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Mycotoxin contamination of corn results in significant agroeconomic losses 

and poses serious health issues worldwide. This paper presents the first report 

utilizing machine learning and historical aflatoxin and fumonisin contamination 

levels in-order-to develop models that can confidently predict mycotoxin 

contamination of corn in Illinois, a major corn producing state in the USA. 

Historical monthly meteorological data from a 14-year period combined with 

corresponding aflatoxin and fumonisin contamination data from the State of 

Illinois were used to engineer input features that link weather, fungal growth, 

and aflatoxin production in combination with gradient boosting (GBM) and 

bayesian network (BN) modeling. The GBM and BN models developed can 

predict mycotoxin contamination with overall 94% accuracy. Analyses for 

aflatoxin and fumonisin with GBM showed that meteorological and satellite-

acquired vegetative index data during March significantly influenced grain 

contamination at the end of the corn growing season. Prediction of high 

aflatoxin contamination levels was linked to high aflatoxin risk index in March/

June/July, high vegetative index in March and low vegetative index in July. 

Correspondingly, high levels of fumonisin contamination were linked to 

high precipitation levels in February/March/September and high vegetative 

index in March. During corn flowering time in June, higher temperatures 

range increased prediction of high levels of fumonisin contamination, while 

high aflatoxin contamination levels were linked to high aflatoxin risk index. 

Meteorological events prior to corn planting in the field have high influence 

on predicting aflatoxin and fumonisin contamination levels at the end of 

the year. These early-year events detected by the models can directly assist 

farmers and stakeholders to make informed decisions to prevent mycotoxin 

contamination of Illinois grown corn.
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Introduction

Multiple sectors of the USA agricultural industry (growers, 
processors, and consumers) are negatively affected by mycotoxin 
contamination of grain crops, with annual losses estimated in the 
range of $418 million to $1.66 billion (Vardon et al., 2003; Wu, 
2006; Mitchell et al., 2016). Mycotoxin contamination is also a 
critical food safety concern as these toxins can cause severe health 
issues to humans and livestock (Vardon et  al., 2003). Corn is 
susceptible to contamination by diverse mycotoxin classes; 
however, two of the major classes, aflatoxins (AFL), and 
fumonisins (FUM), are most problematic. AFL and FUM are 
produced by distinct fungal species of Aspergillus and Fusarium 
via well characterized metabolic pathways (Proctor et al., 2018; 
Munkvold et al., 2019). AFL contamination of corn is primarily 
caused by A. flavus and A. parasiticus, while the causal agents of 
FUM contamination are predominantly F. verticillioides and 
F. proliforatum (Woloshuk and Shim, 2013). Environmental 
conditions have a strong influence on corn mycotoxin 
contamination, and the optimal conditions that favor disease 
development and mycotoxin production vary. Aspergillus and 
Fusarium species can grow and produce mycotoxins at a wide 
range of temperatures, but the optimal growth temperatures for 
A. favus are 30–35°C (Abdel-Hadi et  al., 2012), while 
F. verticillioides favors slightly lower temperatures ranging between 
20 and 25 °C (Medina et al., 2014). Dry, hot conditions favor 
A. flavus conidiation and dispersal while compromising corn 
growth and defenses. Thus, high temperatures and drought stress 
are typically associated with AFL contamination (McMillian et al., 
1985; Payne et al., 1986; Diener et al., 1987; Payne et al., 1988; 
Widstrom et al., 1990; Payne and Widstrom, 1992; Guo et al., 
1996; Sétamou et al., 1997; Scheidegger and Payne, 2003; Cotty 
and Jaime-Garcia, 2007). Fusarium infection of corn and FUM 
contamination are also associated with warm temperatures and 
drought stress but kernel water activity and insect injury are 
additional contributing factors (Warfield Colleen and Gilchrist, 
1999; Miller, 2001; Munkvold, 2003; Bush et al., 2004).

Efforts to minimize economic losses associated with 
mycotoxin contamination of grain include timely implementation 
of management and mitigation strategies in the field, during grain 
handling, and in storage. However, with ears concealed in the 
husk, corn farmers frequently do not know whether they have an 
ear rot disease or mycotoxin contamination problem until harvest, 
when it is too late for the implementation of mitigation strategies. 
In this regard, tools such as prediction of mycotoxin contamination 
and risk assessment systems are needed to alert growers and other 

stakeholders of possible risks of mycotoxin outbreaks. These 
predictive tools will provide stakeholders with a proactive window 
of opportunity to deploy strategies specifically aimed at controlling 
disease and thus grain contamination (Focker et al., 2020).

Modeling tools have demonstrated benefits in predicting 
mycotoxin risk internationally but do not benefit USA corn 
growers. In Eastern Europe, models have been developed and 
applied to predict the risk of mycotoxin contamination in milk 
(Van der Fels-Klerx et al., 2019). Additionally, models assessing 
mycotoxin risk in small grains, corn, and other cereal crops, have 
been developed in Italy (Battilani et  al., 2013; Leggieri et  al., 
2021a), Serbia (Liu et al., 2021), Europe (Wang et al., 2022), and 
Korea (Lee et al., 2018). However, these models are generally not 
applicable, are not fine-tuned, or commercially available for corn 
growers in the USA because differences in weather, linked to 
geographical location, and historical mycotoxin contamination 
result in major discrepancies in model predictions and accuracy 
levels (de Schrijver et al., 2021). One exception is the web-based 
Fusarium head blight (FHB) risk assessment tool from the USA 
Wheat and Barley Scab Initiative.1 The USA wheat-scab initiative 
has implemented modeling approaches that accurately alert wheat 
and barley growers of FHB risk (Shah et  al., 2018). However, 
unlike FHB of wheat or barley and associated deoxynivalenol 
mycotoxin contamination, AFL and FUM contamination risk of 
corn is not always coupled with disease symptoms. USA-based 
predictive models based on insurance claims as a proxy for 
mycotoxin contamination values are available for corn (Yu et al., 
2020, 2022), and these models have provided valuable information 
showing that mycotoxin related crop losses will likely become 
more severe as temperatures increase (Yu et al., 2022). However, 
insurance claims are not necessarily equivalent to actual 
determined mycotoxin values. Corn growers will benefit from 
models that are trained with observed historical contamination 
values and risk assessments that incorporate different levels of 
contamination. Therefore, models developed using mycotoxin 
data from USA corn growing states are critically needed.

The main objective of this research was to evaluate the 
connection between historical weather parameters with AFL and 
FUM contamination by using machine learning models that could 
be  directly utilized by industry or corn growers and would 
eventually serve as the basis for prediction of mycotoxin 
contamination risk at state-specific and potentially nationwide 
levels in the USA. We chose the state of Illinois as a first case study 
because of the availability of extensive historical data-sets. Models 
described herein were developed highlighting three elements from 
previous studies: (1) each of the non-USA based models (mainly 
European) were optimized for a determined geographical area 
considering climate variables (Battilani et al., 2016; Liu et al., 2021; 
Nji et al., 2022), for example, temperature, precipitation, and other 
factors specific to the location. (2) The modeling tools for 
Aspergillus mainly had a mechanistic basis that included biological 

1 https://www.wheatscab.psu.edu/

Abbreviations: AFL, Aflatoxins; FUM, Fumonisins; ARI, Aflatoxin risk index; 

GBM, Gradient boosting machine; BN, Bayesian network; FHB, Fusarium head 

blight; HC, Hill climbing algorithm; TABU, This is the name of an algorithm 

based on a Tongan word to indicate things that cannot be touched because 

they are sacred; BIC, Bayesian information criterion; Veg. Index, Vegetative 

index; PCRP, Precipitation; TAVG, Average temperature.
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relationships of the fungus with the environment and the plant 
host. (3) These relationships can be summarized as mathematical 
functions capable of determining fungal growth, toxin index, and 
fungal dispersal among other variables (Battilani et al., 2013). The 
advantage to us was that these functions served as the basis to 
create new input features that can be called engineered features 
(Battilani et al., 2016; Van der Fels-Klerx et al., 2019; Leggieri 
et al., 2021a,b; Wang et al., 2022). As such, the European-based 
models served as a general roadmap to model prediction of AFL 
and FUM contamination in Illinois.

Herein, we used 14 years of historical contamination data, 
combined with monthly county-wise weather data to perform 
analyses. Feature engineering (Battilani et al., 2013; Van der Fels-
Klerx et al., 2019) was used in combination with gradient boosting 
models (GBM; Friedman, 2001) and bayesian networks (BN; 
Cooper, 1990) to predict AFL. For prediction of FUM 
contamination, GBM and BN were used in combination with 
weather and plant-related parameters.

Materials and methods

Mycotoxin and weather data

Historical mycotoxin contamination data for corn production 
was obtained from the Illinois Department of Agriculture for 
every county in the State for 2003–2004, and from 2007 through 
2019 (data for 2020 was not available due to COVID-19 
pandemic). Data from 2021 was obtained from the same source 
and was reserved only for model validation. Historical AFL and 
FUM mycotoxin survey data is available at https://www2.illinois.
gov/sites/agr/Plants/Mycotoxin/Pages/Survey.aspx. The sample 
collection was done at random by sampling from four corn 
producers from each county (2.3–4.5 kg of whole kernels). Half of 
the collected sample were split, and 10 g were used for mycotoxin 
quantification. Mycotoxin quantification was performed using 
Watex kits from Romer starting in 2017, prior to that date 
quantification was done using Neogene Elisa test kits. Mycotoxin 
data per county was averaged prior to further analysis.

Historical monthly average temperature and precipitation 
data was obtained from the National Oceanic and Atmospheric 
Administration (NOAA),2 while historic monthly-average 
vegetative index was obtained from GRO-Intelligence.3 Vegetative 
index from GRO-intelligence was calculated from satellite data by 
taking into consideration multiple light spectra to enhance the 
presence of green vegetation by calculating normalized difference 
vegetation index (NDVI), which ultimately measures plant 
greenness. Historic meteorological data was linked to county level 
mycotoxin data by using the county and the year as common 
information. Originally, we  obtained 1,386 data points of 

2 https://www.ncdc.noaa.gov/cdo-web/search

3 https://gro-intelligence.com/

mycotoxin data for 99 counties, however, after linking toxin data 
with weather data this was reduced to 1,259 data points and 93 
counties. The elimination of some data was due to the 
unavailability of enough historical average monthly weather data 
from NOAA for the following counties: Calhoun, De Witt, 
Grundy, Kendall, Livingston, and Mason.

Features engineering and imputation for 
AFL data set modeling

All the monthly average precipitation and temperature data was 
averaged per county for the 14-years of historic data and for 2021. 
Average temperatures were calculated in degrees Celsius, and 
we used geographical centroids of each State (latitude and longitude) 
and the climate zones (Friedman, 2001). With these data, growth 
was calculated (Battilani et al., 2013) as described in equations 1 and 
2. These equations have been applied to an European country with 
similar climate to Illinois (Van der Fels-Klerx et al., 2019).

 A = 5 98.

 B =1 70.

 C =1 43.

 T_max = 48

 T_min = 5

 Teq averageT T T T= -( ) -( )_min / _max _min  (1)

 ( ) ( ) CB
eq eqGrowth 1 = × × − A T T  (2)

Where Teq is calculated per month
Weighted growth (10% of original growth) was generated for 

the months where there is no corn in the field (January–April and 
November–December) and it is considered one of the assumption 
in our model. The aflatoxin production index was calculated 
(Battilani et al., 2013) using equations 3 and 4. These equations 
have been applied to an European country with similar climate to 
Illinois (Van der Fels-Klerx et al., 2019).

 A = 4 84.

 B =1 32.

 C = 5 59.

 T_max = 47

 T_min =10
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 Teq averageT T T T= -( ) -( )_min / _max _min  (3)

 ( ) ( ) CB
eq eqAFLA 1 = × × − A T T  (4)

Where Teq is calculated per month
We calculated the dispersal as an ON/OFF switch (Battilani 

et al., 2016) and assumed that dispersal was ON if there was less 
than 5 mm of accumulated rain per month. If there were more 
than 5 mm of accumulated rain per month we assumed that there 
was no dispersal (Battilani et al., 2013).

Finally, we engineered a featured named monthly aflatoxin 
risk index (ARI), during the months that there was corn in the 
field (Equation 5).

 ARI growth dispersal afla= ´ ´  (5)

During the months where there was no corn in field (January–
April and November–December) we calculated aflatoxin risk as 
described in equation 6 (Battilani et al., 2013; Van der Fels-Klerx 
et al., 2019). Weighted growth is an assumption in our model that 
takes only 10% of the fungal growth when there is no corn in 
the field.

 ARI weighted growth dispersal= ´_  (6)

The inputs for the model were monthly ARI through the 
noted years for each county. We also added to our input features 
an average monthly vegetative index per county, which is a feature 
generated by satellite data and acquired from the 
GRO-intelligence company.

For any missing values in our monthly ARI or vegetative index 
features, we performed imputation using multivariate imputation 
by chained equations (mice; mean method was used; van Buuren 
and Groothuis-Oudshoorn, 2011) an R package (R Development 
Core Team, 2014). This imputation package allowed us to 
determine plausible data values that were created from the 
distribution of each missing data point (van Buuren and 
Groothuis-Oudshoorn, 2011). Due to the high number of missing 
data for ARI in January, we decided to remove this feature from 
the model instead of performing imputation. Finally, we linked 
the AFL data to the feature data set to create a set of 1,259 data 
points and 22 features or predictors. For FUM modeling, we could 
not use feature engineering functions such as the ARI calculated 
for AFL produced by Aspergillus because these equations were 
generated using Aspergillus.

Weather data and imputation for FUM 
data set modeling

All the monthly average precipitation and temperature data 
were averaged per county for the 14-years of historic data, and for 

2021. Average temperatures were expressed in degrees Celsius, 
and each county was assigned their geographical centroids 
(latitude and longitude), the climate zones (Friedman, 2001) and 
vegetative index. For any missing values in our monthly weather 
data or vegetative index features, we performed imputation using 
“mice” (mean method flag; van Buuren and Groothuis-
Oudshoorn, 2011) an R package (R Development Core Team, 
2014). Finally, we linked the FUM data to the feature data set to 
create a set of 1,259 data points and 33 features or predictors.

Output variables and correlation analysis

We categorized the output values for AFL and FUM variables. 
For AFL a high category was considered for contamination levels 
greater that 20 ppb, medium for levels from 5 and 20 ppb, and low 
for levels 5 ppb or lower (Supplementary material 1).4 For FUM, a 
high contamination level was for values greater than 5 ppm, and 
the rest of the observations were low (Supplementary material 1). 
A correlation analysis was performed among all the predictors and 
output variables by using a confidence level of 0.95 for correlation 
and hclust method in R (R Development Core Team, 2014).

Gradient boosting machine  
learning

Initial GBM analysis showed that ARI in November and 
December had zero influence in the model, therefore it was 
decided to remove engineering features and weather variables for 
the months of November and December which coincided with 
the end of harvest season in the State of Illinois. Removing these 
features and variables allowed the model to run through the corn 
growing year, that is, during pre-planting season, planting, plant 
growth/development, flowering time, and through harvest. The 
gbm software package in R was used, this software provided 
extensions to Freund and Schapire’s AdaBoost algorithm and 
Friedman’s gradient boosting machine (Friedman, 2001). For 
performing GBM, we first removed the Illinois county identifier 
from the data set, then partitioned the data for training and 
testing using a 70 to 30 ratio (Supplementary material 1). 
We performed GBM in AFL and FUM separately and during each 
individual mycotoxin analysis the other mycotoxin was removed 
from the data set. The input features (Predictors) used for 
AFL-GBM were the monthly ARI, and monthly veg. Index; the 
input features for FUM-GBM were the monthly PRCP, TAVG and 
veg. Index. For AFL we used the following flags on the training 
data: a threshold of 500 trees, interaction depth of one, shrinkage 
of 0.01, three cross validation folds and the distribution was 
selected as multinomial (Supplementary material 1). The gbm 
package was used to perform prediction analysis using the testing 

4 https://www.fda.gov/food/natural-toxins-food/mycotoxins
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data set and the best fit generated from the training data. A 
confusion matrix was developed using the caret package in R that 
computed the overall statistics and the specific statistics by class. 
Finally, the gbm package was used to compute the effect values 
for each predictor in the model. For FUM, we used the following 
flags on the training data set: a threshold of 500 trees,  
interaction depth of one, shrinkage of 0.01, ten cross validation 
folds and the distribution was selected as multinomial 
(Supplementary material 1). The remaining analysis was 
performed as described for AFL.

Bayesian network analysis

For BN analysis, we used the bn.learn package in R. The input 
features (predictors) used for AFL-BN were the monthly ARI, and 
monthly veg. Index; the input features for FUM-BN were the 
monthly PRCP, TAVG and veg. Index. First, we  removed the 
climate zone and Illinois county input features from the data set, 
then discretized the full input features data set (not the latitude 
and longitude) by using the discretized R package with the cluster-
method flag and 3 levels that were labeled as: L (Low), M 
(Medium) and H (High; Supplementary material 1). 
We partitioned the data for training and testing using a 70–30 
ratio (Supplementary material 1). BN analysis for AFL and FUM 
was done separately and during each individual mycotoxin 
analysis the alternate mycotoxin was removed from the data set. 
The following analyses for AFL and FUM were done individually; 
first, we tested two structure building algorithms hill climbing 
(HC; Russell and Norvig, 1995) and TABU (Glover, 1986; Glover, 
1989; Glover, 1990; Corazza et al., 2010) and performed scoring 
using the bayesian information criterion (bic-cg), then determined 
the classification error and visualized the conditional probability 
table for AFL and FUM (Supplementary material 1). The strength 
of the relationship was determined between BN nodes (input 
features) represented by each arc in the network to validate the 
structure, then tested the differences between HC and TABU BN 
topology. A Pearson correlation was performed if the number of 
connections was the same between BNs to determine if there were 
any differences in arc strength. Finally, we  performed  
cross validation of the classifier using hill climbing and tabu  
with 10 runs each and the log-likelihood loss function 
(Supplementary material 1).

Validation using 2021 mycotoxin data 
and GBM

The gbm software package in R was used to perform 
prediction analysis using the 2021 mycotoxin data set. Validation 
was done by using the best fit of GBM for AFL and FUM generated 
from the training data (14-years of historic data; 
Supplementary material 1). The weather and mycotoxin data for 
2021 was prepared as previously described in the methods section. 

The mycotoxin data for year 2021 included 95 counties and a total 
of 371 observations.

R code: Available in Supplementary material 1.

Results

AFL and FUM contamination in Illinois

In this study, we used 1,259 observations of corn mycotoxin 
contamination levels obtained from historic yearly survey 
summaries for the years (2003–2004 and 2008–2019) as 
determined and published by the Illinois Department of 
Agriculture. AFL data showed that only 4% of the samples had 
contamination levels >20 ppb, 3% medium levels (5–20 ppb) and 
93% low level (<5 ppb). Thus, the data was zero inflated with high 
contamination levels >20 ppb being rare events (Figure 1). AFL 
contamination levels showed the highest recorded median levels 
in 2012 and the lowest in 2015 (Figure 1A). FUM contamination 
levels were not as variable as for AFL (Figure  1C), the data 
distribution showing 94% of data points were low (0–5 ppm), and 
6% high (>5 ppm). We determined that the high percentage of low 
to zero levels of both AFL and FUM contamination (Figures 1B, D) 
indicated that the ability to detect high contamination levels 
would be based on rare events. This issue was considered during 
data preparation for machine learning analysis by keeping the 
training and testing data sets with a similar proportion of high/
medium/low or high/low observations. In our analysis we decided 
not to use the same number of total cases for high/medium/low 
events because this would significantly reduce the number of total 
data points in the training set, thus decreasing the accuracy of 
the model.

The distribution of mycotoxin levels in relation to thermal 
climate zone in Illinois (Friedman, 2001) was examined. Climate 
zones vary in relation to the meteorological patterns, therefore 
there is a high correlation between climate zone and the 
geographical locations (latitude/longitude) of counties. In Illinois 
there are two climate zones, a mixed-humid climate zone, with 
more than 508 mm of annual precipitation and a monthly outdoor 
temperature below 7°C during the winter; and a cold climate zone, 
has 5,900 heating degree days per year (18.3°C basis; Baechler and 
Love, 2004). Our results showed an equivalent distribution of AFL 
levels between cold and mixed-humid zones while FUM 
contamination tended to be higher in mixed-humid environments 
(Supplementary Figure 1).

Weather variables and feature 
engineering

For AFL, monthly aflatoxin risk indexes (ARI) were the 
main features engineered by employing mathematical functions 
that linked biological relationships between plant-fungal 
interactions (Battilani et  al., 2013; Van der Fels-Klerx et  al., 
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2019; Liu et al., 2021) with weather; for example, fungal growth 
(Equations 1 and 2), and patho-system interaction with the 
meteorological variables such as fungal dispersal (Battilani 
et al., 2013; Van der Fels-Klerx et al., 2019) (Equations 5 and 6). 
Feature engineering decreased the number of input variables 
that were incorporated into the model which also decreased the 
correlation levels among meteorological variables (Figure 2A). 
For FUM modeling, we  could not use feature engineering 
functions such as the ARI calculated for AFL produced by 
Aspergillus. There were high correlation levels among the input 
variables used for modeling FUM (Figure 2B), nevertheless, the 
target variable, labeled fum_modular (Target 
variable = fumonisin), did not show high correlation levels with 
the input variables. In addition, the modeling algorithms used 
were designed to decrease overfitting caused by high correlation 
levels among variables. This low overfitting was accomplished 
because the basis of gradient boosting machine learning (GBM) 
is to sequentially generate model-ensembles that can learn from 
the errors of previous ensembles (Cooper, 1990; Friedman, 
2001). A final input feature used for AFL and FUM models was 
vegetative index, this feature was obtained from satellite 
imaging which allowed us to include in the model the 
fluctuation in vegetation at the earth’s surface (Xue and 
Su, 2017).

GBM analysis for AFL

We used GBM to model AFL contamination levels (factorial 
output variable) with our engineered features. Any features after 
harvest (October) were removed from the data frame. The model 
was able to predict the three contamination levels (high, 
medium, and low) (Table 1), and the optimal number of trees 
used was 288 which represents the number of trees at which the 
cross-validation error is minimized (Figure 3C). The McNemar 
p-value for the GBM models was 0.00129 (Table  2) which 
indicated that the proportion of type I and type II errors are not 
the same, possibly due to the differences in proportionality of 
high, medium, and low contamination levels in the prediction of 
the output variable. The overall accuracy of the GBM-AFL 
model was 94%, the class specific accuracy was 61% for high, 
54% for medium and 60% for low contamination levels 
(Supplementary Table 2). The multi-class area under the curve 
was 0.5746 which evaluates the classifier in its ability to 
distinguish among classes.

The GBM model showed that from the 22 input features 
(predictors) only 19 had non-zero influence 
(Supplementary Table  1). Among the 19 features, the top  10 
included ARI in March, February, April, May, June, July, and 
August, vegetative index in March, April, July, and August 

A B

C D

FIGURE 1

Distribution of mycotoxin contamination in Illinois. (A) Logarithmic base 10 scale of accumulation of AFL by year. (B) Density plots of logarithmic 
base 10 plus one of accumulation of AFL, faceted by year. (C) Logarithmic base 10 scale of accumulation of FUM by year. (D) Density plots of 
logarithmic base 10 plus one of accumulation of FUM, each panel represents a year. Red color depicts AFL, and blue color depicts FUM. Box-plot 
whiskers depict the maximum and minimum without outliers, and the box depicts median, first and third quantiles distribution.
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(Figure 3A; Supplementary Table 1). ARI in March was the feature 
with the highest influence in the model, which was unexpected 
because at that time of the year there is no corn growing in the 
field. To account for this, the fungal growth during the first 
4 months of the year was weighted to lower values and aflatoxin 
production index was not included in the ARI calculation function 
(equations 5 and 6). To summarize, GBM model showed that 
March, a pre-planting month, had a strong influence over 
predictions for AFL contamination at harvest time. This 
observation provided a key to understand the environment-fungi-
corn multi-way interactions that can be  inferred from the 
predictions of the GBM model.

GBM analysis for FUM

We used GBM to model FUM contamination levels (factorial 
output variable) by using average monthly temperature, 
precipitation, and vegetative index features. Features after the end 
of harvest (October) were removed from the data frame. The GBM 
model for FUM prediction using the testing data set, showed that 
the model was able to predict the two contamination levels of 
fumonisin (high, and low; Table 3). The optimal number of trees 
used was 467 which represents the number of trees at which the 
cross-validation error is minimized (Figure  3D). The overall 
accuracy of the FUM-GBM model was 94%, the class specific 
accuracy was for high was 58% (Supplementary Table 2) and the 
multi-class area under the curve was 0.577. These levels of 
accuracy are (considered) moderate and could be related to the 
detection rate per class that was imbalanced (McNemar’s test 
p-value was 0.0022, Table 2) due to the low frequency of high 
contamination values in the outcome variable.

The FUM model showed that from the 33 input features 
(predictors) only 26 had non-zero influence 
(Supplementary Table  1). Among the 26 features, the top  10 
included precipitation in February, March, September, vegetative 
index in February, March, May, June, September, temperature in 
June, and latitude (Figure 3B; Supplementary Table 1). FUM-GBM 
models showed that precipitation in February was the most 
influential feature on the distribution of FUM contamination 
through the years in Illinois state, followed by latitude. Our model 
showed that counties below 41.5° latitude tend to be at be at higher 
risk to accumulate high levels FUM (Supplementary Figure 2). This 
latitude to mycotoxin relationship could be linked to geographical 
as well as meteorological differences in the State of Illinois, 
resulting in location-specific temperature, precipitation patterns.

BN analysis for AFL

The weighted BN network results for AFL (Arc strength 
threshold >0.03) showed that the strength of connections between 
nodes are the same between HC and TABU algorithms 
(Figures 4A,B). In both HC and TABU derived networks, ARI in 
February is not part of the network (Figure 4), denoting this feature 
had no significant arc (Network connections) with any of the other 
features in the network. Both algorithm derived BNs showed the 
same parent node (ARI_3) for the target variable, afla_modular 

A

B

FIGURE 2

Pair-wise correlation analysis of all the model input variables. 
(A) Correlation analysis of the features used for aflatoxin 
modeling and (B), for fumonisin modeling. Correlation level is 
depicted from positive correlation (blue) to negative correlation 
(red), black crosses represent non-significant p-values of 
correlation analysis between variables. p-value cut-off was 0.05 
and confidence level 0.95.

TABLE 1 Confusion matrix of multinomial outcome class for AFL-GBM 
analysis to validate reference (testing data set) actual data for toxin 
levels and the predicted results using the model.

Reference

High Low Medium

Prediction High 3 1 0

Low 10 349 10

Medium 1 1 1
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TABLE 2 Summary statistics of GBM and BN used for AFL and FUM.

GBM BN

AFL FUM AFL FUM

Accuracy 0.94 0.94 0.94 0.94

95% Confidence Interval (0.91, 0.96) (0.91, 0.96) (0.91, 0.96) (090, 0.96)

McNemar’s Test p-Value 0.00129 0.0022 0.006324 2.668 × 10−06

node (Figures  4A,B). The bayesian information criterion (bic) 
score of the two BNs showed no differences between using HC and 
TABU algorithms (−14003.7) and the log-likelihood loss values 
were almost the same when using TABU algorithm (15.2) 

compared to HC algorithm (15.1). The loss results allowed us to 
determine how close the predictions were when compared to the 
actual values. Because the difference in loss between TABU and 
HC-BN was small, the differences in the log-likelihood values 
insignificant, it is acceptable to use either network to predict 
AFL. The overall accuracy of both HC-BN and TABU-BN models 
was 94% (Table 2) and the class specific accuracy was 71% for high, 
50% for medium and 63% for low levels (Supplementary Table 2).

BN analysis for FUM

The weighted network results for FUM-BNs (Arc strength 
threshold >0.03) showed differences in topology between HC and 

A B

C D

FIGURE 3

Summary of the GBM model using multinomial mycotoxin outcome. Top 10 influential input features and their relative influence over the model in 
prediction of (A), AFL and (B), FUM multinomial variables. Blue hue represents levels of relative influence of the input variables, light blue high and 
dark blue low influence level (AFL model had 19 of 22 features with non-zero influence; FUM model had 26 of 33 non-zero influence model). 
Multinomial deviance of (C), AFL and (D), FUM. Green line is testing set, black line training set and blue dotted vertical line is the number of 
iterations used (AFL, 288 iterations; FUM, 467 iterations). AFL model used interaction depth of 1, shrinkage of 0.01 and 3 c.v. folds and fumonisin 
depth of 1, shrinkage of 0.01 and 10 c.v. folds. FUM model used interaction depth of 1, shrinkage of 0.01 and 10 c.v. folds and fumonisin depth of 1, 
shrinkage of 0.01 and 10 c.v. folds.
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TABU derived networks (Figure 5). There were nine arcs present 
in HC-derived BN that were not present or had different 
directionality in TABU-derived BN (veg_index_02 to veg_
index_01; veg_index_03 to veg_index_01; veg_index_03 to veg_
index_02; veg_index_05 to veg_index_02; veg_index_04 to veg_
index_03; TAVG_4 to veg_index_04; PRCP_2 to PRCP_9; 
PRCP_9 to PRCP_1 and TAVG_2 to TAVG_9) and six arc in 
TABU-derived BN compared to HC-derived BN (veg_index_03 
to veg_index_04; veg_index_02 to veg_index_03; veg_index_01 
to veg_index_02; veg_index_04 to TAVG_4; PRCP_1 to PCRP_9 
and veg_index_01 to veg_index_03; Figure 5). HC, TABU derived 
BNs and weighted BNs, showed the same parent node for the 
fum_modular node, veg_index_05, and PRCP_2 (Figures 5). The 
bic score showed slightly lower value for TABU-BN (−24060.1) 

compared to HC (−24091.2.7) and the log-likelihood loss values 
were almost identical when using TABU algorithm (26.03) 
compared to HC algorithm (25.97). The overall accuracy of the 
TABU-BN model for FUM was 94% (Table 2). Due to the bic and 
log-likelihood values FUM TABU-BN would be better than FUM 
HC-BN at prediction of FUM levels.

Model validation

To validate the model’s predictive capacity, we selected the 
GBM models generated for AFL and FUM because their overall 
accuracy and capacity to predict high levels of contamination was 
higher than FUM-BN models. Validation was done by using 
mycotoxin data from 2021, this data included 95 counties and a 
total of 371 observations. High levels of AFL contamination in 
2021 were extremely rare, among the 371 observations only one 
had high levels of aflatoxin (0.3% incidence rate) and the rest were 
low levels of contamination. Number of observations of FUM 
contamination levels were 9 high (2%), 362 low (98%). The GBM 
models successfully predicted low contamination levels of AFL 
with an accuracy of 99% (Supplementary Table 3). The model was 
not able to correctly predict the single observation with high level 

A B

FIGURE 4

Weighted BN of AFL created by using (A), hill-climbing (HC) and (B), TABU algorithms. In the networks highlighted in red is the AFL node and in 
bold are significant interaction, thickness of the arrow represents strength of the interaction.

TABLE 3 Confusion matrix of multinomial outcome class for FUM-
GBM analysis to validate reference (testing data set) actual data for 
toxin levels and the predicted results using the model.

Reference

High Low

Prediction High 4 4

Low 20 349
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FIGURE 5

Weighted BN of FUM created by using (A), hill-climbing (HC) and (B), TABU algorithms. (C) Weighted network from HC evaluated using arc 
strength >0.3. (D) Weighted network from TABU evaluated using arc strength >0.3. The HC network was considered the baseline to which the 
other networks were compared, and the arrows are considered true positives, false positive arcs (which are missing or have different directions in 
the true network) are in red; false negative arcs are in blue and drawn using a dashed line.

of AFL contamination. For FUM-GBM, the model was able to 
successfully predict 1 out of 9 high contamination events, and 359 
out of 362 low contamination events (Supplementary Table 3). The 
overall accuracy of FUM-GBM was 97% with a specificity of 99% 
and a balanced accuracy for high levels of 55%.

Discussion

AFL and FUM contamination in USA corn has been a 
pervasive issue that leads to high economical loss in the agriculture 

sector (Vardon et al., 2003; Wu, 2006; Mitchell et al., 2016). In this 
USA-case study, we developed predictive models for AFL and 
FUM contamination by using historical mycotoxin data of corn 
contaminated with mycotoxins from the state of Illinois. This 
research represents the first single-State case study to develop 
predictive AFL and FUM models using machine learning 
algorithms in a major corn growing state in the USA. The 
predictive models developed herein showed greater than 90% 
overall accuracy. Furthermore, due to the nature of the GBM and 
BN models, it was possible for us to determine the input variables 
that significantly influence the models, this is a feature that other 
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“black-box” type of ML models are unable to do, such as neural 
networks or support vector machine. Our input features analysis 
indicated that meteorological events prior to corn planting in the 
field strongly influence predictions of AFL and FUM 
contamination levels at harvest time. These type of early-year 
events detected by the models can directly assist farmers and 
stakeholders to make informed decisions on implementing 
interventions that prevent corn mycotoxin contamination in 
the field.

Another unique feature in our models is that we  used 
meteorological data including satellite acquired data to perform 
feature engineering, thus allowing us to combine mechanistic 
mathematical functions for AFL production (Battilani et  al., 
2013), Aspergillus growth and machine learning modeling 
approaches such as GBM (Friedman, 2001) and BN (Cooper, 
1990). Similar type of weather associated input features and other 
machine learning approaches to predict mycotoxin contamination 
of corn have been used in Europe for AFL and FUM (Leggieri 
et  al., 2021a; Wang et  al., 2022), but to our knowledge, these 
approaches have not been used for prediction of mycotoxins in 
USA corn. Satellite generated data bases have been previously 
used in wheat studies in Europe and lead to higher model accuracy 
(Wang et al., 2022). Vegetative index derived from satellite data 
showed significant influence in the GBM models for both AFL 
and FUM (Figure 6; Supplementary Table 1) and in the BN model 
for FUM (Figures 5, 6). Additionally, our predictive models, which 
utilized 14 years of mycotoxin and meteorological data, represent 
one of the largest USA-based historical data sets used for modeling 
of AFL and FUM. A previous publication by Kerry et al. (2021) 
also used a large data set, however, it focused solely on AFL (Kerry 
et al., 2021).

The AFL and FUM-GBM models showed adequate overall 
accuracy and class specific accuracy. The measured class-specific 
accuracy levels were excellent when taking into consideration that, 
in the 14 year historical data, the data sets for AFL and FUM had 
3 and 6% distribution of high contamination levels, respectively, 
thus the specificity of both models can be  considered high 
(Supplementary Table  2). The observed overall and specific 
accuracy levels are at par when compared to other mycotoxin 
non-USA models that showed ranges from 90 to 99% general 
accuracy for wheat-models in Europe (Wang et al., 2022), 75% 
general accuracy for corn using AFLA-maize models in Italy 
(Battilani et al., 2013) and > 75% general accuracy using machine 
learning models for toxin prediction in corn in northern Italy 
(Leggieri et al., 2021a). A distinction comparing our models with 
these European published models, is that in our models we used 
high, medium, and low contamination levels for AFL and high/
low for FUM, following the USA FDA5 regulations, which differ 
from the European standards. GBM was ideal to determine end of 
the year predictions that included all the input features used for 
training the model; while BN could update the probability 

5 https://www.fda.gov/food/natural-toxins-food/mycotoxins

distributions in the network without having to include in the test 
data set all the input features used in training the model. This 
indicated that BN allows predictions at any time point of the year 
while GBM only works at the end of the harvesting season (end 
of October).

In AFL and FUM-GBM models, latitude showed high 
influence on the contamination levels at the end of the year 
(Supplementary Table 1). Although, historically, AFL and FUM 
contamination levels exceeding 20 ppb and 5 ppm, respectively, 
have been relatively rare events (4 and 6%) in Illinois, those that 
have occurred have been in the southern part of the State (lower 
latitudes; Supplementary Figure 2). The historic data set revealed 
that the occurrence of corn FUM contamination levels exceeding 
5 ppm were only found at latitudes below 41.5 
(Supplementary Figure 2). Similarly, for AFL, 42° latitude is an 
apparent cut-off for 20 ppb (Supplementary Figure  2). Higher 
levels of FUM in relation to lower latitudes has been reported 
before from FUM levels measured in 17 locations in Illinois in 
1990 (Shelby et  al., 1994). Furthermore, forecasting models 
developed for Europe under different climate change scenarios 
have shown that, below 45° North latitude, aflatoxin risk 
production is higher than zero and in warmer temperature 
scenarios that geographical area expands further north (Battilani 
et al., 2016). We suggest that these latitude correlations with toxin 
levels are key historical factors to predict contamination toxin risk 
in the future because in Illinois topography, 40° latitude marks a 
geographical difference in the State that leads to differences in 
weather from cold to mixed-humid (Köppen, 2011; Beck et al., 
2018). These latitude ranges are known to lead to meteorological 
differences which profoundly affected any prediction of mycotoxin 
contamination (Supplementary Figure  2) and could lead to 
optimal conditions for the fungi to produce more mycotoxins 
compared to higher latitudes if no major preventive measures are 
taken to mitigate crop risk.

BN analyses determined that weather and ARI for March are 
key determinants of AFL contamination levels at the end of the 
growth season. A study done with mycotoxin contamination in 
Serbia, created BN models for AFL and FUM using data from 
2012 to 2016, found that early flowering time is a parent node of 
Aflatoxin contamination and later time periods of cob 
development is a parent node of fumonisin contamination (Liu 
et  al., 2021). ARI during the months of early flowering time 
showed significant influence in our GBM models but not on our 
BN models. A key difference between our model and the Serbian 
model is that the time periods are different. We used February to 
October in monthly intervals, while the Serbian model used 
beginning of flowering time to harvest in eight sub-periods 
intervals (Liu et al., 2021). The overall accuracy for all our models 
was 94% (Table 2), and the GBM models showed higher class 
specific accuracy for FUM, meaning that GBM is recommended 
for AFL and FUM predictions. Model validation, using 2021 data 
and GBM models, showed higher overall accuracy levels 
compared to the predictions using the testing data sets 
(Supplementary Table 3), possibly due to the high specificity of the 
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models to predict low levels of contamination. In 2021 there was 
low incidence of high levels of AFL (0.3%) and FUM 
contamination (2%). In the 14-year historic data set 4% (AFL) and 
6% (FUM) of data points showed high levels of contamination. 
The differences in the percentages of high levels of contamination 
in the data sets makes prediction of this contamination class 
challenging. FUM-GBM was able to correctly predict one out of 
nine high contamination events, meaning that it performed better 
than AFL-GBM possibly due to the percentage of incidence 
differences in high contamination levels between AFL and FUM 
in 2021.

When comparing GBM and BN accuracies, we concluded that 
GBM performed better in determining AFL contamination at the 
end of the growing season. Due to the correlation levels among 
variables (Supplementary Figure 2), it is possible that GBM can 
deal better with these confounding factors. For both the 
AFL-GBM and FUM-GBM models, input features linked to 
March had high influence on the model, strongly suggesting that 
these two mycotoxins and their associated fungi might 
be influenced by weather parameters early in the year. Due to the 
influence that specific input features have on the models and the 
historical data distribution (Supplementary Figure  2), 
we concluded that prediction of high AFL contamination levels 
was linked to high ARI and high vegetative index in March. 
Correspondingly, prediction of high levels of FUM contamination 
were linked to high precipitation in February/March/September 
and high vegetative index in March and June 
(Supplementary Figure 2). It remains to be evaluated if differences 
between the diverse fungi Aspergillus (AFL producer) and 

Fusarium (FUM producer; Samapundo et al., 2005; Medina et al., 
2017) in relation to growth, development and toxin production 
associated to environmental factors in the field are some of the 
underlying biological factors that leads to the differences in 
features influencing the GBM and BN models. There are 
agronomic practices that take place between corn growing seasons 
such as tilling and drilling that influence the levels of mycotoxin 
contamination (Borràs-Vallverdú et  al., 2022). These factors 
associated with agronomic practices were not considered in our 
models, nevertheless, our models were able to determine that 
input features linked to between corn growing seasons have 
significant influence on the end of year mycotoxin 
contamination levels.

Previous models have shown that warmer weather early in the 
planting season (Early spring) leads to higher mycotoxin 
contamination levels in the USA (Yu et al., 2022). Our results 
indicate that weather between corn growing seasons significantly 
influence the contamination levels at the end of the year by leading 
to higher ARI. We theorize that the first months of the year can 
serve as “spring-growing-incubators” for the fungi. If 
environmental conditions (weather conditions or other 
agricultural practices) during the spring favor fungal growth 
(Borràs-Vallverdú et al., 2022), corn contamination levels at the 
end of the year will likely be  high. Development of pest 
management strategies that take into consideration warmer and 
wetter spring seasons will be  key to lower mycotoxin 
contamination in corn. In addition to climate, there are differences 
between Aspergillus and Fusarium in growth, development and 
toxin production associated to environmental factors in the field 

A

B

FIGURE 6

Summary of model analyses performed to predict fumonisin and AFL in Illinois. (A) Top 10 weather features for GBM using growth per month for 
AFL and (B), BN using growth per months for AFL. Blue shade with rain cloud depicts average monthly precipitation, red shade with thermometer 
depicts average temperature, yellow shade with fungal head depicts average monthly fungal growth. Plus-sign indicates latitude was a significant 
feature in the model. Average phenology of cropping in Illinois is depicted as no-corn in the field (no color), planting time (light green), vegetative 
growth (dark green), harvest time (salmon) taken from Usual Planting and Harvesting Dates Agricultural Statistics Board from USDA National 
Agriculture Statistic Services (https://www.nass.usda.gov/).
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that lead to differences in implementing mechanistic-models to 
machine learning models aiming to predict AFL (Leggieri et al., 
2021a; Wang et al., 2022) and/or FUM (Liu et al., 2021; Wang 
et al., 2022) contamination.

We also hypothesize that the meteorological, satellite-acquired 
features and environmental conditions linked to engineered features 
(derived using weather variables and mechanistic model functions) 
at the beginning of the year impacted fungal growth in soil residue 
or detritus of corn fields, resulting in significant contamination risk. 
Less granularity in weather parameters such as daily instead of 
monthly averages will help to increase model class specific accuracy 
and sensitivity, potentially leading to develop weekly predictive 
models. Further field experiments will be conducted to test the 
effects of weather over fungal growth in non-corn organic materials 
such as no-till fields. Advance prediction of weather ahead of the 
growing season for the corn growing areas will also assist us to 
determine any effects on corn production and the possibility of 
mycotoxin contamination. In conclusion, we have demonstrated 
from this study that it is possible to develop a predictive model for 
both AFL and FUM contamination based on monthly weather, 
satellite data and feature engineering with a high degree of accuracy 
– 94%. Model validation showed that the GBM models are highly 
specific and accurate to predict low contamination levels of AFL 
and FUM. Prediction accuracy for high levels of contamination is 
linked to overall incidence. We will, in future work continue to 
finetune these models using additional parameters such as daily 
weather and relative humidity data among other variables. In 
addition, we will be extending the modeling application to forecast 
contamination of corn with AFL/FUM in other corn growing states 
of the USA.
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