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β-Lactams are a broad class of antimicrobial agents with a high safety 

profile, making them the most widely used class in clinical, agricultural, and 

veterinary setups. The widespread use of β-lactams has induced the extensive 

spread of β-lactamase hydrolyzing enzymes known as β-lactamases (BLs). 

To neutralize the effect of β-lactamases, newer generations of β-lactams 

have been developed, which ultimately led to the evolution of a highly 

diverse family of BLs. Based on sequence homology, BLs are categorized 

into four classes: A–D in Ambler’s classification system. Further, each class is 

subdivided into families. Class B is first divided into subclasses B1–B3, and then 

each subclass is divided into families. The class to which a BL belongs gives 

a lot of insight into its hydrolytic profile. Traditional methods of determining 

the hydrolytic profile of BLs and their classification are time-consuming 

and require resources. Hence we developed a machine-learning-based in 

silico method, named as β-LacFamPred, for the prediction and annotation 

of Ambler’s class, subclass, and 96 families of BLs. During leave-one-out 

cross-validation, except one all β-LacFamPred model HMMs showed 100% 

accuracy. Benchmarking with other BL family prediction methods showed 

β-LacFamPred to be the most accurate. Out of 60 penicillin-binding proteins 

(PBPs) and 57 glyoxalase II proteins, β-LacFamPred correctly predicted 56 

PBPs and none of the glyoxalase II sequences as non-BLs. Proteome-wide 

annotation of BLs by β-LacFamPred showed a very less number of false-

positive predictions in comparison to the recently developed BL class 

prediction tool DeepBL. β-LacFamPred is available both as a web-server 

and standalone tool at http://proteininformatics.org/mkumar/blacfampred 

and GitHub repository https://github.com/mkubiophysics/B-LacFamPred 

respectively.
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Introduction

The rapid emergence of antimicrobial resistance (AMR) in 
bacteria due to the overuse of antibiotics is compromising the 
efficacy of antibiotics globally (Gould and Bal, 2013; Sengupta 
et al., 2013; Golkar et al., 2014; Wright, 2014). Unfortunately, the 
drying up of the new antibiotic development pipelines and the 
rapid spread of antibiotic resistance has become a significant 
global health crisis (Piddock, 2012; Bartlett et al., 2013; Gould and 
Bal, 2013; Gross, 2013; Sengupta et al., 2013; The antibiotic alarm, 
2013; Lushniak, 2014; Michael et al., 2014; Read and Woods, 2014; 
Viswanathan, 2014). Bacteria employ multiple ways to neutralize 
the lethal effect of antibiotics. The most common mechanisms are 
(a) altering the permeability of cell membrane to stop/reduce the 
entry of antibiotics inside the cell, (b) enzymatic breakdown of 
antibiotics, (c) pumping out of drug molecules from the cell, and 
(d) altering the target of antibiotics.

β-lactams are the most commonly prescribed drug for 
treatment of Gram-negative bacterial infection. The resistance 
against β-lactam antibiotics is due to development of a highly 
diverse group of enzymes, collectively called β-lactamases (BLs), 
that hydrolyze the amide bond of a β-Lactam ring to make it 
ineffective (Abraham and Chain, 1940/1988; Petrosino et al., 1998; 
McKeegan et  al., 2002; Zervosen et  al., 2012). BLs is a highly 
diverged super-family of enzymes both in terms of sequence and 
functional diversity (Singh et al., 2009). Over the years, several 
classification systems have been developed to classify BLs. 
However, the most popular schemes are (i) Ambler’s classification 
scheme, which was based on the amino acid sequence similarity, 
and (ii) Bush, Jacoby, and Medeiros classification scheme, which 
was based on substrate and inhibitor profiles (Ambler, 1980; Bush 
et  al., 1995; Mack et  al., 2020). Ambler’s classification scheme 
categorized BLs into four classes: A–D. Class A, C, and D are also 
known as serine BLs because they have an active-site serine to 
catalyze the hydrolysis. Class B BLs is known as Metallo 
β-lactamases (MBLs) since they use zinc ions (Zn2+) for their 
activity (Galleni et al., 2001). MBLs are distinct from the serine BL 
in sequence, structure fold, and catalytic mechanism (Bush, 1998) 
and they are further divided into three subclasses, B1–B3, based on 
their active site geometry and overall homology (Walsh et al., 2005).

The Bush, Jacoby, and Medeiros classification scheme 
attempted to correlate the phenotype of clinical isolates with 
substrate and inhibitor profiles. It classified BLs into three major 
groups: Group 1 BLs (class C BLs) is cephalosporinases that are 
not well inhibited by clavulanic acid; Group 2 (classes A and D) is 
the largest group of BLs. It includes penicillinases, 
cephalosporinases, and broad spectrum BLs generally inhibited 
by active site-directed BL inhibitors; Group  3 are MBLs that 
hydrolyze penicillins, cephalosporins, and carbapenems but are 
poorly inhibited by a majority of beta-lactam containing 
molecules (Petrosino et al., 1998; Zervosen et al., 2012). Based on 
the differences among the enzymes, each group is further divided 
into several subgroups and families (Petrosino et  al., 1998). 
Diversity in the amino acid sequences of different BL families also 

affects the clinical outcome. The family of BL ultimately decides 
whether the prescribed β-lactam antibiotics would be able to kill 
the drug-resistant pathogen infection or not.

Several screening tests have been developed to identify the 
family of BLs at both gene and whole genome levels (Livermore 
et al., 2001; Sharma et al., 2004). However, these methods are 
resource and time-consuming. An alternative approach for rapid 
annotation of BLs family is to use computational methods 
(Moradigaravand et al., 2018), which can quickly identify BLs 
genes/proteins and classify them into the family. The most popular 
computational approach is using BLAST search against either 
general-purpose molecular biology databases such as NCBI NR/
NT or UniProtKB/SwissProt or BL-specific databases such as 
BLDB (Naas et  al., 2017), BLAD (Danishuddin et  al., 2013), 
LacED (Thai et al., 2009), ARDB (Liu and Pop, 2009), CARD 
(McArthur et al., 2013; Jia et al., 2017), and CBMAR (Srivastava 
et al., 2014b). Other approaches to predict, classify, and annotate 
BLs and/or its families are by prediction of family-specific motifs 
or patterns using LactFP (Srivastava et al., 2014a) or by using 
machine learning-based algorithms such as Bayes (Nath and 
Karthikeyan, 2017), support vector machine (SVM) (Kumar et al., 
2015; Srivastava et al., 2018), convolutional neural network (CNN) 
(White et al., 2017) VGGNet architecture and TensorFlow deep 
learning (Wang et al., 2021). Machine learning-based algorithms 
present an opportunity for increasing the sensitivity of 
classification over alignment and thus have been previously used 
with high-throughput sequence data to characterize the resistome. 
For example, AMRFinderPlus (Feldgarden et al., 2021) and Meta-
MARC (Lakin et al., 2019) used Hidden Markov Models (HMMs) 
to classify AMR-related protein/gene sequences from high-
throughput sequence data and sequence reads. The existing 
methods and databases, both specific for BLs and general purpose, 
have made significant contributions in annotation of different 
variants of BLs. However, most prediction methods except LactFP 
were restricted only to the prediction up to class level [e.g., βLact-
Pred (Ashraf et  al., 2021), CNN-BLPred (White et  al., 2017), 
PredLactamase (Kumar et al., 2015)], or subclass [e.g., BlaPred 
(Srivastava et al., 2018)]. LactFP predicts the class, sub-class, and 
family of a BL protein on the basis of presence of a family-specific 
motif called fingerprint in the primary amino acid sequence. 
However, there are a few limitations of LactFP. The most critical 
limitation of LactFP was that it was developed using a dataset 
compiled in 2014. Over time information about new family 
members and many mutations in different families has been 
accumulated in the databases. Hence LactFP might not be capable 
of predicting all BL families correctly. This indicates that a tool 
capable of predicting more BL families is the need of the hour.

To address the above-mentioned limitations, we  present 
β-LacFamPred, a machine learning based classifier that can 
annotate BLs up to the family level. β-LacFamPred can be used on 
both genomic and proteomic data. To develop β-LacFamPred, the 
data were initially extracted from two BL databases namely, 
CBMAR and BLDB. Afterward, new sequences were added to 
each family from UniProtKB and NCBI NR. Using these 
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sequences we constructed 96 HMMs, each specific for one family 
of BL. The consistency of prediction of each HMM was evaluated 
using leave-one-out approach. We benchmarked the effectiveness 
of β-LacFamPred on an independent dataset vis-a-vis LactFP and 
observed very high performance (≥98% precision & recall 
and  ≥  99% accuracy). We  also developed a user-friendly 
web-server of β-LacFamPred that is available at http://
proteininformatics.org/mkumar/blacfampred. The working 
schema of β-LacFamPred is shown in Figure 1.

Materials and methods

Training and benchmarking independent 
dataset

The family-wise sequences of BLs were obtained from our 
earlier developed database, Comprehensive β-Lactamase 
Molecular Annotation Resource (CBMAR) and BLDB. The 
number of protein sequences in each family was also augmented 
from CARD, UniProtKB, and NCBI NR databases. Sequences of 
each family were manually curated using literature and UniProtKB 
annotations. We also removed the fragmented sequences from 
each family. BL families with less than five sequences or single 
sequences were also removed from further studies. If multiple 
copies of identical sequences were present in a family, then all 
except one sequence were removed. Finally, we  found 96 BL 
families consisting of full-length sequences only. The number of 
sequences at each stage of data compilation is shown in Table 1.

We used the reference bla gene sequences obtained from Lee 
et al. (2015) for benchmarking. These BL sequences were used to 

develop molecular probes for PCR-based methods to detect bla 
genes in various pathogenic isolates (Lee et al., 2015). The total 
number of bla gene sequences were 1,342, belonging to all four 
Ambler’s classes, A–D, and 29 families of BLs.

Construction of the β-LacFamPred 
HMMs

Sequences of each BL family were multiply aligned using the 
Muscle 3.8 program (Edgar, 2004) at default parameters. Using the 
hmmbuild function of the HMMER tool (version 3.1) (Finn et al., 
2011), we build HMM of each BL family.

Cross-validation and performance 
metrics

To test the efficiency of each HMM in discriminating between 
the family and non-family members, we used the leave-one-out 
cross-validation (LOOCV) approach. During LOOCV, HMM was 
built using all but one family sequence for each BL family. Hence the 
total number of HMMs built for a family during LOOCV was equal 
to the number of BL sequences in that family. The performance of 
each model was evaluated against a dataset containing (a) excluded 
sequence of a particular family for which HMM was being evaluated 
and (b) sequences using which remaining 95 HMMs were built. The 
search efficiency of each HMM was determined based on the best 
hit, i.e., search results having a minimum e-value. If the best search 
result was the left-out sequence of the same family, the search result 
was categorized as True Positive (TP). If the best search result 

FIGURE 1

Prediction schema of β-LacFamPred tool.
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belonged to a different BL family, the search result was categorized 
as False Positive (FP). The performance of methods was assessed 
using the standard evaluation metrics namely, precision, recall, 
accuracy, and F-measure. These performance metrics have also been 
frequently used in several prediction and classification studies 
(Pandey et  al., 2020). For example, during prediction for a BL 
protein that belongs to a hypothetical β-lactamase family ‘X’, if it is 
predicted to belong to the same class ‘X’, the prediction was 
categorized as TP prediction; if it were predicted to class non-‘X’, it 
would be an FN prediction.

Similarly, if a non-‘X’ is predicted as non-‘X’ and ‘X’, it is an 
example of TN and FP predictions, respectively. TP, TN, FP, and 
FN represent true positives, true negatives, false positives, and 
false negatives, respectively. The expressions used to calculate the 
above-mentioned parameters were:
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The precision of each HMM was determined as the ratio of the 
number of proteins whose family was correctly predicted to the 
total number of proteins, which were predicted as a member of that 
BL family (Eq. 1). A precision value of 1.0 of an HMM indicates the 
correct prediction of all family proteins. Recall of an HMM was the 
ratio of proteins whose family was correctly predicted to the 
number of proteins in that BL family (Eq. 2). The recall value of 1.0 
indicates that all proteins of that family were correctly predicted. 
The overall percentage of correctly predicted examples is calculated 

through accuracy (Eq. 3). To balance the precision and recall values 
due to unequal composition of family (positive) and non-family 
(negative) sequences during evaluation, F-measure was used, 
which is the harmonic mean of precision and recall (Powers, 2020).

Functional annotation

All 96 BL HMMs were annotated using (a) ARG databases, 
namely DeepARG – ARGminer (Arango-Argoty et  al., 2018), 
CARD, ARDB, (b) UniProtKB, and (c) published research papers. 
The annotation details mentioned with each HMM are resistance 
mechanisms, class, and name of antibiotic against which the 
family confers the resistance, family, class, subclass, and 
phenotypic information as per Jacoby and Bush classification 
scheme. Each HMM was also tagged with the information of their 
action in terms of their spectrum, namely broad spectrum, 
extended spectrum, and narrow spectrum 
(Supplementary Table S1). β-LacFamPred webserver is freely 
available at http://proteininformatics.org/mkumar/blacfampred.

Comparative evaluation

We compared the performance of β-LacFamPred with well-
known ARG annotation methods: AMRFinderPlus, RGI-CARD, 
ResFinder, and Meta-MARC. We have also included LactFP as it 
assigns the family of a BL sequence based on the presence of a 
conserved motif. The comparative evaluation was done on the 
independent test dataset consisting of 1,342 BL protein/gene 
sequences that belong to 29 BL families.

Results and discussion

Description of data and β-LacFamPred 
models

The class-wise distribution of BL families in CBMAR was as 
follows: Class A = 64, Class B = 36, Class C = 14, and Class D = 2. In 
BLDB, the number of Class A–D families, which were not present 

TABLE 1 Statistics of BL families retrieved from CBMAR and BLDB databases.

Class Sub-class Total families Families with one 
sequence

Families with <5 
sequences

Families with ≥5 
sequences

A – 64# + 13* = 77 17# 0 47# + 13* = 60

B B1 20# + 35* = 55 11# + 31* = 42 3* 9# + 1* = 10

B2 3# + 3* = 6 2# + 2* = 4 1* 1#

B3 13# + 42* = 55 9# + 38* = 47 1# + 3* = 4 3# + 1* = 4

C – 14# + 9* = 23 4# 0 10# + 9* = 19

D – 2# + 18* =20 18* 0 2#

Total 236 132 8 96

#: CBMAR, *: BLDB.
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in CBMAR, was 13, 80, 9, and 18, respectively (Table 1). The total 
number of BL families with which we started the work was as 
follows: Class A = 77, Class B = 116, Class C = 23, and Class D = 20. 
After removing families that had less than five sequences we were 
left with 96 families, of which 60, 15, 19, and 2 belonged to classes 
A–D, respectively. The subfamily-wise distribution of class B 
families were 10, 1 and 4 in subclass B1–B3, respectively. In the 
final dataset, the total number of BL families obtained from 
CBMAR and BLDB was 72 and 24, respectively, with at least five 
sequences. We  did pairwise multiple sequence alignment of 
sequences of each BL family and converted the alignment 
HMM. The current version contained 96 BL HMMs.

Cross-validation of β-LacFamPred 
models

The consistency in search efficiency of all 96 HMMs was 
evaluated using the leave-one-out cross-validation (LOOCV) 
approach. We  calculated the true positive and false positive 
prediction rate of each BL HMM of β-LacFamPred models. A 
detailed description of the LOOCV method was described in the 
materials and methods section under the sub-heading cross-
validation and performance metrics. During LOOCV, all 96 
HMMs gave 100% accuracy. In summary, the cross-validation 
(LOOCV) showed that all 96 HMMs could predict the family of 
BL with very high consistency and efficiency. The complete set of 
96 HMMs capable of predicting 96 families of BLs is called 
β-LacFamPred henceforth.

Performance evaluation on independent 
datasets

In class A BL, except for one protein of family TEM, all were 
correctly predicted to their actual family and achieved 100% 
accuracy and 100% precision, recall, and F-measure in all cases of 
class A (Table 2). The wrongly predicted class A bla gene originally 
belonged to TEM, but our method wrongly predicted it as a 
CTXM family member. In the case of TEM, we  have found 
accuracy was 99 and 99.38% precision, recall, and F1 score. 
During performance evaluation on the independent dataset 
we got the hits of CTX-M family against KLUA, KLUY, KLUC, 
TOHO and CTX-M. To find the reason behind this we did a 
profile HMM-HMM comparison using (hhalign module of 
HMMER) using the KLUA, KLUY, KLUC, TOHO and CTX-M, 
which showed they are highly similar to each other. To further 
check the evolutionary relationship among them, we  also 
constructed a phylogenetic tree using profile HMMs that showed 
that CTX-M and KLUC shared the same branch but KLUA and 
TOHO did not belong to the same branch. We also saw KLUY 
forming a separate branch, which was shown in 
Supplementary Figure S1. Due to this we added these sequences 
to a separate family. In addition to this, we have also noticed that 

several databases mention these families as separate. We have 
marked the ‘CTX-M like families’ in front of KLUY, KLUA, KLUC 
and TOHO families.

In the case of class B BLs, all sequences were correctly 
predicted to their respective family; hence the number of false 
predictions was zero, and accuracy was also found to be 100%. In 
the case of class C BLs in eight of nine families, no false prediction 
was observed. The accuracy found in all eight cases was 100%. 
However, in one family, namely CMY/MOX/FOX/AmpC, there 
were 39 sequences, out of which 36 were correctly predicted as 
members of CMY/MOX/FOX/AmpC.

In contrast, three sequences were wrongly predicted to belong 
to family AQU, and the accuracy we achieved, in that case, was 
99% and 92.30 precision, recall, and F1 score. In the case of class 
D BLs, out of 210 sequences, 209 BL sequences were correctly 
predicted as OXA family members. At the same time, one was 
incorrectly predicted as a member of the IMP family, and in that 
case, also we found 99% accuracy and 99.52 precision, recall, and 
F1 score, respectively (Table 2).

To further assess the capability of β-LacFamPred for identifying 
BL class, subclass, and families, we  performed an additional 
independent evaluation using a Penicillin-Binding Proteins (PBPs) 
dataset. PBPs are membrane-associated proteins involved in the 
biosynthesis of peptidoglycan components of bacterial cell walls. 
PBP and BLs belong to the superfamily of serine penicillin-
recognizing enzymes and have similar conserved protein folds 
(Knox et  al., 1996; Meroueh et  al., 2003). PBP and BLs are 
homologous proteins, but PBP does not provide antibiotic resistance 
against BLs. Also, BLs is considered to have evolved from penicillin-
binding proteins. PBPs were not part of the dataset on which 
β-LacFamPred prediction models were developed. Out of 60 PBP 
sequences, only four were wrongly predicted as BLs. Three 
sequences were predicted as a member of the family AmpC (class 
C) and one sequence to family ARL (class A).

To further confirm the discriminatory capability of 
β-lactamase, and non-β-lactamase, we  created a second 
independent dataset consisting of glyoxalase II, which belongs to 
the metallo-beta-lactamase (MBL) superfamily of proteins. The 
sequences of the glyoxalase II were retrieved from the UniProtKB 
database. We found a total of 57 full-length sequences of glyoxalase 
II. At e-value 1e-15 none of the glyoxalase II sequences were 
predicted as BL. When e-value was increased to 1e-10, 1e-6 and 
0.1 the number gradually increased to 17, 43 and 43, respectively. 
The result was consistent with previous work that had shown the 
requirement of more stringent e-value cutoff to reduce the number 
of false positive predictions (Zankari et al., 2012; McArthur et al., 
2013; Gibson et al., 2015).

Proteome-wide screening of 
β-lactamases

Recently Wang et al. have developed a deep learning based 
method, DeepBL, for predicting and classifying BLs on the 
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basis of their protein sequences (Wang et  al., 2021). To 
characterize the complete repertoire of BLs, they annotated all 
reviewed bacterial protein sequences (334,542 in total) from 
the UniProtKB database. DeepBL identified 2,876 Class-A, 665 
Class-B, 335 Class-C, and 231 Class-D BL protein sequences in 
this dataset. To examine the capability of β-LacFamPred in 
predicting BLs in screening of a proteome-wide high-
throughput data, we  also annotated the 334,542 protein 
sequences, compiled by DeepBL, using β-LacFamPred. 
We found 86 Class-A, 246 Class-B, 67 Class-C, and 29 Class-D 
BL proteins. Further, 86 Class-A BLs were classified into 26 
families. Out of 246 Class-B proteins, 21 were predicted as 
subclass B1, 02 were predicted as subclass B2, and 223 were 
predicted to belong to subclass B3, which were further classified 
into different families as follows: B1 = 5, B2 = 1 and B3 = 3. In 
the case of 67 and 29 proteins, which were predicted to belong 

to class C and D respectively, they were predicted to belong to 
10 and 2 families, respectively (Table 3; Supplementary Table S2). 
Since there was a significant difference in the number of 
proteins predicted as BLs by DeepBL and β-LacFamPred, 
we compared the UniProtKB annotations with predictions of 
BLs by DeepBL. We observed that out of 4,107, and 428 proteins 
predicted as BL by DeepBL and β-LacFamPred, only 199 and 
252 were annotated as BLs by the UniProtKB database (Table 3; 
Supplementary Table S3).

When we  analyzed the prediction results of DeepBL and 
β-LacFamPred about the UniProtKB annotations, we found the 
four situations. A few examples are shown in Table  4 as an 
illustration. Four different situations we  found were (a) both 
DeepBL and β-LacFamPred correctly predicted the nature and 
class of query protein (Sr. No 1–10 of Table  4), (b) DeepBL 
predicted non-BL but β-LacFamPred predicted the query 

TABLE 2 Performance evaluation of β-LacFamPred on an independent dataset.

Ambler’s class Actual gene type Precision (%) Recall (%) F-measure (%) Accuracy

A GES/IBC 100% 100% 100% 1

TEM 99.38% 99.38% 99.38% 0.99

NMC/IMI 100% 100% 100% 1

KPC 100% 100% 100% 1

SHV/LEN/OKP 100% 100% 100% 1

PER 100% 100% 100% 1

SME 100% 100% 100% 1

CTXM/KLUA/KLUY/TOHO 100% 100% 100% 1

B SIM 100% 100% 100% 1

IND 100% 100% 100% 1

IMP 100% 100% 100% 1

NDM 100% 100% 100% 1

VIM 100% 100% 100% 1

BlaB 100% 100% 100% 1

DIM 100% 100% 100% 1

TMB 100% 100% 100% 1

GIM 100% 100% 100% 1

CphA 100% 100% 100% 1

GOB 100% 100% 100% 1

C ACC 100% 100% 100% 1

DHA 100% 100% 100% 1

ACT/MIR 100% 100% 100% 1

PDC 100% 100% 100% 1

ADC 100% 100% 100% 1

LAT 100% 100% 100% 1

SRT/SST 100% 100% 100% 1

CMY/MOX/FOX/AmpC 92.30% 92.30% 92.30% 0.99

EC 100% 100% 100% 1

D OXA 99.52% 99.52% 99.52% 0.99
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sequence as BL and also predicted its corresponding family. The 
UniProtKB annotation also supported β-LacFamPred annotations 
(Sr. No 11–12 of Table  4), (c) DeepBL predicted the query 
sequence as BL, but β-LacFamPred predicted them as 
non-BL. UniProtKB also supported the β-LacFamPred prediction 
(Sr. No 13 of Table 4), and (d) both DeepBL and β-LacFamPred 
predicted the query sequence as non-BL and UniProtKB also 
supported the prediction (Sr. No 14–15 of Table 4). The results 
showed that the number of false positive predictions in 
β-LacFamPred was significantly lower than DeepBL and 
β-LacFamPred can be used to predict and annotate new BLs that 
are not known yet.

Table  4 also showed the advantage of β-LacFamPred 
over DeepBL. Whereas DeepBL can predict only up to 
Ambler’s class of query BL, β-LacFamPred can predict both 
the class and family of query BL and subclass in the case of 
class B BL.

Performance comparison with existing 
methods

Out of 1,342 BL sequences of independent dataset 
AMRFinderPlus, RGI-CARD, ResFinder, Meta-MARC, 
LactFP, and β-LacFamPred correctly predicted 1,026, 1,115, 
1,242, 1,199, 742, and 1,320 BL sequences to their respective 
families Table 5. Family-wise performance of each method is 
shown in Supplementary Tables S4–S10. AMRFinderPlus 
obtained accuracy ranges from 1 to 0.95 in most BL families. 
Only in a few families, namely, SHV/LEN/OKP, GIM, and EC 
no correct prediction was done. In RGI-CARD, we obtained 
accuracy ranges from 1 to 0.92 in different BL families, except 
in the case of GIM and LAT, we found zero accuracy. Among 
all methods, LactFP showed the least performance. In 25 BL 
families, the accuracy range was 100 to 79%. In families GOB, 
PDC, ADC, and EC all proteins were correctly predicted 

TABLE 3 Number of proteins predicted as BL by DeepBL and β-LacFamPred and annotation statistics of UniProtKB therein.

Ambler’s 
class

Number of proteins 
predicted as BL by 

DeepBL/annotated as BL 
by UniProtKB

Number of proteins 
predicted as BL by 

β-LacFamPred/annotated 
as BL by UniProtKB

Number of class B 
predicted as BL 

and their sub-class 
prediction

Number of families in 
which predicted BLs 

were distributed as per 
β-LacFamPred

A 2876/80 86/77 – 26

B 665/91 246/145 21 (B1) 5

2 (B2) 1

223 (B3) 3

C 335/13 67/15 – 10

D 231/15 29/15 – 2

Total 4107/199 428/252 246 47

TABLE 4 Comparative prediction outputs of DeepBL, UniProtKB and β-LacFamPred.

S. No. ID Prediction tools

DeepBL UniProtKB β-LacFamPred

1. Q9EZQ7 Class A Class-A beta lactamase Beta-lactamase AST-1 Class A – AST

2. Q9S424 Class A Class-A beta-lactamase Beta-lactamase SHV-13 Class A – SHV

3. P28585 Class A Class-A beta-lactamase Beta-lactamase CTX-M-1 Class A – CTXM

4. O08498 Class B Class-B beta-lactamase Metallo-beta-lactamase BlaB1 Class B Sub-class B1 BLAB

5. C7C422 Class B Class-B beta-lactamase Metallo-beta-lactamase blaNDM-1 Class B Sub-class B1 NDM

6. P26918 Class B Class-B beta-lactamase Metallo-beta-lactamase Type 2 cphA Class B Sub-class B2 CPHA

7. A0A096ZEC9 Class A Class-B beta-lactamase Metallo-beta-lactamase Type 2 cphA Class B Sub-class B2 CPHA

8. O05465 Class C Class-C beta-lactamase Beta-lactamase ampc Class C – AmpC

9. B3U538 Class D Class-D beta-lactamase Beta-lactamase OXA-133 Class D – OXA

10. Q00983 Class D Class-D beta-lactamase Beta-lactamase LCR-1 Class D – LCR

11. A6V707 Not beta-lactamase Class-B beta-lactamase Metallo-beta-lactamase Class B Sub-class B3 L1

12. O31760 Not beta-lactamase Class-B beta lactamase Metallo-beta-lactamase Class B Sub-class B1 IMP

13. A0A0H2UR93 Class A Glucosyltransferase 3 Gtf3 glucosyltransferase family Non Beta-lactamase

14. B6I4P3 Not beta-lactamase L-rhamnose mutarotase Rhamnose mutarotase family Non Beta-lactamase

15. V6F4W4 Not beta-lactamase Magnetosome protein MamZ Major facilitator superfamily Non beta-lactamase
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(Supplementary Tables S7–S10). In Meta-MARC, accuracy 
ranges from 1 to 0.98 in different BL families, but in several 
cases, zero accuracy was also observed (SIM, DIM, TMB, 
GIM, and EC) (Supplementary Table S4). ResFinder predicted 
28 families in a range of 98–100% accurately except for one 
family (EC) of class C, where it predicted the wrong family of 
all 87 sequences. Compared to other methods, our proposed 
method achieves a very high accuracy (ranges from 1 to 0.99) 
in all 29 families on an independent dataset of 1,342 BL gene 
datasets compared to other existing methods in 
Supplementary Table S6.

Moreover, we were unable to predict the BLs in the gene/
protein independent dataset using the web servers of 
AMRFinderPlus, Meta-MARC, RGI-CARD, ResFinder, and 
LactFP, due to the limitations of their web services (The first 
two methods not available in the form of web servers which 
raises difficulty in handling for non-programmers, the third 
one allows a maximum of 20 Mb limit size of sequences per 
submission for prediction. ResFinder only allows genomic 
sequences as an input for predicting ARGs, not a proteome, 
and LactFP has a web server. However, it only deals with a 
single protein sequence for prediction, while β-LacFamPred 
provides a user-friendly web server and standalone tool for 
protein and gene sequence analysis. The web server of 
β-LacFamPred allows users to analyze 100 gene/protein 
sequences in one go). For proteome/genome/metagenome 
scanning. We also provided a standalone version of our tool for 
predicting families of BLs. The comparison clearly 
demonstrated better capability of BLs class, subclass, and 
family prediction of β-LacFamPred in comparison to other 
ARG annotation tools.

Advantages and limitations of present 
and previously developed BL family 
prediction method

In the past, we  developed a motif-based prediction 
method of BL classification named LactFP. Although LactFP 
and β-LacFamPred are based on BL family datasets, they were 
developed using different approaches. There are also several 

advantages of β-LacFamPred over LactFP. For example, (a) 
LactFP was developed using 71 families, 46 from class A, 15 
from class B (10 from subclass B1, one from subclass B2, four 
from subclass B3), eight from class C, and two from class 
D. On the other hand, β-LacFamPred was developed using 96 
families, 60 from class A, 15 from class B (10 from subclass 
B1, one from subclass B2, four from subclass B3), 19 from 
class C, two from class D. (b) In LactFP fingerprints were 
extracted by using only 605 protein sequences. In contrast, 
β-LacFamPred models were built using >8,000 protein 
sequences. (c) The total 605 protein sequence dataset of 
LactFP contained 325 sequences in class A, 58 sequences in 
subclass B1, 14 sequences in subclass B2, 58 sequences in 
subclass B3, 139 sequences in class C, and 11 sequences in 
class D, while the complete 8,060 protein sequences of 
β-LacFamPred contained 4,404 from class A, 682 from 
subclass B1, 67 from subclass B2, 132 from subclass B3, 2,438 
from class C, 337 from class D. (d) The LactFP web server 
allows users to search the family-specific fingerprint in only 
protein sequences while the β-LacFamPred web server is 
capable of handling both protein/gene sequences or complete 
proteome/genome. Additionally, β-LacFamPred provides 
annotation along with the family information, which is not 
available in LactFP. (e) The family-specific patterns/motifs-
based tool LactFP only identifies short conserved sequence 
patterns. In contrast, the domain-based HMM tool 
β-LacFamPred identifies more extended conserved regions in 
a protein or gene (Table 6).

Description of the β-LacFamPred 
web-server and standalone tool

To provide the β-LacFamPred prediction module to the 
scientific community, we also established a web server that can 
be used to query whether a gene/protein sequence is BL or 
not. If the query sequence is predicted as BL, then its probable 
class/subclass and families, along with other annotation 
details, will also be  provided. The overall schema of the 
prediction methodology of the tool is explained in Figure 1. 
The β-LacFamPred web server can process a maximum of 100 

TABLE 5 Comparison of proposed method β-LacFamPred with existing methods.

Method Type of 
data

TP FP TN FN Precision 
(%)

Recall (%) F-measure 
(%)

Accuracy

β-LacFamPred Protein 

sequences

1,320 22 37,554 22 98.36% 98.36% 98.36% 0.99

RGI-CARD 1,115 227 37,349 227 83.08% 83.08% 83.08% 0.98

AMRFinderPlus 1,026 316 37,260 316 76.45% 76.45% 76.45% 0.99

LactFP 742 600 36,976 600 55.29% 55.29% 55.29% 0.96

β-LacFamPred Gene 

sequences

1,337 5 37,571 5 99.62% 99.62% 99.62% 0.99

Meta-MARC 1,199 143 37,433 143 89.34% 89.34% 89.34% 0.99

ResFinder 1,242 100 37,476 100 92.54% 92.54% 92.54% 0.99
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sequences in one go. A snapshot of the search and prediction 
page of the ‘β-LacFamPred’ webserver is shown in Figure 2. 
The overall workflow depicting the methodology adopted for 

designing the β-LacFamPred tool has been illustrated in 
Figure 3. For high-throughput, whole genome, metagenomic 
and proteome/genome-scale annotation, a standalone version 

A

B

FIGURE 2

Screenshots of web pages of ‘β-LacFamPred’ tool (A) search page (B) prediction result page.

TABLE 6 Advantages and limitations of LactFP and β-LacFamPred.

Feature LactFP β-LacFamPred

Training data source UniProtKB/TrEMBL CBMAR, BLDB, CARD, UniProtKB, NCBI NR/NT

Total dataset 605 8,060

Less than 5 sequence family used Yes No

One sequence family used No No

Similarity tool and threshold used Blast (1e-4) Blast (1e-6)

Total families 71 96

Benchmark data source None Lee et al. (2015)

Data redundancy threshold Not mentioned CD HIT (100%)

Tool used to develop prediction model Meme/Mast HMM

Cross-validation method No Leave-one-out cross validation (LOOCV)

Web server Yes Yes

Input data Only Protein sequences Protein/Gene sequences

Standalone availability No Yes

Advanced search options No Yes

Annotation provides against query No Yes
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would be required, which is provided in the download section 
of the webserver at: http://proteininformatics.org/mkumar/
blacfampred/download.html.

Utility of β-LacFamPred

Recent advancements in sequencing technologies have 
produced a large amount of data that might contain novel 
variants of BLs. As experimental characterization and 
annotation is an expensive and time-consuming exercise 
hence to facilitate rapid annotation of potential BLs, 
we developed an in silico tool named β-LacFamPred. It can 
predict BL and their families using only protein/gene 
sequences. β-LacFamPred can also be  combined with 
traditional surveillance methods and thus can complement 
the traditional BL families’ annotation methods. The 
current version of β-LacFamPred can predict 96 BL 
families. In the near future, we  strive to update the 
β-LacFamPred tool regularly to reflect the latest discoveries of 
BL families. We  hope that β-LacFamPred would help in 
annotation of the novel BLs genes/proteins and help 
in the progress of studies related to BL-based 
antimicrobial resistance.

Conclusion

We reported an in silico tool, β-LacFamPred, for annotation 
and prediction of BLs in classes, subclasses, and families. 
Evaluation and comparison with other methods using 
independent datasets and proteome-wide screening showed 
β-LacFamPred to be a highly efficient tool.
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