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One fold, many functions—M23 
family of peptidoglycan 
hydrolases
Alicja Razew , Jan-Niklas Schwarz , Paweł Mitkowski ,  
Izabela Sabala * and Magdalena Kaus-Drobek *

Laboratory of Protein Engineering, Mossakowski Medical Research Institute, Polish Academy of 
Sciences, Warsaw, Poland

Bacterial cell walls are the guards of cell integrity. They are composed of 

peptidoglycan that provides rigidity to sustain internal turgor and ensures 

isolation from the external environment. In addition, they harbor the enzymatic 

machinery to secure cell wall modulations needed throughout the bacterial 

lifespan. The main players in this process are peptidoglycan hydrolases, a 

large group of enzymes with diverse specificities and different mechanisms 

of action. They are commonly, but not exclusively, found in prokaryotes. 

Although in most cases, these enzymes share the same molecular function, 

namely peptidoglycan hydrolysis, they are leveraged to perform a variety of 

physiological roles. A well-investigated family of peptidoglycan hydrolases is 

M23 peptidases, which display a very conserved fold, but their spectrum of lytic 

action is broad and includes both Gram- positive and Gram- negative bacteria. 

In this review, we  summarize the structural, biochemical, and functional 

studies concerning the M23 family of peptidases based on literature and 

complement this knowledge by performing large-scale analyses of available 

protein sequences. This review has led us to gain new insight into the role of 

surface charge in the activity of this group of enzymes. We present relevant 

conclusions drawn from the analysis of available structures and indicate the 

main structural features that play a crucial role in specificity determination 

and mechanisms of latency. Our work systematizes the knowledge of the M23 

family enzymes in the context of their unique antimicrobial potential against 

drug-resistant pathogens and presents possibilities to modulate and engineer 

their features to develop perfect antibacterial weapons.
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Introduction

Peptidases are found in all living organisms. This large family of enzymes catalyzes the 
hydrolytic disintegration of peptide bonds in proteins or peptides. Their genes are broadly 
disseminated across a tree of life. They account for almost 6% of the total human proteome, 
whereas in bacteria, this proportion is approximately 3% (2.85% of Escherichia coli proteins 

TYPE Review
PUBLISHED 21 October 2022
DOI 10.3389/fmicb.2022.1036964

OPEN ACCESS

EDITED BY

Juan A. Ayala,  
Autonomous University of Madrid, Spain

REVIEWED BY

Daniel Nelson,  
University of Maryland,  
College Park,  
United States
Marcin Grabowicz,  
Emory University,  
United States

*CORRESPONDENCE

Izabela Sabala 
isabala@imdik.pan.pl 
Magdalena Kaus-Drobek 
mdrobek@imdik.pan.pl

SPECIALTY SECTION

This article was submitted to 
Antimicrobials, Resistance and 
Chemotherapy,a section of the journal 
Frontiers in Microbiology

RECEIVED 05 September 2022
ACCEPTED 05 October 2022
PUBLISHED 21 October 2022

CITATION

Razew A, Schwarz J-N, Mitkowski P, 
Sabala I and Kaus-Drobek M (2022) One 
fold, many functions—M23 family of 
peptidoglycan hydrolases.
Front. Microbiol. 13:1036964.
doi: 10.3389/fmicb.2022.1036964

COPYRIGHT

© 2022 Razew, Schwarz, Mitkowski, Sabala 
and Kaus-Drobek. This is an open-access 
article distributed under the terms of the 
Creative Commons Attribution License (CC 
BY). The use, distribution or reproduction in 
other forums is permitted, provided the 
original author(s) and the copyright 
owner(s) are credited and that the original 
publication in this journal is cited, in 
accordance with accepted academic 
practice. No use, distribution or 
reproduction is permitted which does not 
comply with these terms.

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2022.1036964&domain=pdf&date_stamp=2022-10-21
https://www.frontiersin.org/articles/10.3389/fmicb.2022.1036964/full
https://www.frontiersin.org/articles/10.3389/fmicb.2022.1036964/full
https://www.frontiersin.org/articles/10.3389/fmicb.2022.1036964/full
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2022.1036964
mailto:isabala@imdik.pan.pl
mailto:mdrobek@imdik.pan.pl
https://doi.org/10.3389/fmicb.2022.1036964
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Razew et al. 10.3389/fmicb.2022.1036964

Frontiers in Microbiology 02 frontiersin.org

and up to 3.99% of Bacillus cereus; Barrett, 2004; Potempa and 
Pike, 2004). The majority of bacterial peptidases (almost 90%) are 
serine, metallo- and cysteine proteases, whereas aspartic and 
threonine peptidases contribute less than 10% to the total (Page 
and Di Cera, 2008). Bacterial peptidases are leveraged by bacteria 
to fulfil a multitude of biological roles related to cell physiology, 
replication, survival, and virulence.

A large group of bacterial proteolytic enzymes acts as 
peptidoglycan hydrolases (PGHs), which is a diverse group of 
enzymes of different folds and specificities. A common theme 
in their function is their ability to digest peptidoglycan (PG), a 
polymer forming a scaffold of the bacterial cell wall. PGHs 
cleave nearly every bond in PG; generally, multiple enzymes 
target the same PG bond (Firczuk and Bochtler, 2007). PGHs 
are engaged in PG maturation, turnover, and recycling during 
growth and division (Vollmer et al., 2008). Apart from being 
involved in cell wall metabolism, PGHs also act as bacteriocins 
that eliminate bacterial competitors residing in the same 
ecological niche as their bacterial host. Due to their prominent 
lytic activity against bacteria, including antibiotic-resistant 
strains, PGHs are regarded as a promising alternative to 
conventional antimicrobials, therefore, they are much needed 
in the times of rapid spread of drug-resistant bacteria (Terreni 
et al., 2021).

The metallopeptidases are structurally the most diverse group 
of PGHs, therefore, several families have been described based on 
their overall fold (Firczuk and Bochtler, 2007). Among them are 
the LytM-type enzymes that are also classified as the peptidase 
family M23 (MEROPS database; Rawlings et al., 2008). Over the 
years, many M23 peptidases have been characterized structurally, 
biochemically, and functionally (Table  1). Their bactericidal 
potential against pathogenic Staphylococcus aureus has been 
explored, where they reached the stage of clinical trials, including 
a holotype of the M23 family – the lysostaphin. Here, we present 
a current state of knowledge on M23 peptidases with a special 
focus on PG hydrolytic enzymes. In addition to data from previous 
literature, we analyzed a large set of M23 deposits, especially their 
domain architecture and net charge, to complement missing 
information on this common family of PGHs.

The substrate: Peptidoglycan (PG)

PG is a key component of the bacterial cell wall that helps 
maintain cell shape and prevents bacteria from lysis through 
osmotic rupture (Höltje, 1998). In addition to its mechanistic role 
in keeping bacterial rigidity and integrity, the PG layer provides a 
certain degree of flexibility to allow bacteria to move, grow, and 
divide. In Gram-positive bacteria, PG is thick (ca. 30–50 nm) and 
multi-layered with covalently attached cell wall compounds, such 
as wall teichoic- and lipoteichoic acids. In contrast, Gram-negative 
bacteria contain a thin (ca. 1.5–15 nm) and predominantly single 
PG layer located in the periplasm surrounded by an inner and an 
outer LPS-rich membrane (Figure 1, panel A; Vollmer et al., 2008).

The basic building block of PG is a glycan chain made up of 
repeating N-acetylglucosamine (GlcNAc) and N-acetylmuramic 
acid (MurNAc) residues linked by β-1,4 bonds. A short peptide 
chain called stem peptide protrudes from the glycan chain 
(Figure 1, panel B). In most Gram-positive bacteria, stem peptide 
comprises L-Ala-D-iGlu-L-Lys-D-Ala-D-Ala, while in Gram-
negatives the most common amino acid located at the third 
position is Dpm (meso-diaminopimelic acid) that directly links 
D-Ala to an adjacent stem peptide attached to a neighboring 
glycan strand (Figure 1, panel B). Therefore, depending on the 
third position in the stem peptide, the bacterial peptidoglycans 
are classified as L-Lys-type or Dpm-type (Firczuk and Bochtler, 
2007). While the PG composition of Gram-negative bacteria is 
conserved, Gram-positive bacteria display huge diversity in terms 
of PG composition and structure, particularly in their cross-
bridge that links adjacent stem peptides. These differences are 
observed mostly at the species level, but certain variabilities have 
been found among strains or even serovars (Vollmer et al., 2008). 
PG composition also differs depending on the form in which 
bacteria exist in the environment; PG isolated from bacteria 
residing in biofilms is different compared to PG derived from 
planktonic cells (Chang et al., 2018; Anderson et al., 2020). The 
differences include stem peptide composition and other 
modifications that come from the action of PG-modifying 
enzymes, including PGHs, deacetylases, and lytic 
transglycosylases (Anderson et al., 2020).

The enzymes: Peptidoglycan 
hydrolases (PGHs)

There are more than 100 types of PG in bacteria that differ in 
their composition, architecture, length, and thickness (Schleifer 
and Kandler, 1972; Smith et al., 2000). To process such complicated 
structures, bacteria produce diverse PGHs. According to their 
catalytic mechanism, PGHs are grouped into amidases that cleave 
the bond between MurNAc and the first residue (L-Ala) of the 
stem peptide; glycosidases, such as muramidase that hydrolyze the 
β-(1,4)-glycosidic linkage between MurNAc and GlcNAc; and 
glucosaminidases that cleave the link between GlcNAc and 
MurNAc. Peptidases are further subdivided into carboxy- and 
endopeptidases that can cleave off the C-terminal amino acid or 
cut between the amino acids, respectively. Endopeptidases are 
further classified into LD-, DL-, or DD- endopeptidases 
depending on the enantiomers forming a scissile bond (Vermassen 
et al., 2019).

Based on their origin and function, PGHs can be grouped 
into autolysins, exolysins, and endolysins. Autolysins are 
endogenous lytic enzymes that break down the PG components, 
therefore, enabling cell separation following cell division 
(Jaenicke et al., 1987). LytA autolysin is an N-acetylmuramoyl-
L-alanine amidase in Streptococcus pneumoniae. It is located in 
the cell envelope and is involved in a variety of physiological 
functions associated with cell wall growth, metabolism, and PG 
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turnover (Whatmore and Dowson, 1999). Autolysins, AtlAEfm 
from Enterococcus faecium and AtlE from Staphylococcus 
epidermidis, are essential for extracellular DNA release into the 
biofilm matrix, therefore, contributing to biofilm stability and 
attachment to the surface (Qin et  al., 2007; Paganelli et  al., 
2013). Exolysins (known as bacteriocins) represent a group of 
PGHs released by bacteria into the environment to act as 
weapons against other species that reside in the same ecological 
niche (Vermassen et al., 2019). The best-characterized example 
is lysostaphin (Lss), which was originally found in 
Staphylococcus simulans biovar staphylolyticus, where it 
eradicates S. aureus (Schindler and Schuhardt, 1964; Thumm 
and Götz, 1997; Bastos et  al., 2010). Finally, endolysins are 
phage-encoded lysins that accumulate in the cytoplasm of 
phage-infected bacterial cells at the end of the lytic cycle. They 
can cleave peptidoglycan upon release to the cell wall through 
membrane lesions formed by holins. Such lysis enables progeny 
virions to be released (Young et al., 2000). Although autolysins, 
exolysins, and endolysins have different origins, they may have 
similar architecture and share the same specificity towards PG 
(Vermassen et  al., 2019). In this review, they are grouped 
together under the term PGHs.

M23 peptidases

The M23 peptidases are common PGHs, which are 
distinguished based on the conservation of two catalytic motifs: 
H(x)nD and HxH (Rawlings et  al., 2008). The first discovered 
member of this family was beta-lytic protein BLP from Lysobacter 
enzymogenes (formerly Achromobacter lyticus) that lysed other 
bacteria and some soil nematodes (Whitaker, 1965). Due to 
sequence characteristics and broad sequence specificity, BLP was 
classified into the M23A subfamily together with staphylolysin 
(LasA) from Pseudomonas aeruginosa and pseudoalterin from 
Pseudoalteromonas sp. strain CF6-2. M23A members are 
particularly tolerant to sequence alterations at the P1’ position of 
the targeted bond (Figure 2, panel A).

The majority of known bacterial- and phage-encoded M23 
peptidases belonged to M23B subfamily. Primary studies revealed 
that M23B displays a preference towards glycylglycine bond as has 
been demonstrated for Lss, which was originally found in 
Staphylococcus simulans biovar staphylolyticus, where it specifically 
disrupts pentaglycine cross-bridges of PG in the cell wall of 
S. aureus and its clinical and drug-resistant isolates (Schindler and 
Schuhardt, 1964; Thumm and Götz, 1997; Bastos et  al., 2010; 

A

B

FIGURE 1

Bacterial cell wall architecture, peptidoglycan composition, and M23 hydrolytic enzymes dedicated to different bonds in PG structure 
(A) Schematic representation of Gram-positive and Gram-negative bacteria cell wall. (B) Basic building blocks and crosslinking of peptidoglycan 
layer depicted for representative species of Gram-positive (e.g., S. aureus) and Gram-negative (e.g., E. coli) bacteria. M23 peptidases are presented 
as enzymes dedicated to cleaving specific bonds in peptidoglycan structures of both L-Lys-type and Dpm-type peptidoglycan. Glycan chains of 
N-acetylmuramic acid (MurNAc) and N-acetylglucosamine (GlcNAc) are depicted as gray hexagons; integral membrane proteins are colored in 
orange; D- and L-amino acids and Dpm (meso-diaminopimelic acid) characteristic for the stem peptide and cross-bridge are presented as 
colored circles; LPS, lipopolysaccharides; BLP, Braun’s lipoprotein (Vollmer et al., 2008).
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Kokai-Kun, 2012; Jayakumar et al., 2021). Other enzymes that 
target preferentially Gly (P1)-Gly (P1’) bonds are LytM, LytU 
(S. aureus), ALE-1 (S. capitis), SpM23_A, and SpM23_B 
(Staphylococcus pettenkoferi). However, certain M23B peptidases 
display distinct specificity, for instance, D,D-endopeptidases ShyA 
or YebA digest Gram-negative type PG (direct cross-bridge 
between Dpm (P1) and D-Ala (P1’)). In addition, 
D,L-endopeptidases zoocin A or EnpA show specificity toward a 
broader set of PG bonds, e.g., D-Ala (P1)-L-Ala (P1’) and D-Ala 
(P1)-L-Ala/Gly/L-Ser (P1’), respectively (Figure  1, panel B; 
Figure 2, panel A; Akesson et al., 2007; Reste de Roca et al., 2010; 
Singh et al., 2012; Shin et al., 2020).

All M23 enzymes are zinc-dependent metallopeptidases 
(Figure  2, panel B). A catalytic zinc ion is involved in the 
nucleophilic attack on the scissile bond. Certain M23 peptidases 
bind two zinc ions, which diminishes their lytic activity (LytU and 
Lss (Raulinaitis et al., 2017; Tossavainen et al., 2018)). For LytU, 
this mechanism was proposed to play a regulatory role over the 

enzyme activity that limits its activity to certain pH conditions 
(Raulinaitis et al., 2017). Several studies aiming at exchanging the 
zinc for other divalent ions (Co(II), Mn(II), and Cu(II)) proved 
successful, although with different outcomes depending on the 
enzyme. For instance, catalytic zinc exchange to Co(II) decreased 
the lytic activity of LytM and Lss by 20%, but increased the activity 
of LytU by 800% (Firczuk et al., 2005; Raulinaitis et al., 2017; 
Tossavainen et al., 2018).

Sequence features

The majority of M23 peptidases contain both conserved 
motifs characteristic of the M23 family (Figure  2, panel C). 
However, there is a certain variation in the number of amino acids 
spacing the first catalytic residues, H(x)nD, that is observed not 
only between M23A and M23B subfamilies, but also within M23B 
alone. For example, catalytic residues of LasA (M23A) form a 

A

C

B

FIGURE 2

Characteristic features of M23 peptidases. (A) Phylogenetic analysis represented as a cladogram of M23 peptidases of phage (colored blue) or 
bacterial (colored gray) origin with their specificities. M23A subfamily was indicated against gray background. According to the nomenclature of 
protease substrate specificity defined by Schechter and Berger (Schechter and Berger, 1967), amino acid residues in the peptide substrate 
sequence are consecutively numbered outward from the cleavage sites as P4-P3-P2-P1-P1’-P2’-P3’-P4’ and the scissile bond is located between 
the P1 and P1’ positions (here marked with red triangle). (B) Overall fold of M23 peptidase domain represented by LytM catalytic domain (PDB ID: 
4ZYB). The structure was solved in the presence of the transition state analogue and zinc ion coordinated by conserved motifs: Hx3D and HxH. 
(C) Multiple sequence alignment performed by ClustalX and presented as Gendoc of M23B representative proteins with highly conserved zinc-
binding motifs (depicted in red asterisk on the top of alignment) and secondary structure elements (depicted in violet at the bottom) assigned by 
PROMALS3D program (Larkin et al., 2007; Pei et al., 2008).
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long, H(x)12D motif, whereas gp13 (M23B) displays an H(x)7D 
motif (Xiang et al., 2008; Spencer et al., 2010).

To get insights into variability within M23 peptidase 
sequences, we generated a neighbor-joining tree that reflects the 
relationships of the M23 peptidases defined in the Conserved 
Domains Algorithm (Sievers et al., 2011; Lu et al., 2020; Figure 2, 
panel A). Firstly, the analysis revealed that although M23A 
members cluster together, they do not form a distinct outgroup. 
Instead, they cluster with certain M23B peptidases, two phage 
enzymes (gp13 and 2638A), and enterolysin. Secondly, within the 
M23B subfamily, defined clusters overlap well with the defined 
substrate specificities. For instance, ZooA, NMB0315, Csd3, ShyA, 
YebA, and Pgp3 form a cluster of enzymes that preferentially 
target bonds between D-Ala at the P1 site and D-Ala or Dpm at 
the P1’ site. In addition, all glycyl-glycine endopeptidases cluster 
out. This finding demonstrates that sequence relatedness serves as 
a hallmark for a substrate preference, and discrepancies can 
be  distinguished even within an enzyme family containing 
members with the same catalytic motifs. Lastly, the cladogram 
demonstrates that autolytic LytU and LytM are more distantly 
related than bacteriocins, lysostaphin, ALE-1, and SpM23 
enzymes. Furthermore, the analysis hints that LytU and LytM is 
ancestral for the defined group of bacteriocins, but taking into 
account the relatively small size of this group (Figure 2, panel A), 
observations regarding ancestry should be treated with caution.

Finally, there are M23 family members that do not display a 
complete set of catalytic residues and/or lack zinc, but retain the 
M23 fold. In most cases, these proteins are involved in protein–
protein interactions, which is the case of EnvC and NlpD cell 
division proteins of E. coli (Uehara et al., 2009; Peters et al., 2013). 
It is worth stressing that the sole mammalian M23 member 
described so far, LECT2, displays a degenerative fold that lacks 
catalytic histidine and contains an additional loop protruding 
from the active centre (Zheng et al., 2016). LECT2 is expressed 
predominantly in the liver and acts as a tumor suppressor in 
hepatocellular carcinoma. To summarize, degenerative M23 folds 
present a good example of the gradual impairment in the sequence 
leading to the evolution of new biological functions.

Active site and groove architecture

M23 peptidases have a prominent amount of structural data 
available that provides insights into their catalytic mechanisms 
(Table 1, Figure 3). Here we focus on four PGHs from the M23 
family, namely LytM, Lss, EnpA, and LasA, whose structures 
provide detailed information on the overall fold, active site, and 
loops architectures of M23 peptidases (Firczuk et  al., 2005; 
Spencer et al., 2010; Sabala et al., 2014; Grabowska et al., 2015; 
Małecki et al., 2021).

PGHs of the M23 family comprise a β-sheet core that serves 
as a rigid bottom of a substrate-binding groove. Residues of the 
conserved motifs form an active site with zinc ion in the centre 
and are coordinated by two histidine and one aspartic acid 

residues that comprise the conserved motifs: H(x)nD and 
HxH. The first histidine residue of the HxH motif is not a Zn(II) 
ligand and is proposed to coordinate and activate incoming water 
molecule, which triggers the nucleophilic attack on the scissile 
bond. Another histidine residue that is located in a consensus 
sequence of ca. 30 amino acids before the HxH motif (e.g., 
His260 in LytM, His329 in Lss, His78 in catalytic domain of EnpA 
and His81 in LasA) is also located in the vicinity of the active 
water molecule; therefore, it might participate in its activation. 
Other residues important for the catalysis are Tyr204 in LytM, 
Tyr270 in Lss, and Tyr151 in LasA, which stabilize the oxyanion 
intermediate of the cleavage reaction. For EnpA, the same role was 
proposed for Arg21, which confers additional stabilization of 
other residues, therefore, sustaining proper active site geometry. 
Arginine at the corresponding position is also present in Csd3, 
whereas in gp13, arginine is replaced by a glutamine residue 
(Xiang et al., 2008; An et al., 2015).

In contrast to a very conserved active site, the architecture 
of the entire active groove is determined by variable loops (L1–
L4; Figure 3A). The arrangement of loops influences the shape, 
and therefore, determines the specificity of the particular 
enzyme (Małecki et  al., 2021). Indeed, PGHs from the M23 
family preferentially digest pentaglycine (LytM, LytU, and Lss) 
and display elongated, deep, and narrow grooves (Sabala et al., 
2014; Grabowska et  al., 2015). In contrast, EnpA and LasA, 
display a more open site at the substrate entrance, which enables 
them to accommodate a wider range of substrates, for instance, 
serine (EnpA) or large, aromatic residues (LasA; Figure  3B; 
31, 36).

Isoelectric point

Most bacterial surfaces are negatively charged, whereas 
antimicrobials in general are basic molecules/peptides/enzymes. 
It is reasoned that their net charge serves as a means to alleviate 
the effect of electrostatic repulsion and enable them to approach 
the bacterial cell envelope (Low et  al., 2011). Cationic 
antimicrobial peptides (CAMPs) or daptomycin are examples of 
antimicrobial agents, whose basic charge helps them access their 
cellular target, namely the cell membrane (Jones et  al., 2008; 
Weidenmaier and Peschel, 2008).

This phenomenon has been exploited on PGHs in several 
enzyme engineering studies. By altering the net charge of the 
enzymes, their lytic activity can be improved (Low et al., 2011; 
Díez-Martínez et al., 2015). Furthermore, rather than global, net 
charge alteration contributes to the enhancement of the lytic 
action of PGHs (Shang and Nelson, 2019; Zhao et al., 2020).

Two novel M23 peptidases with different isoelectric points 
(pI) were identified in S. pettenkoferi (Wysocka et al., 2021, 2022). 
One of the enzymes was acidic (theoretical pI = 5.68) and the other 
one was basic (theoretical pI = 10.28). In literature, basic M23 
peptidases have been described, for instance, Lss or LytM with 
pI = 9.10 and 7.99, respectively, along with acidic M23 peptidases, 
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such as gp13 (theoretical pI = 5.31) from bacteriophage phi-29. 
Apart from these few examples, knowledge concerning the net 
charge of M23 peptidases and their role in their activity is limited. 
Therefore, we filled this gap by calculating the theoretical pI of a 
large set of M23B peptidase deposits present in the InterPro 
database. The search was narrowed down to bacterial M23 
peptidases that contain highly conserved zinc-binding sequence 
motifs. InterPro defines the M23 domain from the Hx3D up to the 
HxH motif, therefore, these annotations do not include the loops 
1 and 4 regions that form the enzyme’s active groove (Sabala et al., 
2014). Therefore, we extended the region defined for the analysis 
with 25 amino acids (aa) at each overlapping side of the domain. 
Ultimately, the average size of the M23 peptidase in the analyzed 
set of 90,000 protein sequences was 131 ± 3.3 aa.

The results of the calculation demonstrated that the 
distribution did not follow the normal Gaussian curve (Figure 4). 
In our interpretation, this was the first indication that the net 
charge of the enzymes plays an important regulatory function in 
their performance. The distribution had two maxima: a smaller 
one at a pI of 6–6.99 and a higher one at a pI of 9–9.99. 

We observed that the majority of the M23 domains had a basic pI 
(~65% of all analyzed domains). Interestingly, 35 domains had a 
theoretical pI that was higher than 12. M23 domains with an 
acidic pI comprised ~29% of the probed dataset. None of the 
domains had a pI less than 4. Only ~10% of the deposits were 
found around the neutral pI (7–7.99). In our interpretation, this 
small fraction reflected the fact that the net charge of the M23 
peptidases was altered to omit the physiological pH. A similar 
analysis was done previously for a broad set of cell wall-degrading 
enzymes (CWDEs) collected in the EnzyBase2 database, which 
exhibited a similar pattern with maxima at acidic and basic pI 
ranges, where the latter fraction was a dominant one (Wu et al., 
2012). These two maxima have been found for both M23A and 
M23B subfamilies, and no major differences in pI distribution is 
observed for autolysins and bacteriocins (data not shown). 
Therefore, the net charge distribution in the M23 peptidases that 
we found was consistent with what is defined for PGHs in general. 
However, it should be noted that we calculated only the pI of the 
M23 domains and not the protein as a whole as in the EnzyBase2 
database (Wu et  al., 2012, 2). Identification of maxima of the 

A

B

FIGURE 3

Crystal structures of representative M23 metallopeptidases: LytM (blue; 4ZYB), Lysostaphin (violet; 4QPB), EnpA (magenta; 6SMK), and LasA (green, 
3IT5). The M23 peptidases sequence conservation score was calculated in the ConSurf server and is displayed on LytM surface (PDB ID: 4ZYB; 
Landau et al., 2005). (A) Active sites and loop architectures are represented as cartoons. The active site residues are depicted as bold sticks and 
labelled accordingly. The zinc ion is shown as a yellow sphere. The LytM was crystallized in the presence of tetraglycine phosphinate, and the 
resulting complex served as a model for the substrate-binding mechanism. (B) The top view (upper panel) and site-zoomed view (bottom panel) 
of the corresponding surface represent the M23 structures.
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distribution of net charges in PGHs was in clear contrast to what 
is already known about prokaryotic proteomes. For instance, 
analysis of ca. >4,000 proteins in E. coli revealed a distinct 
Gaussian distribution of pI values (Sear, 2003). It is tempting to 
speculate that the observed two-peak distribution of net charges 
was characteristic of the enzymes involved in PG digestion, which 
necessitates further research.

Domain architecture of PGHs with the 
M23 domain

A common feature of PGHs is their modular architecture that 
combines different catalytic domains (CATs; known also as 
enzymatically active domains, EADs) and cell wall-binding 
domains (CBDs; or cell wall-targeting domains, CWTs; Figure 5). 

FIGURE 4

Calculated isoelectric points of M23B bacterial peptidoglycan hydrolases in comparison to the isoelectric points of cell-wall degrading enzymes 
(CWDEs) gathered in the EnzyBase2 database. Values are presented both in chart bars and lines, the latter serves to illustrate the presence of 
maxima in each dataset.

A B

FIGURE 5

Schematic representation of the most common architectures of bacterial peptidoglycan hydrolases containing the M23 domain (A) and their 
relative abundance in percentage [%] among the peptidase M23 family of proteins in the InterPro database (over 90,000 sequences with at least 
37% amino acid sequence identity of M23 peptidase domain with the lysostaphin M23 domain were included in the analysis).
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In Gram-positive bacteria, the most common CATs are CHAP 
(cysteine, histidine-dependent amidohydrolases/peptidase), 
NlpC-P60 (new lipoprotein C/protein of 60 kDa), glucosaminidases 
and M23 peptidases, whereas, in Gram-negative bacteria – the 
Lyz-like (lysozyme-like) and M23 peptidase domains are important 
(Vermassen et al., 2019; Mitchell et al., 2021).

The development of new domain combinations is an 
important mechanism in protein evolution (Marsh and 
Teichmann, 2010). Often, they contain two catalytic units with 
different specificities towards PG bonds (peptidase, amidase, or 
glycosidase) and the cell wall-binding domain (Vermassen et al., 
2019). Available literature revealed that M23 catalytic domains 
are commonly found in such multi-domain enzymes. For 
instance, mature lysostaphin comprises an N-terminal M23 
domain linked by a short flexible peptide to SH3b (Src Homology 
3 bacterial type)-binding domain. Zoocin A from Streptococcus 
equi subsp. zooepidemicus 4,881 is another example that contains 
the TRD domain (target recognition domain) located 
C-terminally to the M23 catalytic domain (Lai et al., 2002; Sabala 
et al., 2014).

To gain insights into a diversity of M23 peptide architectures, 
we performed database analysis on the same set of M23 peptidase 
deposits as done previously for the pI analysis. InterPro database 
search for M23 peptidases resulted in a list of over 1,000 different 
domain architectures of enzymes containing the M23 peptidase 
domain Figure 5.

Almost 70% of the deposited M23 sequences were annotated 
as a single-domain protein with long N-terminal sequences that 
could be involved in protein secretion and/or activity regulation. 
The second most abundant group was M23 peptidases with LysM 
(lysin motif), a cell wall-binding domain that recognizes GlcNAc 
in peptidoglycan. Multiple LysM sequences in the N- or 
C-terminus or between domains are often observed in PGHs, 
however, only one or two LysM positioned at the N-terminus are 
typical for M23 peptidase-containing hydrolases. They represent 
almost 10% of the total M23 domain architectures. M23 peptidases 
are often found with Csd-3-like domains, particularly with 
domain 2. Csd3 protein (also known as HdpA) is a LytM-like M23 
peptidase from Helicobacter pylori, which is involved in cell shape 
determination. In addition to the C-terminal catalytic domain, 
Csd3 contains two domains, domains 1 and 2. Domain 1 occludes 
the active site of the M23 catalytic domain, thus playing an 
inhibitory role, whereas domain 2 is held against the M23 domain 
by the C-terminal tail region that protrudes from the M23; 
however, the exact role of domain 2 is not known (An et al., 2015). 
OapA (opacity-associated protein A) domain or its N-terminal 
fragments have also been found with M23 and Csd-3-like domain 
2. OapA was first described in Haemophilus influenza as a factor 
that confers colony opacity and pathogen attachment to human 
conjunctival epithelial cells (Prasadarao et al., 1999). The OapA 
domain of the E. coli protein, YtfB, recognizes PG (Burke et al., 
2013), therefore, it can be considered as cell wall-binding domain. 
Some enzymes containing the M23 peptidase harbor the G5 
domain located between the LysM and the M23 domain. G5 

domains are widely distributed in bacteria, especially among 
streptococcal strains and are involved in biofilm formation. It was 
suggested that they could recognize N-acetylglucosamine 
(Bateman et al., 2005), but further studies have contradicted that 
assumption (Paukovich et al., 2019).

Another cell wall-binding domain that co-occurs with the 
M23 peptidases is the SH3b domain. This domain has been 
defined for lysostaphin and early reports revealed that it confers 
its selectivity towards S. aureus pentaglycine cross-bridges 
(Tossavainen et  al., 2018). Further biochemical and structural 
research on SH3b domains revealed their potential to bind PG 
stem-peptides and other CW components, including teichoic 
acids and serum components (Mitkowski et al., 2019; Gonzalez-
Delgado et al., 2020; Shen et al., 2020).

Some enzymes that contain the M23 peptidase domain also 
contain other catalytic domains, but they comprised less than 1% 
of all hits in the database. Among these were enzymes with the 
catalytic Rpf-like domain, amidase domain, M56 peptidase, and 
NlpC/P60. Rpfs represent bacterial cell wall lytic enzymes called 
resuscitation-promoting factors that enable bacteria to exit their 
dormant state and return to active growth. These enzymes share 
structural homology with lysozyme and lytic transglycosylases 
and present muralytic activity (Cohen-Gonsaud et al., 2004, 2005; 
Sexton et al., 2020). Amidases can separate the glycan chain of PG 
from the stem peptide (Herbold and Glaser, 1975). NlpC/P60 
proteins are a well-known class of cell wall hydrolases that 
typically cleave the linkage between D-Glu and Dpm (or Lys) 
within the PG stem peptides (Anantharaman and Aravind, 2003; 
Kim et  al., 2020), whereas the role of M56 peptidase in PG 
cleavage has not been shown. The M56 clan is represented by 
BlaR1 and MecR1 which function as parts of the signal 
transduction systems that trigger bacterial resistance to β-lactam 
antibiotics (López-Pelegrín et al., 2013).

Taken together, enzymes comprising M23 peptidase domains 
display prominent architectural variety. Although the most 
common architecture represents a single catalytic domain, the 
additional catalytic or binding domains often contribute to higher 
activity and even broader specificity (Mao et al., 2013).

Latency mechanisms

Due to the potentially detrimental effect that PG hydrolases 
pose on the cell wall integrity, their action is maintained under 
tight control. One of the means to limit their action takes place at 
the expression level and is often found in PGHs that are involved 
in cell division (Uehara and Bernhardt, 2011). A common 
architectural theme of M23 peptidases is the presence of 
pro-peptides, which have been found in LasA (P. aeruginosa), 
ALE-1 (S. capitis), Lss (S. simulans), LytM (S. aureus), and SpM23 
enzymes (S. pettenkoferi). It is usually the N-terminally located 
region that occupies the substrate space in the active groove. Most 
often, pro-peptides display tandem architecture, comprising 
repeated motifs and low similarity to currently known domains. 
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Some pro-peptides undergo proteolytical digestion (Lss, LasA), 
but this is not always the case (ALE-1, Spm23_A; Sugai et al., 1997; 
Thumm and Götz, 1997; Kessler et al., 1998; Wysocka et al., 2021). 
In addition, LytM was found to be proteolytically activated in vitro 
(Odintsov et al., 2004), but in the proteomic analysis of S. aureus 
cellular extracts, LytM was identified solely in its full-length, latent 
form (Pieper et al., 2006).

Several M23 peptidase structures described so far detail the 
inhibitory mechanisms posed by pro-peptides. In the latent form 
of LytM, the pro-region has a physically protruding active site, and 
its arrangement allows the carbonyl oxygen of the Asn117 side 
chain to reach catalytic Zn(II), thereby substituting for catalytic 
water. This mechanism has been termed the “asparagine switch” 
in connection to the cysteine switch defined for pro-matrix 
metalloproteases (Van Wart and Birkedal-Hansen, 1990).

In the case of the LytM latent form, inhibition is provided by 
the long flexible loop (Figure  6). In contrast, mechanisms of 
latency defined for other M23 family members differ at the level 
of secondary structures involved. The structure of full-length 
ShyB (Vly) in Vibrio cholerae (Ragumani et  al., 2008) 
demonstrated that the active groove of peptidase is occupied by 
the N-terminal helix. Catalytic centre residues of Domain III of 
NMB0315 (Neisseria meningitides) are implicated in multiple 
contacts with the short loop of domain I (Wang et al., 2011). 
Pro-region of Csd3 (also known as HdpA) comprises two 
domains, and the occluding helix of Domain 1 enters the active 
site (An et al., 2015). Helicobacter pylori is associated with various 
gastrointestinal diseases such as gastritis, ulcers and gastric 
cancer. Its colonization of the human gastric mucosa requires 
high motility, which depends on its helical cell shape. Seven cell 
shape-determining genes (csd1, csd2, csd3/hdpA, ccmA, csd4, csd5 
and csd6) have been identified in H. pylori (An et al., 2016). Their 
proteins play key roles in determining the cell shape through 
modifications of the cell-wall peptidoglycan by the alteration of 
cross-linking or by the trimming of peptidoglycan muropeptides. 
Among them, Csd3 is a bifunctional enzyme. Its 
D,D-endopeptidase activity cleaves the D-Ala(4)-mDAP(3) 
peptide bond between cross-linked muramyl tetrapeptides and 

pentapeptides. It is also a D,D-carboxypeptidase that cleaves off 
the terminal D-Ala(5) from the muramyl pentapeptide. The 
crystal structure of this protein has been determined, revealing 
the organization of its three domains in a latent and inactive state. 
The N-terminal domain 1 and the core of domain 2 share the 
same fold despite a very low level of sequence identity, and their 
surface-charge distributions are different. The C-terminal LytM 
domain contains the catalytic site with a zinc ion, like the similar 
domains of other M23 metallopeptidases. Domain 1 occludes the 
active site of the LytM domain. The core of domain 2 is held 
against the LytM domain by the C-terminal tail region that 
protrudes from the LytM domain (Odintsov et al., 2004). Lastly, 
Pgp3 of Campylobacter jejuni can adopt two conformations: open 
and closed. In the latter one, loop L1 from the flexible linker that 
joins its catalytic and binding modules enters the groove and, 
therefore, regulates the catalysis of Pgp3 (Min et al., 2020). To 
summarize, the presence of pro-region is a common feature of 
the M23 peptidases. Although the great variability in its sequence 
and mechanisms of active site blocking indicates that latency 
mechanisms are not exactly conserved across this 
enzymatic family.

Physiological functions of M23 
peptidases

The major fraction of the M23 deposits in our dataset came 
from bacterial species (97% according to the InterPro database), 
which indicates that they are predominantly bacterial proteins 
(Blum et  al., 2021). The remaining M23 peptidase domains 
deposited in this database were distributed among viruses, archaea, 
and eukaryotes. To date, no M23 peptidase has been found in fungi.

There are many examples demonstrating the diversity of 
biological functions of M23 peptidases; they are involved in 
bacterial physiology, including involvement in the processes of cell 
growth, division, or competition for resources (Figure  7). 
Furthermore, some M23 peptidases display degenerative folds that 
remain functional. Detailed examples are listed below.

FIGURE 6

Latency forms of M23 peptidases. Regions that protrude from the active site are indicated in gray. M23 domains were defined accordingly in 
literature (Odintsov et al., 2004; Ragumani et al., 2008; Wang et al., 2011; Min et al., 2020) as depicted in surface representation. Active site metals 
are presented as spheres.
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Growth and division

The cell cytoplasm is surrounded by polymerized PG sacculus, 
whose digestion is a prerequisite for cell expansion, and ultimately, 
cell growth and division. The means for this digestion are enzymes 
that digest PG and are often termed autolysins or simply PGHs 
(Uehara and Bernhardt, 2011). Autolysins are a highly redundant 
group. Therefore, in most cases, not single enzymes, but several 
autolysins are required for bacterial growth and division 
collectively (Heidrich et  al., 2002; Bisicchia et  al., 2007; Singh 
et  al., 2012; Wheeler et  al., 2015). Due to the potentially 
detrimental action of autolysins on cell integrity, their lytic activity 
is tightly controlled temporally and spatially. They have thus been 
termed pacemakers of bacterial growth (Höltje, 1995).

Several M23 peptidases act as PGHs in this process. LytU of 
S. aureus participates in mother-daughter cell separation, which 
was inferred from the presence of a “scar” that marks the previous 
division plane in a mutant lacking the corresponding gene 
(Raulinaitis et al., 2017). Another S. aureus M23 peptidase, LytM, 
was identified in an autolysis defective mutant (Mani et al., 1993), 
which displayed increased roughness of the cell envelope (Mani 
et  al., 1994). Atu4178 of the plant pathogen Agrobacterium 
tumefaciens confers cell elongation and is essential for the polar 
growth of the cell (Figueroa-Cuilan et al., 2021). YebA, together 
with Spr and YdhO (NlpC/P60 peptidase superfamily), are 
redundantly essential for the growth of E. coli. Their absence 

causes the incorporation of the nascent PG fragments to stall, 
triggering bacterial cell lysis (Singh et al., 2012).

Lastly, M23 peptidases that lack catalytic motifs and/or zinc 
are termed degenerate folds. Interestingly, although they exhibit 
function that is different from that of the M23 family enzymes, 
they remain functional and are involved in the growth processes. 
Several studies have shown that degenerate folds act as the protein 
hubs that are involved in many interactions with division 
machinery components and are important at the later stages of cell 
division (Zielińska et al., 2017; Figueroa-Cuilan et al., 2021). For 
instance, EnvC and NlpD activate amidases, which are lytic agents 
involved in cell separation (Uehara et al., 2010). Direct interaction 
between the catalytically inactive groove of EnvC or NlpD and the 
amidase, disrupts the autoinhibitory state of the latter (Uehara 
et al., 2009; Peters et al., 2013). DipM of Caulobacter crescentus, 
which is an orthologue of EnvC and NlpD, was found to be bound 
at the division site; it contributed to the invagination of the outer 
envelope; it also confers a uniform PG thickness, and consequently, 
ensures the correct morphology of the C. crescentus outer 
membrane (Goley et al., 2010; Möll et al., 2010).

Shape determination

Csd3 (HdpA) is the M23 peptidase that is responsible for 
the curved and twisted shape of H. pylori (Bonis et al., 2010). 

FIGURE 7

Multiple biological roles of M23 peptidases. The enzymes are grouped here according to their biological roles: growth and division, shape 
determination, spore maturation, intraspecies competition (bacteriocins), phage lytic cycle, and bacterial virulence. M23 family members that 
display degenerative folds are shown on the gray background. All abbreviations used have been explained in the text.
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Deletion of its gene results in cell branching, whereas its 
overproduction leads to cell rounding. H. pylori Δcsd3 mutant 
has been ineffective in stomach colonization, which 
demonstrates that its cell shape is an important factor 
contributing to the survival of H. pylori in the viscous 
environment of the gastric mucosa. Further research revealed 
that the shape of this pathogen depends on the action of other 
M23 peptidases, namely Csd1 (PGH) and Csd2 (degenerate 
protein), which act as heterodimers (Sycuro et al., 2010; An 
et al., 2016). Once their genes are deleted, cells are less curved 
and twisted, which impairs stomach colonization. Since Csd1 
and Csd2 are conserved across Gram-negative bacteria, they 
may act in similar manners in other species (Sycuro 
et al., 2010).

Spore maturation

Spores are dehydrated structures synthesized by certain 
members of phylum Firmicutes; they are responsible for 
conferring persistence and survival abilities to bacteria under 
unfavorable conditions (Ellar, 1978). They are separated from 
the cells by an altered cell wall termed the cortex. A unique 
feature of the cortex is a low cross-linking level of its PG, 
which is mediated by LytH in Bacillus subtilis. Its gene 
expression is limited to the sporulation phase alone. LytH 
digests the bond within stem peptide, leading to enrichment 
of MurNAc substituted with single L-Ala, which is not a 
suitable substrate for a cross-linking reaction (Horsburgh 
et al., 2003).

Competition for resources (Bacteriocins)

Several M23 peptidases act as the warhead to eliminate 
competitors of their bacterial host, which reside in the same 
ecological niche. The best-studied enzyme with this type of 
function is lysostaphin (Heng et al., 2007). A characteristic feature 
of this group of enzymes is that they leave their producer intact. 
In the case of lysostaphin, this is achieved by a few means, 
including modification of S. simulans PG, making it lysostaphin-
resistant (Thumm and Götz, 1997); the high specificity of this 
enzyme is conferred by its binding domain (Baba and Schneewind, 
1996; Gründling and Schneewind, 2006; Mitkowski et al., 2019). 
Further studies revealed more examples of lysostaphin types, 
namely ALE-1 (Staphylococcus capitis (Sugai et al., 1997)) and 
zoocin A (Streptococcus equi subsp. zooepidemicus 1884 (Gargis 
et al., 2009)) that likely act as bacteriocins as well.

Phage cycle

M23 peptidases are leveraged by bacterial viruses (hereafter: 
phage) to enter bacterial cells (virion-associated lysins). At the late 

stages of their cycle, they also help release their progeny 
(endolysins). For instance, gp13 of B. subtilis phage varphi29 and 
Tal2009 found in Lactococcus lactis prophage region are both located 
at the tip of the phage tail-knob and facilitate the insertion of the 
genetic material of the phage into the bacterial prey by digesting 
the cell wall PG (Kenny et al., 2004; Cohen et al., 2009). The CwlP 
identified in B. subtilis prophage SP-β also acts as a virion 
associated lysin which was inferred from its genetic environment 
(proximity to phage tail as a measure of the protein domain; 
Sudiarta et  al., 2010). The endolytic function was assigned to 
SpAE, a multidomain enzyme-containing M23 peptidase domain, 
identified in staphylococcal phage 2638A. However, deletion of 
the M23 domain revealed that major lytic activity of SpAE lies 
within its amidase, not the peptidase domain (Abaev et al., 2013; 
Proença et al., 2015). Many M23 domain-containing proteins have 
been assigned as endolysins or putative endolysins in PhaLP 
database (Criel et al., 2021) but the real endolytic function of M23 
peptidase has to be confirmed in vitro.

Virulence

Some M23 peptidases are leveraged as virulence factors by 
certain pathogens. For instance, LasA of P. aeruginosa degrades 
protein factors (ExoS, ExoT) that inhibit bacterial entry to the 
epithelial cells (Cowell et  al., 2003), and also stimulates the 
elastolytic activity of LasB, which triggers host tissue damage 
(Fleiszig et  al., 1997; Kessler et  al., 1997). Additionally, LasA 
modulates the host defense system by impacting syndecan-1 
shedding of various host cell types (Park et  al., 2000, 2001). 
Moreover, the deletion of lytM in S. aureus cause impairment of 
its virulence which was observed in the rat endocarditis model 
(Mani et  al., 1994). Further research studies revealed that 
attenuated virulence of S. aureus LytM− is consistent with the 
decreased levels of staphylococcal protein A (SpA; Becker et al., 
2014), which affects the immune evasion potential of this 
pathogen (O’Halloran et al., 2015). It must be noted that LytM, on 
its own, potentiates a strong antibody response, therefore, it can 
be considered to be used as the antigen in the vaccines that protect 
against refractory S. aureus infections (Wang et al., 2021).

Degenerative M23 folds may also contribute to 
pathogenicity. For example, cells of Yersinia pestis that are 
devoid of NlpD were chained, as well as displayed heat 
sensitivity and an inability to disseminate into the mice organs 
(Tidhar et  al., 2009, 2019). Due to the highly attenuated 
phenotype, Y. pestis ΔnlpD was further explored as a promising 
vaccine candidate against plague (Wu et al., 2018).

M23 peptidases as antibacterial 
weapons

The discovery and introduction of penicillin in the 1940s 
revolutionized the medical field and saved millions of human 
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lives. Penicillin initiated the golden age of antibiotics that lasted 
until the beginning of the 1980s (Hutchings et  al., 2019). 
However, it did not take long to identify the first antibiotic-
resistant strains that did not respond to its treatment 
(Antimicrobial Resistance Collaborators, 2022). The misuse and 
overuse of antibiotics in healthcare, animal breeding, and plant 
agriculture, have led to the rapid spread of antimicrobial 
resistance (AMR) and the emergence of multi- and pan-resistant 
variants termed ‘superbugs’. World Health Organization (WHO) 
declared AMR as one of the top 10 global public health threats. 
Therefore, there is an urgent need to develop novel compounds 
that are effective against antibiotic-resistant organisms. PGHs are 
regarded as very promising in that respect. PGHs are deemed to 
be a novel class of antimicrobials: enzybiotics (enzyme-based 
antibiotics; Nelson et al., 2001). Their main advantages are high 
specificity, selectivity, rapid mode of action, and low probability 
of the development of resistance. They are effective against 
biofilms which are of great value in the treatment of chronic and 
refractory infections that are caused by multidrug-resistant 
pathogens (Dams and Briers, 2019).

Lysostaphin – A weapon against 
Staphylococcus aureus

Lss was discovered in the 1960s and gained prominent 
attention from the scientific community early on. It remains 
the best-studied enzybiotic of the M23 family. Early reports 
proposed its use for rapid detection tests (Severance et  al., 
1980), but it was quickly introduced to clinics to treat patients 
suffering from resistance to antibiotic treatment of S. aureus 
infection (Stark et  al., 1974; Kokai-Kun, 2012). Several 
companies exchanged their licenses for patents and optimized 
the large-scale production of this enzyme (Kokai-Kun, 2012). 
Although Lss proved very effective to eradicate S. aureus 
in vivo (Schaffner et al., 1967), the research on Lss has stalled 
for years. Major concerns were related to its immunogenicity 
(Kokai-Kun, 2012), which became pronounced upon repeated 
dosing, leading to an increase in Lss-neutralizing antibodies 
(Schaffner et  al., 1967; Harrison et  al., 1975). Currently, 
several approaches are available to successfully address this 
issue, such as limiting treatment to a single dose, combining 
Lss with polyethylene glycol, or deimmunization of Lss via 
site-directed mutagenesis of its epitopes (Kusuma et al., 2007; 
Zhao et al., 2020). Recently, an Lss variant, F12, was designed, 
which carries 14 aa-long substitutions, leading to diminished 
immunogenic response without a loss of its lytic activity 
against methicillin-resistant S. aureus (MRSA; Zhao et  al., 
2020). Another strategy to conquer the immunogenicity of Lss 
is its immobilization, which limits its uncontrolled diffusion. 
This is particularly useful to treat superficial infections of 
S. aureus, leading to chronic wound development (James et al., 
2008). Upon covalent attachment of Lss to chitosan-cellulose 
nanofibers, the enzyme remained effective, as demonstrated 

by the complete eradication of the S. aureus in the skin 
infection model (Miao et al., 2011).

Although most PGHs display a low propensity for resistance 
development, rapid resistance against Lss was observed under 
laboratory conditions; a single high-dose exposure was enough to 
identify insensitive clones (Zygmunt et al., 1967). The activity of 
Lss is strongly affected by the insertion of a serine residue in the 
staphylococcal cross-bridge, which is commonly found in 
staphylococci (Zygmunt et  al., 1968; Grishin et  al., 2020). 
Resistance to Lss was found in MRSA, where it relied on a different 
mechanism, whereby a single-glycine cross-bridge was formed. 
However, this mutation reduces fitness, virulence, and re-sensitizes 
this pathogen to β-lactams. So far, this phenotype has been 
identified only under laboratory conditions, and no variants of 
this type have been isolated from the environment or clinical 
settings (Grishin et al., 2020). Many studies have concentrated on 
the use of Lss in combination with other antimicrobials, including 
antibiotics, enzybiotics, and antimicrobial peptidases (Polak et al., 
1993; Becker et al., 2008; Desbois and Coote, 2011; Schmelcher 
et al., 2012). Treatment of MRSA with Lss and β-lactams causes 
synergistic or additive effects, depending on the antibiotic type, 
which has proven to be effective both in vitro and in vivo (Polak 
et  al., 1993; Hertlein et  al., 2014). Additionally, this approach 
decreases the probability of the development of resistance to Lss 
(Climo et al., 2001).

Synergistic effects of Lss against MRSA were observed by 
combining it with other enzybiotics, which is likely due to the 
change in PG structure by one of the lytic enzymes, that favors 
the action of another (Becker et al., 2008). Lss was combined with 
engineered phage lysins that target the D-Glu-L-Lys bond in the 
stem peptide, which successfully treated mastitis in a mouse 
model (Schmelcher et al., 2012). Lss also synergizes with cationic 
antimicrobial peptides (CAMPs; Desbois and Coote, 2011), 
which is likely due to the ability of the latter to easily penetrate 
disrupted PG to reach its cellular target (membrane; Wittekind 
and Schuch, 2016). Finally, Lss is effective against S. aureus that 
invades eukaryotic cells, indicating that it can act optimally under 
conditions that are typical of intracellular compartments 
(cytoplasm, phagolysosomes). It can thus be used to effectively 
treat extracellular pathogens by either its fusion with protein 
transduction domains (PTDs) or other lytic domains (Becker 
et al., 2008, 2016). Overall, although several concerns regarding 
the use of Lss have been raised, many issues regarding its safety 
have been already solved. Therefore, owing to its many unique 
and attractive features, even after 60 years of its discovery, Lss 
remains a promising antimicrobial agent to treat refractory 
MRSA infections.

Chimeric enzymes

A common practice regarding the development of new 
enzybiotics is to employ enzyme engineering to optimize their 
action. The modular architecture of PGHs creates a perfect 
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opportunity to generate novel and improved variants that display 
the desired lytic activity or enhanced stability. This has been 
exemplified successfully in several studies that employed domain 
switching strategy or linker improvement (Proença et al., 2015; 
Becker et al., 2016; Eichenseher et al., 2022).

This strategy enhanced the lytic activity of certain 
enzymes containing the M23 peptidase domain. Upon 
truncation of the N-terminal pro-region of full-length LytM, 
its catalytic domain displayed lytic action against S. aureus, 
leading to its commercialization (Auresine®) and use for 
laboratory purposes.

Auresine® was engineered by fusing the catalytic domain of 
the Lss with the SH3b cell wall-binding domain (M23LytM-SH3bLss). 
The resulting chimeric enzyme (AuresinePlus) displayed improved 
lytic activity under physiological conditions, such as high ionic 
strength and pH (Osipovitch and Griswold, 2015; Jagielska et al., 
2016). The same approach was implemented on LytU, which upon 
fusion to SH3bLss, was effective against S. aureus at lower 
concentrations as reflected in a significant decrease in its MIC 
value as compared to the MIC of LytU alone (421 times lower; 
Taheri-Anganeh et al., 2019).

Another chimeric enzyme is Staphefekt SA.100. It contains 
an M23 domain derived from lysostaphin, MurNAc-L-Ala 
amidase (Ami), linked to the SH3b cell wall-binding domain 
from staphylococcal phage endolysin, Ply2638. Furthermore, 
the linker has been improved (deletion of 44 aa between the 
M23 and the Ami domains) and the resulting version, which is 
called XZ.700, displays enhanced antibacterial action against 
S. aureus (MIC value ∼75 nM for XZ.700, whereas 350 nM for 
SA.100; Eichenseher et al., 2022). Staphefekt™ from Micreos, 
is the active compound of Gladskin products and is applied in 
the form of a cream that alleviates the severity of atopic 
dermatitis symptoms. Case studies have revealed that 
Staphefekt™ is effective in controlling, rather than eradicating 
methicillin-resistant S. aureus (MRSA) that causes dermatoses. 
The company has already announced the launch of phase III for 
the treatment of eczema.1

Extensive studies have been carried out on PGHs and their 
engineered versions, which have led four candidates to launch seven 
clinical trials, all of which concern the development of treatments 
against S. aureus infections. Three candidates presented positive 
outcomes, namely P128 (StaphTAME), Lysin CF-301 (Exebacase), 
and Staphefekt™ SA.100; the latter is a chimeric enzyme-containing 
M23 peptidase domain.2 Progress of pre-clinical studies on 
enzybiotics and their results are updated in several databases, such 
as phiBiOTICS (Hojckova et al., 2013), EnzyBase (Wu et al., 2012), 
or BACTIBASE (Hammami et al., 2010).

Computational tools are also useful in terms of the 
development of new enzybiotics. They are being developed to 
identify and classify new peptidoglycan hydrolases based on 

1 https://www.staphefekt.com/

2 clinicaltrials.gov

genomic and metagenomic data (HyPe—A Peptidoglycan 
Hydrolase Prediction Tool; Sharma et al., 2016). The introduction 
of the VersaTile technique, a DNA assembly method for the rapid 
building of combinatorial libraries of engineered lysins, led to the 
construction of approximately 10,000 lysin variants comprising 
four main modules: catalytic domain, cell wall-binding domains, 
linker and outer membrane permeabilizing peptides (OMPs, 
peptides commercialized as Artilysin®; Gerstmans et al., 2016). 
High-throughput screening procedures led to the identification 
of a new variant with high antibacterial activity against 
Acinetobacter baumannii in human serum (Gerstmans et  al., 
2020). Unfortunately, Artilysin-based enzymes often do not show 
activity under physiological conditions, e.g., in the human serum 
(Thandar et al., 2016; Larpin et al., 2018). Recently, another type 
of chimeric enzyme was developed called lysocins by combining 
lysins with bacteriocins, which can provide periplasmic import. 
Lysocins are composed of bacteriocin, pyocin S2 (PyS2), 
responsible for surface receptor binding and outer membrane 
translocation. The GN4 lysin can hydrolase β-1,4 glycosidic bond 
between MurNAc and GlcNAc displaying antipseudomonal 
activity in human serum, which efficiently disrupts biofilms 
(Heselpoth et al., 2019).

Conclusion

M23 peptidases are common prokaryotic PGHs. Over the 
years many studies have exemplified their specificity, mode of 
action, structural features, and physiological functions. Now, this 
knowledge can serve practical purposes, particularly for the 
development of new antimicrobial agents. This beneficial feature 
can be explored in two different ways. Firstly, due to their potent 
bactericidal action, PGHs can directly kill bacteria, including 
drug-resistant variants, and contribute to the eradication of 
refractory infections. Moreover, this knowledge is useful for the 
development of drugs targeting M23 peptidases that are involved 
in the processes essential for bacterial survival, leading to less 
virulent or attenuated phenotypes.

Despite multiple attractive features, the development of 
enzybiotics that can serve as alternatives for antibiotics poses 
multiple challenges. As they act rapidly, there is a risk of 
releasing pathogen-associated molecular patterns (PAMPs), 
such as PG fragments or outer membrane lipopolysaccharide 
(LPS), in high doses, which can potentiate undesirable and 
severe host immune responses (Murray et  al., 2021). Their 
fragile, protein nature makes them difficult and expensive to 
produce and handle. Their stability and, consequently, their 
activity may be  affected by multiple environmental factors 
during production, storage, or administration (e.g., pH, 
temperature, presence of other proteases, and the activity of the 
immune system). To summarize, much more data concerning 
their formulation, administration, safety, pharmacokinetics, 
and pharmacodynamics is needed to assess their potential use 
as novel antimicrobials.
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Collectively, these findings highlight a new perspective in 
research concerning M23 peptidases and indicate that besides the 
prominent amount of data gathered so far, much more remains to 
be explored.
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