits) that are hard to be observed. Despite high 
dispersal, fine-scale population structure has been observed 
for zooplankton in some harsh and highly heterogeneous 
environments (Carvalho and Crisp, 1987; Petrusek et  al., 
2013). Spatial heterogeneity of plankton communities is 

common within many large waterbodies that have strong 
environmental heterogeneity (Grosbois et al., 2016; Rizo et al., 
2020). If used genetic markers are not totally neutral, i.e., 
slightly under selection, population genetic differentiation 
could be  observed at a local scale, even between adjacent 
sampling sites within a water body (Petrusek et  al., 2013; 
Frisch et al., 2021).

Daphnia is one of the largest genera in Cladocera with more 
than 100 species found around the world (Forró et al., 2008). They 
represent the most important herbivores in natural and man-made 
lakes and ponds (Seda and Petrusek, 2011). Most species of 
Daphnia reproduce by cyclic parthenogenesis and produce resting 
eggs that accumulate in the sediments as a seed bank (De Meester 
et al., 2006). As accumulated in time and space, a resting egg bank 
contains diverse genotypes and hatching asynchronism of 
different genotypes influences observed genetic diversity 
(Brendonck and De Meester, 2003; Hulsmann et al., 2012). Like 
spatial patterns observed for zooplankton at the community level, 
a similar pattern for genetic composition (or diversity) is possible 
for Daphnia species at the population level when high-resolution 
markers [such as SSR and cytochrome c oxidase subunit I (COI), 
etc] are used (Yin et al., 2012; Petrusek et al., 2013; Liu et al., 2022).

Daphnia galeata is a pelagic species common in both 
Europe and Asia and occurs in eutrophic and warmer water 
(Stich and Lampert, 1984). It showed significant genetic 
differentiation along both vertical and longitudinal gradients in 
Rimov reservoir, Czech Republic (Seda et al., 2007; Macháček 
and Seda, 2008; Yin et al., 2012; Petrusek et al., 2013). D. geleata 
is also common in waters of tropical and subtropical China 
(Han et al., 2012; Liu et al., 2019; Ma et al., 2019), where it is 
subject to high and year-round predation pressure. To 
be persistent and dominant in warmer waters, D. geleata needs 
some ecological mechanisms to maintain its genetic diversity. 
In tropical and subtropical regions, the cold period usually have 
a water temperature of 8–15°C around “late winter” and the 
beginning of spring required for the hatching of D. geleata’s 
resting eggs is relatively short. Therefore, both spatial patterns 
and seasonal dynamics of genetic diversity within tropical and 
subtropical water bodies may be  different from temperate 
regions. In tropical and subtropical reservoirs of southern 
China, strong and stable environmental gradients that are 
commonly established in dry seasons can be largely reduced in 
wet seasons due to high water flow during monsoonal periods. 
In this study, we hypothesize that D. galeata in warmer waters: 
1) has a clear spatial pattern of genetic diversity within a 
heterogeneous water body, and 2) has a genetic diversity that 
peaks in early spring when the species hatch from the sediments 
and then is quickly eroded. To test the assumptions, we collected 
D. galeata along a longitudinal gradient from four large 
reservoirs in tropical and subtropical China for two seasons, 
and the populations in their growing season in a tropical 
reservoir for six successive years. Daphnia galeata individuals 
were sequenced for COI and SSR to measure the genetic 
diversity of populations.
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Materials and methods

Sample collection

Daphnia galeata were collected from four large and deep 
reservoirs in southern China (Figure  1): Qiandaohu reservoir 
(29.61°N, 118.96°E) and Xujiahe reservoir (31.57°N, 113.62°E) in 
the Yangtze River Basin, Chaishitan reservoir (24.98°N, 103.32°E) 
and Liuxihe reservoir (23.75°N, 113.79°E) in the Pearl River 
Basin. The Chaishitan reservoir is located on the Yunnan-Guizhou 
Plateau and has a climate similar to that in the Yangtze River 
Basin. Chaishitan and Qiandaohu reservoirs have a typical 
longitudinal environmental gradient, i.e., riverine, transitional and 
lacustrine zone. Each reservoir was sampled from four sites in the 
wet (summer) and dry (spring or autumn) seasons of 2016 
(Supplementary Table 1), which covers heterogeneous habitats. 
We obtained 32 seasonal populations from the four reservoirs. In 
subtropical reservoirs, the population of D. galeata had a growing 
season from early spring to late summer. To observe the dynamics 
of genetic diversity and clone erosion, D. galeata was sampled at 
the central pelagic zone of Liuxihe reservoir from 2012 to 2017. 
The sampling was conducted every 15 days during the growing 
season in 2012 and 2013, and every 30 days during the growing 
season in 2014–2017. Only two samples were collected in May and 
June of 2016, and excluded from the analysis. Finally, we also 
obtained 32 temporal populations in Liuxihe reservoir. Individuals 
of D. galeata were harvested using a 110 μm vertical plankton net 

and the samples were fixed with 75% ethanol in the field. All 
Daphnia individuals were picked out under a dissecting 
microscope (Olympus: SZXZ-ILLB) and identified under an 
optical microscope (Olympus U-LH100-3) according to criteria 
given by Benzie (2005) and further confirmed by barcoding. 
Samples were preserved in 95% ethanol and stored at-20°C for 
DNA extraction and sequencing.

DNA extraction and PCR amplification

The genomic DNA was extracted using an Ultra-Sep Gel 
Extraction Kit (Omega, USA). Individuals of D. galeata were 
picked out from 95% ethanol, rinsed repeatedly with double-
distilled water, and transferred individually to a 500 μl tube. 
We added 200 μl Lysis buffer and 4 μl Protease K (20 mg·ml−1). 
The mixture was vortexed and subsequently incubated for 2 h 
at 55°C. Next, 100 μl of chloroform-isoamyl alcohol (24:1) was 
added and the mixture was centrifuged vigorously at 
10,000 rpm at 10°C for 10 min. The supernatant was moved to 
a new 500 μl tube and added 3 μl beads. After adsorption for 
2 min, we  added 300 μl Binding buffer and centrifuged at 
10,000 rpm for 4 min at 10°C. The supernatant was discarded 
and the precipitate was washed with 300 μl washing buffer and 
centrifuged at 10,000 rpm and 10°C for 4 min. Then the 
supernatant was removed and the precipitate was left to dry at 
room temperature for 2–3 h. After that, 25 μl Elution buffer was 

FIGURE 1

Sampling sites in each of four investigated reservoirs. Each reservoir has four sampling sites, Up: upstream; Mid: midstream; Down: downstream, 
Dam: near the dam. Two reservoirs in Yangtze River Basin: Qiandaohu reservoir (QDH) and Xujiahe reservoir (XJH); Two reservoirs in Pearl River 
Basin: Chaishitan reservoir (CST) and Liuxihe reservoir (LXH). Only Chaishitan and Qiandaohu reservoirs were sampled in the riverine zone (Up), 
where it was deep enough for Daphnia galeata to establish a stable population.
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added to the supernatant, which was placed 4°C for 12 h, and 
centrifuged at 10,000 rpm and 10°C for 4 min. Finally, the 
supernatant was obtained and stored at −20°C.

The individual DNA materials were first used for the 
microsatellite data and the remaining materials were used for 
sequencing COI. For each population, 32 individuals were 
randomly picked. DNA amplification was performed by 
polymerase chain reaction using nine microsatellite markers 
developed for species of Daphnia in Europe (Brede et  al., 
2006). The nine microsatellite markers were used, including 
SwiD5, SwiD7, SwiD10, DaB17, DaB10, SwiD2, SwiD12, 
SwiD18, and Dgm113. The microsatellite primers were 
synthesized by Invitrogen, and forward primers were labeled 
with the FAM fluorophore. The total reaction volume (30 μl) 
contained 10 × buffer (Mg2+plus), 0.25 mM dNTP Mixture 
2.5 mmol/l each, 20 μM each primer, 0.5 U Taq (TaKaRa), and 
3 μl template DNA. The PCR reaction procedure is used as 
follows: pre-denaturation at 95°C for 5 min, 35 cycles of 95°C 
for 30 s, annealing at 55°C for 45 s, extension at 72°C for 30 s, 
the final extension at 72°C for 3 min, and the reaction ended 
at 4°C. Polymorphism was assessed on an ABI PRISM 3730 
capillary DNA sequencer, using an internal Liz Gene-scan size 
standard (Applied Biosystems). Amplified fragments for all 
primers contained between 99 and 234 nucleotides. 
Genotyping was checked by GeneMarker v2.2. Before merging 
data, the same criteria were used to check the consistency of 
alleles, especially the alleles with small differences in 
fragment lengths.

The same individual for microsatellites was used for its 
mitochondrial COI amplification. As some individuals had not 
enough amount of DNA after microsatellites, the number of 
individuals in each population for COI data sets was unequal, 
between 10 and 31 individuals. The COI sequences were missed 
for two sampling sites in the dry season of Liuxihe reservoir. 
The mitochondrial gene COI was amplified using universal COI 
primers LCO1490 (5′-GGT CAA CAA ATC ATA AAG ATA 
TTG G-3′) and HCO2198 (5′-TAA ACT TCA GGG TGA CCA 
AAA AAT CA-3′; Folmer et al., 1994). The polymerase chain 
reactions were as follows in a total volume of 30 μl: 3 μl 
10 × buffer (Mg2+ plus), dNTP Mixture 2.5 mM each, 0.5 μM of 
each primer, 0.5 U Taq, and 3 μl DNA template. The PCR 
conditions consisted of a 1 min initial cycle at 94 ⁰C, followed by 
35 cycles of 40 s at 94ºC, 40 s at 51⁰C, 60 s at 72⁰C, then a final 
extension of 3 min at 72⁰C, end of reaction at 4⁰C. The 
amplifications were verified and chosen for sequencing using a 
1% agarose gel for electrophoresis. The PCR products were then 
sent to Huayu gene (Guangzhou, China) for sequencing on 
ABI3730 sequencer. All obtained sequences were checked for 
the absence of stop codons and ambiguous positions, and the 
validity of obtained sequences was verified by BLAST 
comparison in NCBI. The homologous alignment of sequences 
was performed using Aliview (Larsson, 2014). In total, all the 
obtained COI haplotypes were deposited in GenBank with 
numbers from ON734022 to ON734041.

Genetic diversity and genetic structure

For microsatellites, genetic diversity was estimated in each 
population by GenALEx v6 (Peakall and Smouse, 2006), including 
the number of different alleles (Na), the number of effective alleles 
(Ne), expected (He), and observed (Ho) heterozygosity, the 
inbreeding coefficient (Fis). Fis ranges from −1 to 1, where negative 
values significantly different from zero indicate an excess of 
heterozygotes and positive values indicate a deficiency of 
heterozygotes. The deviation from Hardy–Weinberg equilibrium 
was examined in Arlequin v3.5 (Excoffier and Lischer, 2010). As 
our populations all significantly deviated from the Hardy–
Weinberg equilibrium that is required for STRUCTURE 
(Pritchard et  al., 2000), the discriminant analysis of principal 
components (DAPC) was performed to investigate population 
genetic structure (Jombart et al., 2010). In DAPC, the genotype 
matrix was first transformed using principal component analysis 
(PCA), and then a linear discriminant analysis was performed on 
the retained principal components. DAPC analysis was 
implemented in R with the package adegenet (Jombart, 2008; 
Jombart et al., 2010).

For COI, the sequence characteristics and genetic diversity 
were examined with DnaSP v5.10 (Rozas et al., 2003), including 
the number of variable sites, haplotype diversity, and nucleotide 
diversity. To visually the relationships among the mitochondrial 
haplotypes, PopArt was used to construct the Minimum spanning 
network (Leigh and Bryant, 2015).

Genetic differentiation and clustering 
analysis

The genetic differentiation (genetic distance) for COI was 
estimated in MEGA v6 (Kumar et  al., 2008) with the Kimura 
2-parameter model, and the bootstrap method was repeated 1,000 
times. The pairwise-Fst for microsatellites was calculated to 
characterize genetic differentiation between populations. AMOVA 
in Arlequin v3.5 (Excoffier and Lischer, 2010) was used to 
partition the genetic variance into within seasons, among 
populations within seasons, and within populations. Due to 
missing COI sequences for two sampling sites in Liuxihe reservoir, 
AMOVA was only performed for the other three reservoirs. 
Temporal populations of 6 years were yearly grouped for AMOVA 
analysis to evaluate the interannual difference in genetic variation. 
The relationship between geographical distance and pairwise 
genetic distance (Fst) within reservoirs was detected by a linear 
regression model with package ggplot2 (Wickham et al., 2016) in 
R v3.5.0 (R Core Team, 2018).

Gene flow

Recent immigration rate over the last 3–5 generations and 
directional gene flow was estimated based on the principle of 
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linkage disequilibrium with BayesAss v3.0 (Wilson and Rannala, 
2003; Rannala, 2007), which employs Markov Chain Monte Carlo 
(MCMC) analysis. As BayesAss does not assume Hardy–Weinberg 
equilibrium, it was applied to identify the magnitude and direction 
of gene flow across spatial and temporal gradients/scales. The 
BayesAss MCMC was run for 10,000,000 iterations after an initial 
burn-in period of 10,000,000 iterations and sampled every 
1,000 iterations.

Results

Spatial and temporal genetic variation 
based on microsatellites

One hundred and six (106) alleles were detected from 1,018 
individuals of 32 populations. The average number of alleles (Na) 
of all populations was 3.96 (Variance = 0.79). All populations had 
low genetic diversity (Ho, Mean = 0.357, Variance = 0.086; He, 
Mean = 0.380, Variance = 0.074). There was no significant seasonal 
variation in genetic diversity within individual reservoirs. 
AMOVA showed that genetic variation was very low (< 7%) 
among populations within seasons and among seasons for each 
reservoir, and most of the genetic variance for the four reservoirs 
was contributed by within-population variation (87.9%–92.4%, 
Table 1).

DAPC analysis revealed genetic differentiation among 
sampling sites within Chaishitan, Liuxihe, and Qiandaohu 
reservoirs (Supplementary Figures  1A,B,D,F). Such genetic 
differentiation varied temporally (Figure 2). In Liuxihe reservoir, 
a high genetic differentiation (Fst > 0.05) occurred in the dry 
season (i.e., between midstream (Mid) and bay (Bay)), between 
midstream (Mid) and downstream (Down), and low genetic 
differentiation (Fst < 0.05) did in the wet season 
(Supplementary Table 2). In Qiandaohu reservoir, except for one 
pair of sites, higher genetic differentiation (0.05 < Fst < 0.15) among 
sampling sites occurred in the dry season (Supplementary Table 2). 
No significant relationship was detected between genetic distance 
and spatial distance within single reservoirs. As Chaishitan and 

Qiandaohu reservoirs had the typical longitudinal gradient, a 
significant correlation was detected between Fst and spatial 
distance in the dry season by combining site pairs within each of 
the two reservoirs (p < 0.05, R2 = 0.43, Figure 3B) but not in the wet 
season (Figure  3A). However, by combining site pairs within 
Liuxihe reservoir and within Xujiahe reservoir, no significant 
relationship was detected between Fst and spatial distance in both 
seasons (Figures 3D–F).

Spatial and temporal genetic variation 
based on COIs

We obtained 623 COI sequences with a length of 675 bp, 
including 138 from Chaishitan reservoir, 124 from Liuxihe 
reservoir, 171 from Qiandaohu reservoir, and 165 from Xujiahe 
reservoir. The sequences contained 37 variable sites and 20 
haplotypes, indicating low clone diversity. The nucleotide diversity 
(Pi, Mean = 0.0066, Variance = 0.0048) and haplotype diversity 
(Hd, Mean = 0.41, Variance = 0.24) confirmed this. For Chaishitan, 
Liuxihe, and Xujiahe reservoirs, their genetic diversities all showed 
temporal and spatial differences (Supplementary Table 1).

The haplotype networks revealed the temporal variation of 
clone composition (Figure  4). In Qiandaohu reservoir, rare 
haplotypes occurred only in one season (i.e., Hap  7, Hap  8, 
Hap  17, etc.), and major haplotypes seasonally changed in 
abundance, showing that Hap 2 dominated in the dry season, and 
Hap 1 and Hap 2 dominated in the wet season. In Chaishitan 
reservoir, five haplotypes were detected in the wet season, but one 
haplotype in the dry season, which was the main haplotype in the 
reservoir (Figure 4). In Liuxihe and Xujiahe reservoirs, Hap 16 
and Hap 12 only appeared in the wet season.

AMOVA analysis showed that total population genetic 
variation in each reservoir was mainly from within populations 
(85.6%–100%, Table 1). Less genetic variation (1.97%, p < 0.05) 
between seasons occurred in Chaishitan reservoirs. The genetic 
variation between seasons was 10.64% (p > 0.05) and 16.36% 
(p < 0.05) in Qiandaohu and Xujiahe reservoirs, respectively. In the 
two reservoirs, the genetic distance showed weak population 

TABLE 1 AMOVA of mtDNA and microsatellite datasets for testing the source of genetic variation.

Chaishitan reservoir Qiandaohu reservoir Xujiahe reservoir

df % variation p-value df % variation p-value df % variation p-value

SSR

Among seasons 1 3.75 p < 0.05 1 −0.1 p > 0.05 1 4.06 p < 0.05

Among populations within seasons 6 4.72 p < 0.05 6 7.66 p < 0.05 6 3.89 p < 0.05

within populations 502 91.53 p < 0.05 492 92.44 p < 0.05 504 92.05 p < 0.05

COI

Among seasons 1 1.97 p < 0.05 1 10.64 p > 0.05 1 16.36 p < 0.05

Among populations within seasons 6 −2.08 p > 0.05 6 3.72 p > 0.05 6 2.8 p > 0.05

within populations 130 100.1 p > 0.05 167 85.64 p < 0.05 177 85.64 p < 0.05

Within each reservoir, the populations were sampled at four sites, and each site was sampled in two seasons.
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A B C

D E F

FIGURE 3

Relationship between genetic distance (Fst) and geographical distance in Chaishitan and Qiandaohu reservoirs, (A) wet season, (B) dry season, 
(C) both seasons and Liuxihe and Xujiahe reservoirs, (D) wet season, (E) dry season, (F) both seasons. Each point indicates a site-pair within a single 
reservoir, any site-pair between two reservoirs was excluded. Gray area shows the 95% confidence interval level.

FIGURE 2

Discriminant Analysis of Principal Components (DAPC) analysis used to identify population genetic structure. The blue and red colors represent 
wet season and dry season, respectively.
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genetic differentiation (sequence differences >0.01) between the 
two sampling seasons.

Temporal variation of genetic diversity in 
Liuxihe reservoir

One hundred and two (102) alleles were detected from 959 
individuals of 32 temporal populations, and the average number 
of alleles (Na) for all populations was 3.52 (Variance = 0.10). The 
genetic diversity varied, and with a random seasonal pattern 
(Supplementary Figure 2). In 2014, the highest diversity appeared 
in the early growing season (March). In 2012, 2013, and 2017, 
genetic diversity peaked in the mid-late or mid of the growing 
season (June, May, or April). The expected heterozygosity (He) 
showed no significant interannual difference, while the average 
number of alleles (Na) had a significant interannual differences 
between 2012 and 2015 or between 2015 and 2017 
(Supplementary Figure 3).

DAPC revealed both annual and seasonal differences in 
genetic composition (Figure 5). Populations of 2012–2013 were 
separated from those of 2014–2017. Pairwise Fst between 6 years 
also showed low genetic difference (Fst < 0.05). AMOVA indicated 
that genetic variation was mainly from within populations 
(85.99%, p < 0.05), and less (3.9%) but significantly from 
interannual variation (p < 0.05; Table 2).

Temporal genetic variation was higher in 2013 and 2017 
(Figure  5). Genetic differentiation (Fst) between temporal 
populations had a mean of 0.088 with a variance of 0.031 in 2013. 
High genetic differentiation occurred between July and other 

months in 2017 (Supplementary Table  3). Rather low genetic 
differentiation (Fst < 0.05) occurred in 2014 and also in 2015 except 
for two pairs of temporal populations in the year 
(Supplementary Table 3).

Gene flow within reservoirs

In the wet season, the direction of gene flow in Chaishitan 
reservoir was from the lacustrine zone to the transitional zone 
and to the riverine zone (from Down to Up, from Mid2 to Mid1 
or Up). And there was symmetrical and high gene flow between 
the transitional zone to the riverine zone (Mid1 and Up). In the 
dry season, gene flow was from the riverine zone to the lacustrine 
zone (from Up to Down), as well as from the transitional zone 
or the lacustrine zone to riverine zone (from Mid2 to Mid1, from 
Down to Mid1). In the wet season in Qiandaohu reservoir, high 
gene flow mainly occurred from the lacustrine zone or 
transitional zone to the riverine zone (Figure 6). Compared to 
the wet season, the spatial gene flow was weakened in the dry 
season, and there was strong gene flow from the transition zone 
to lacustrine zone.

For annual populations across 6 years in the Liuxihe reservoir, 
both forward (from 2013 to 2014) and backward gene flows (from 
2013 to 2012, 2015 to 2014, 2016 to 2015, and 2017 to 2016) were 
detected (Supplementary Figure 4). For temporal populations of 
each year, the detected backward gene flows mainly occurred in 
the mid-late growing season or/and the early growing season (i.e., 
from May 2012 to April 2012, April 2015 to May 2015, and Jan 
2017 to Feb 2017; Supplementary Figure 4).

A B

C D

FIGURE 4

Haplotype networks for four reservoirs: (A) Chaishitan reservoir, (B) Liuxihe reservoir, (C) Qiandaohu reservoir, and (D) Xujiahe reservoir. Circle Size 
represents number of specimens with that haplotype, and blue indicates samples collected in the wet season and white indicates those in the dry 
season.
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Discussion

The present study investigated temporal and spatial fine-scale 
variation in genetic diversity and structure of the D. galeata 
populations. Spatial fine-scale variation occurred and changed 
between two sampling seasons, especially in the two reservoirs 
(Chaishitan and Qiandaohu reservoirs) with longitudinal 
gradients. Genetic differentiation increased with spatial distance 
in the dry season, indicating increased environmental selection. 

Seasonal variation of genetic diversity at a pelagic site of Liuxihe 
reservoir appears to peak in the mid or mid-late growing season 
and did not follow an erosion pattern.

Spatial variation of genetic structure

Clear spatial genetic variation was observed in the Chaishitan 
and Qiandaohu reservoirs with a typical longitudinal 

FIGURE 5

Scatterplot of DAPC analysis, used to identify genetic clusters for each year. Eigenvalue was shown as an inset for graph, with dark gray bars 
representing those used in the scatterplot.
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environmental gradient. Higher genetic differentiation occurred 
even between the transitional zone and riverine zone in the 
Qiandaohu reservoir (Fst > 0.1, Supplementary Table  2). A 
significant correlation between Fst and geographic distance 
(Figure 3) demonstrates that spatial differentiation was induced 
by environmental selection rather than by restricted gene flow. 
Environmental selection was considered the driver of spatial 
variation in the genetic structure, directly, and indirectly altering 
population genetic composition (Weider et al., 2005; Hembre and 
Megard, 2006; Brzeziński et al., 2010; Orsini et al., 2013; Maruki 
et al., 2019). In a reservoir characterized by a strong longitudinal 
environmental gradient, significant spatial differences in plankton 
structure and fish density were frequently detected (Vašek et al., 
2004; Yang et  al., 2018; Rizo et  al., 2020). As an epilimnetic 
species, less vertical migration lets D. galeata be  exposed to 
stronger predation or/and low food quality, which facilitates its 
genetic differentiation (Weider et al., 2005; Hembre and Megard, 
2006; Brzeziński et al., 2010; Maruki et al., 2019). Large reservoirs 
usually have high longitudinal heterogeneity, which also 
explained the greater spatial variation of genetic structure in the 
Qiandaohu than in the Chaishitan reservoir (Figure 2). Fine-scale 
genetic differentiation of D. galeata was well investigated in a 
study in Rimov reservoir of the Czech Republic, and significant 
intraspecific genetic differentiation was detected between the 
upstream and downstream of the reservoir (Petrusek et al., 2013). 
Even the hypolimnion population was genetically differentiated 
from the epilimnetic population (Seda et al., 2007). The observed 
vertical differentiation primarily resulted from fish 
predation pressure.

In Liuxihe and Xujiahe reservoirs, the spatial genetic 
differentiation was weaker. Although the two reservoirs have 
morphologically longitudinal zonation, their riverine zones are 
too short and shallow for D. galeata to have a stable population 
across seasons. The riverine zone was not sampled for the two 
reservoirs. Indeed, a similar genetic structure occurred across sites 
in Xujiahe reservoir and there was no significant correlation 
between Fst and geographic distance. Some earlier studies also did 
not detect strong population differentiation within lakes (Wolf, 
1985; Carvalho and Crisp, 1987). A random spatial distribution of 
genotypes was detected for the haplophilic zooplankter Artemia 
urmiana from 15 different spatial sites in Lake Urmia, due to a 
lack of salinity differentiation in this lake (Eimanifar and Wink, 
2013). Even without strong environmental difference between 
populations within a landscape, some genetic differentiation can 
arise due to purely stochastic processes, given the spatial 
separation of the two populations (Gillespie, 2004; Petrusek et al., 

2013). In Liuxihe reservoir located near to the Tropic of Cancer, 
D. galeata had a smaller population size and poorer haplotypes 
than in the other reservoirs. Small effective population size 
increases genetic drift and population differentiation (Freeman 
and Herron, 2004; Vanoverbeke et al., 2007). Stochastic effects 
associated with hatching from resting egg banks combined with 
genetic drift can lead to significantly differentiated active 
populations, even if the genetic composition of their resting egg 
banks was identical (Schwentner and Richter, 2015).

The population differentiation between the two sampling sites 
was not permanent within any reservoir investigated here. Any 
spatial pattern for environmental selection can be disrupted by 
seasonal changes in food resources, predators, or abiotic factors 
(Frisch and Weider, 2010; Yin et al., 2012; Petrusek et al., 2013). 
Large reservoirs are commonly built for flooding control and 
irrigation, their water level fluctuates seasonally and largely 
depends on water use. Water level fluctuation was found to be an 
important factor influencing spatial genetic variation within a 
single water body (Sturmbauer et al., 2001; Nevado et al., 2013). 
Qiandaohu reservoir is located in the lower reaches of the Yangtze 
River, and its precipitation is concentrated in wet seasons, 
especially from March to June (Liu et  al., 2020). During this 
period, the water level fluctuates greatly, which temporarily 
disrupts the established environmental gradients, increasing gene 
flow along the direction of water flow and weakening spatial 
genetic variation (Figure 6; Supplementary Figure 1). The water 
level fluctuation and environmental conditions tend to be stable 
in dry seasons, during which a longitudinal environmental 
gradient is established and significantly decreased gene flow and 
increases genetic differentiation between populations. As a result, 
spatial genetic structure can be  detected in dry season. 
Interestingly, spatial genetic structure was detected in both 
sampling seasons in Chaishitan reservoir. The reservoir is located 
in Yunnan-Guizhou Plateau, and had low precipitation and water 
level fluctuation. A stronger spatial genetic variation was observed 
in the dry season. Such seasonal change in spatial variation within 
a water body was also observed in Rimov reservoir (Petrusek 
et  al., 2013), in which a significant spatial differentiation of 
D. galeata occurred at more than half of the sampling dates. In 
Lake Texoma, significant spatial heterogeneity of genotype 
frequencies was observed in D. lumholtzi, but restricted to the 
summer (Frisch and Weider, 2010). The composition of D. galeata 
genotypes also changed seasonally. Although some clones 
(haplotypes) occurred in the two sampling seasons, their relative 
frequencies often differed (Figure 4). The frequency of each clone 
fluctuated on a time scale, which presumably reflected 

TABLE 2 AMOVA for temporal populations in Liuxihe reservoir.

Source of variation d.f. Sum of squares Variance components Percentage of variation p-value

Among years 5 198.60 0.079 3.9 p < 0.05

Among populations within years 28 390.78 0.205 10.1 p < 0.05

Within populations 1,992 3,478.24 1.746 85.99 p < 0.05

Total 2,025 4,067.6 2.03
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environmental change (Carvalho and Crisp, 1987). Seasonal 
change in environmental conditions affects competition between 
clones, and leads to a shift in genotype composition (Stibor and 
Lampert, 2000; Yin et al., 2012).

Temporal variation of genetic diversity 
and structure in Liuxihe reservoir

In temperate region, cyclic parthenogenetic zooplankton are 
characterized by high genetic diversity in the initial growing 
season, which is rapidly established from a dormant egg bank (De 
Meester et  al., 2006; Rother et  al., 2010). During the growing 
seasons, however, selection pressure and genetic drift are expected 
to erode genetic diversity within a population, viz., a decline in 
genetic diversity over time (Ortells et al., 2006). Towards the next 
initial growing season, genetic diversity is re-established from the 
dormant egg bank (De Meester et al., 2006). The local genetic 
diversity of D. galeata in Liuxihe reservoir did not show this 
theoretical erosion pattern, but seems to be a random pattern. 
And the genetic diversity of Liuxihe reservoir appears to peak 
slightly in mid or mid-late growing season, rather than in early 

growing season as temperate region. The main growth phase of 
D. galeata in tropical China was from December to July. In early 
spring that starts from the December, low water temperature 
(about 14⁰C) is suitable for the hatching of dormant eggs, and 
individuals quickly re-established from the egg bank 
(Vandekerkhove et al., 2005). During the mixing period, dormant 
eggs have chances to be suspended in shallow zones. The observed 
backward gene flow supports genotypes or clones recruited from 
the resting egg bank in Jan–March (Supplementary Figure 4). 
Genetic diversity of D. galeata in Liuxihe reservoir was not only 
higher but also stable from May to June. The deep zone in a 
reservoir usually serves as a sink that accumulates more genotypes 
(Yin et al., 2012). During seasonally flooding, the pelagic zone 
collected genotypes or clones imported from shallow waters where 
resting eggs may hatch. Newly established genotypes would come 
from upstream zones, but there was not indication that 
hydrological conditions could explain a higher import 
(Hulsmann et al., 2012). Although re-hatched from resting eggs 
may contribute to genetic diversity, we did not detect the backward 
gene flow during the flood season, at least in 2017. From June to 
July, the genetic diversity of D. galeata decreased with declining 
population abundance in Liuxihe reservoir, indicating that 

FIGURE 6

Gene flow between populations within two reservoirs characterized by a typical longitudinal environmental gradient. CST: Chaishitan reservoir; 
QDH: Qiandaohu reservoir. Up: upstream; Mid: midstream; Down: downstream, Dam: near the dam. Upstream of both reservoirs belonged to 
riverine zone, midstream of both reservoirs and downstream of Qiandaohu reservoir belonged to transitional zone, downstream of Chaishitan 
reservoir and open water near the dam of Qiandaohu reservoir belonged to lacustrine zone.
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increasing fish predation functions as the selection pressure 
eroding clonal diversity (Vanoverbeke and De Meester, 2010).

Genetic variation of Daphnia populations is largely controlled 
by selection acting on individuals recruited periodically from 
dormant populations (Hembre and Megard, 2006). We detected 
significant seasonal variation in genetic structure in 2013 and 
2017. Especially in 2013, there was large genetic differentiation 
(0.05 < Fst < 0.15) between most temporal populations. This 
seasonal differentiation may suggest recruitment and selection 
acting together, and which usually occurred in early or end 
growing season. The contribution of resting eggs to the 
population may profoundly altered the genetic composition of 
the population compared to the previous season (Hulsmann 
et al., 2012). In end growing season, the increasing fish population 
results in stronger predation pressure, which lead to genetic 
differentiation of Daphnia populations (Hembre and Megard, 
2006). Similarly, due to intense clonal selection, the 
parthenogenetic population of Myzus persicae was characterized 
by strong and rapid change in the relative frequencies of common 
clones during the course of a year (Vorburger, 2006). And 
significant temporal heterogeneity of D. lumholtzi existed in 
genotype frequencies with a major shift only between summer 
and autumn (Frisch and Weider, 2010). Population genetic 
differentiation was detected between July and the other periods 
in 2017. Interestingly, there was no significant difference in the 
genetic diversity and genetic structure between years in the 
Liuxihe reservoir. In this case, the resting egg bank may buffer 
genetic diversity (Marshall, 2016; Orsini et al., 2016).

The implication for population genetics 
and phylogeographic studies

In our species, temporal and fine-scale genetic variations can 
occur within a single water body, especially in large reservoirs. 
Consequently, exploring population genetic structure at a regional 
scale requires the organisms and their populations are reasonably 
collected to avoid high temporal and fine-scale spatial genetic 
variation. In practical sampling surveys, however, the populations 
usually comprise the samples collected from several seasons (i.e., 
White et al., 2010; Xu et al., 2011; Liu et al., 2018), and such a 
sampling strategy might lead to an underestimation of genetic 
variation between spatial samples (Balloux and Lugon-Moulin, 
2002). Mitochondrial COI records are more useful in gathering 
historical and geographic information (i.e., Hebert et al., 2003; 
Bekker et  al., 2018), and are widely used for phylogeographic 
studies (i.e., De Gelas and De Meester, 2005; Bekker et al., 2018). 
Phylogeographic studies without sufficient sampling across a 
specific geographic area are prone to incomplete and spurious 
patterns (Avendaño et al., 2017). Such phylogeographic studies 
typically encompass a large scale, and thus overlook temporal 
variation. The sampling strategy reflects the common assumption 
that the observed genetic structure and diversity remain 
temporally stable (Garant et al., 2000; Arnaud and Laval, 2004). 

Genetic drift in small populations can result in significant genetic 
differentiation between seasonal populations (Gómez et al., 1995; 
Freeman and Herron, 2004; Frisch and Weider, 2010). Temporal 
variation of genetic diversity and clonal composition occurs 
commonly in our studies, and high genetic diversity was detected 
in the mid or mid-late of the growing season. The hierarchical 
AMOVA demonstrated that temporal differentiation was higher 
than spatial differentiation (i.e., Xujiahe reservoir). The seasonal 
variation between populations can possibly mask the true 
geographical patterns (Xiang et al., 2015). Therefore, in addition 
to covering large geographical ranges, phylogeographic studies 
also need to consider potential temporal variation, especially for 
those waterbodies hosting deep and rare lineages. For zooplankton 
of cyclical parthenogens, samples are suggested to be collected in 
early or the mid of the growing season in exploring population 
genetics and genetic diversity under limited resources. Local 
environmental variables that were ignored in the present survey 
are strongly suggested to be recorded and measured for examining 
the expected environmental selection.
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