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Dichloromethane (DCM; CH2Cl2) is a widespread pollutant with anthropogenic 

and natural sources. Anaerobic DCM-dechlorinating bacteria use the Wood–

Ljungdahl pathway, yet dechlorination reaction mechanisms remain unclear 

and the enzyme(s) responsible for carbon-chlorine bond cleavage have not 

been definitively identified. Of the three bacterial taxa known to carry out 

anaerobic dechlorination of DCM, ‘Candidatus Formimonas warabiya’ strain 

DCMF is the only organism that can also ferment non-chlorinated substrates, 

including quaternary amines (i.e., choline and glycine betaine) and methanol. 

Strain DCMF is present within enrichment culture DFE, which was derived 

from an organochlorine-contaminated aquifer. We  utilized the metabolic 

versatility of strain DCMF to carry out comparative metaproteomics of cultures 

grown with DCM or glycine betaine. This revealed differential abundance 

of numerous proteins, including a methyltransferase gene cluster (the mec 

cassette) that was significantly more abundant during DCM degradation, as 

well as highly conserved amongst anaerobic DCM-degrading bacteria. This 

lends strong support to its involvement in DCM dechlorination. A putative 

glycine betaine methyltransferase was also discovered, adding to the limited 

knowledge about the fate of this widespread osmolyte in anoxic subsurface 

environments. Furthermore, the metagenome of enrichment culture DFE was 

assembled, resulting in five high quality and two low quality draft metagenome-

assembled genomes. Metaproteogenomic analysis did not reveal any genes or 

proteins for utilization of DCM or glycine betaine in the cohabiting bacteria, 

supporting the previously held idea that they persist via necromass utilization.
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Introduction

Dichloromethane (DCM; CH2Cl2) is a widespread compound 
with a range of natural and anthropogenic sources. The latter 
accounts for 70% of the ~900 Gg DCM produced annually, while 
the former consists primarily of oceanic sources and biomass 
burning (Gribble, 2010). As a result of extensive industrial use, 
substantial DCM contamination in the environment continues to 
increase (Shestakova and Sillanpää, 2013; Hossaini et al., 2015; 
Leedham Elvidge et  al., 2015), posing a threat to human and 
environmental health (Agency for Toxic Substances and Disease 
Registry, 2000; Hossaini et al., 2017). The compound is a priority 
pollutant in Europe (European Parliament Council of the 
European Union, 2013), the US (United States Environmental 
Protection Agency, 1977), and China (Ministry of Environmental 
Protection (MEP), 2017). Being denser than water, DCM that 
escapes into groundwater migrates downwards into anoxic zones. 
Despite this, microbial transformation of DCM in anoxic 
environments remains poorly understood, with only three 
organisms known to conserve energy via anaerobic DCM 
metabolism. Dehalobacterium formicoaceticum strain DMC, the 
only one of these in pure culture, ferments DCM to formate and 
acetate (Mägli et al., 1996). ‘Candidatus Dichloromethanomonas 
elyunquensis’ strain RM mineralizes DCM to H2 and CO2 
(Kleindienst et al., 2017; Chen et al., 2020), while ‘Candidatus 
Formimonas warabiya’ strain DCMF ferments DCM to acetate 
(Holland et  al., 2021). All three bacteria are members of the 
Peptococcaceae family and use the Wood–Ljungdahl pathway for 
DCM metabolism in varying ways (Mägli et al., 1998; Chen et al., 
2017; Holland et  al., 2019; Kleindienst et  al., 2019; Holland 
et al., 2021).

Cell suspension assays with D. formicoaceticum suggested that 
DCM dechlorination was corrinoid-dependent (Mägli et  al., 
1996). Recent genomic and proteomic analysis of ‘Ca. 
Dichloromethanomonas elyunquensis’ and D. formicoaceticum 
highlighted a cluster of corrinoid-dependent methyltransferase 
genes thought to be  involved in DCM catabolism – the mec 
cassette – and identified a homologous cassette in the strain 
DCMF genome (Kleindienst et al., 2019; Murdoch et al., 2022). 
Notably, ‘Ca. Dichloromethanomonas elyunquensis’ also encodes 
and expresses reductive dehalogenases in the presence of DCM 
(Kleindienst et al., 2019), which are absent from the other two 
organisms’ genomes (Chen et  al., 2017; Holland et  al., 2019). 
However, ‘Ca. Dichloromethanomonas elyunquensis’ and 
D. formicoaceticum are obligate DCM degraders, and 
demonstrably unable to metabolize any other chlorinated 
methanes (Mägli et al., 1996; Kleindienst et al., 2017). In light of 
this, as well as the difference in end products and previous dual 
carbon-chlorine isotope analyses (Chen et al., 2018), the three 
DCM-degrading bacteria are hypothesized to utilize differing 
dechlorination mechanisms, but these are not yet fully understood.

The strain DCMF genome encodes an abundance of predicted 
corrinoid-dependent methyltransferase genes (Holland et  al., 
2019), including 82  in the MttB superfamily, which contains 

methylamine and quaternary amine methyltransferases, as well as 
many of uncharacterized substrate specificity (Ferguson and 
Krzycki, 1997; Ticak et  al., 2014). Corrinoid-dependent 
methyltransferase systems are typically found in methanogenic 
archaea and homoacetogenic bacteria and are comprised of three 
main components: a methyltransferase I (MTI), methyltransferase 
II (MTII), and cognate corrinoid protein (CoP). MTI transfers a 
methyl group from the substrate onto the CoP, from which MTII 
transfers it to the final receiving compound, typically coenzyme 
M in methanogens or tetrahydrofolate (THF) in acetogenic 
bacteria (reviewed in Ragsdale, 2008). A reductive activator of 
corrinoid-dependent enzymes (RACE) protein may also 
be required to reactivate the corrinoid cofactor (Ragsdale, 2008), 
although this is unlikely to be  required every reaction cycle 
(Drummond et al., 1993; Menon and Ragsdale, 1999). In bacteria, 
these methyltransferases can demethylate chloromethane 
(Vannelli et al., 1999), methanol (van der Meijden et al., 1984), 
quaternary amines (Ticak et al., 2014; Picking et al., 2019; Kountz 
et  al., 2020), and methoxylated aromatic compounds such as 
vanillate (Kaufmann et al., 1997).

Strain DCMF is a methylotrophic acetogen that ferments a 
number of these compounds – methanol, choline (N,N,N-
trimethylethanolamine), and glycine betaine (N,N,N-
trimethylglycine) – as well as DCM (Holland et al., 2021). Glycine 
betaine is a quaternary amine with substantial environmental 
roles, including widespread use as an osmoprotectant across all 
domains of life (Beers, 1967; Larher et al., 1982; Csonka, 1989). 
Strain DCMF is the dominant lineage in enrichment culture DFE, 
although its relative abundance varies from ~7% to 75% 
throughout a single substrate pulse with DCM or glycine betaine 
(Holland et al., 2021). Despite this, previous investigation of the 
strain DCMF genome, growth curve mass balances, and strain 
DCMF-free enrichment cultures have all suggested that it is highly 
unlikely the cohabitant bacteria are involved in primary substrate 
metabolism (Holland et al., 2021). However, it remains unclear 
how they persist in culture DFE. Based on physiological and 
genomic information, strain DCMF demethylates glycine betaine 
in a stepwise manner to N,N-dimethylglycine and then sarcosine 
(N-methylglycine), before being reductively cleaving sarcosine to 
monomethylamine and acetate. Methyltransferases likely catalyze 
methyl group transfer from glycine betaine and dimethylglycine 
onto THF and the resulting methyl-THF enters the Wood–
Ljungdahl pathway resulting in acetate production (Holland et al., 
2019, 2021). While glycine betaine methyltransferases have 
previously been characterized in Desulfitobacterium hafniense 
(Ticak et al., 2014) and Acetobacterium woodii (Lechtenfeld et al., 
2018), there is only a single proteomic study (in Sporomusa ovata 
strain An4) investigating this enzyme (Visser et al., 2016).

Here, we aimed to determine the enzymes involved in DCM 
and glycine betaine metabolism in strain DCMF via comparative 
metaproteomics of enrichment culture DFE. This addressed 
knowledge gaps surrounding the proteins involved in DCM 
dechlorination and glycine betaine fermentation in this organism, 
and more broadly in anoxic subsurface environments. 

https://doi.org/10.3389/fmicb.2022.1035247
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Holland et al. 10.3389/fmicb.2022.1035247

Frontiers in Microbiology 03 frontiersin.org

Methyltransferase systems were implicated in both metabolisms, 
providing gene targets for further study.

Materials and methods

Metagenomic analysis

To assemble the culture DFE metagenome, a previously 
described set of PacBio-sequenced, non-redundant (NR) contigs 
that did not map to the strain DCMF genome (“NR contaminants”; 
Holland et  al., 2019) were assembled using Metaflye v2.7.1 
(Kolmogorov et  al., 2020) with parameters --pacbio-raw 
--genome-size 20 m --meta --plasmids. The assembled contigs 
were frameshift-corrected using DIAMOND v0.9.31 (Buchfink 
et al., 2014) and MEGAN Community Edition v6.19.9 (Huson 
et al., 2016), as previously described (Arumugam et al., 2019).

“NR contaminants” reads, as well as those from previous 
Illumina sequencing efforts of culture DFE (SRA accession 
number SRR5179547; Holland et al., 2019), were mapped to the 
frameshift-corrected contigs using BBMap v38.51 and Bowtie2 
v2.3.5.1, respectively. Taxonomy was assigned to contigs using 
Kaiju v1.7.2. This information was parsed into anvi’o (installed 
from the master Github repository on 1 October 2020; Eren et al., 
2021) for manual binning. CheckM v1.1.3 (Parks et al., 2015) was 
used to assess completeness and contamination of each bin and 
taxonomy was assigned with GTDB-tk v2.0.0 (Chaumeil et al., 
2019) against release R07-RS207. Gene calling was performed 
with Prokka v1.14.5 (Seemann, 2014). Predicted proteins were 
annotated with orthologous groups and KEGG database 
information using EggNOG-mapper v2.0 (database v5.0; Huerta-
Cepas et al., 2019) and with subcellular localization using PSORTb 
v3.0.2 (Yu et al., 2010).

Metabolic pathways in the MAGs were determined via 
BlastKOALA (Kanehisa et al., 2016), dbCAN2 (Zhang et al., 2018) 
predicted Carbohydrate Active enZymes (CAZymes) and 
hydrogenase catalytic subunits were classified using HydDB 
(Søndergaard et al., 2016).

Cultures for metaproteomics

Culture DFE was grown in anaerobic, defined minimal 
mineral salts medium as previously described (Holland et  al., 
2019). The medium was buffered to pH 6.8–7.0 via addition of 
NaHCO3 (2.5 g L-1) and sparging with N2:CO2 (4,1). For 
metaproteomic analysis, 200 ml cultures were amended with 
either DCM (2 mM) or glycine betaine (5 mM; n = 6 for each). 
Cultures were incubated statically at 30°C in the dark. DCM was 
quantified by GC-FID and glycine betaine by LC–MS/MS 
(Holland et al., 2021).

Cells were harvested from cultures when ~80% of the 
substrate was depleted (Supplementary Figure S1). Biomass from 
two culture flasks (i.e., 400 ml total) were combined to produce 

triplicate samples for metaproteomic analysis of each substrate 
condition. Strain DCMF cells were enumerated in cultures via 
quantitative real-time PCR (qPCR) of the strain DCMF 16S rRNA 
gene with primers Dcm775F/Dcm930R, as previously described 
(Holland et  al., 2019). Total bacterial 16S rRNA genes were 
quantified similarly, with primers Eub1048/Eub1194 (Holland 
et al., 2021). Strain DCMF 16S rRNA gene copy numbers were 
converted to cell numbers by dividing by four (the number of 16S 
rRNA gene copies in the strain DMCF genome).

Cultures were centrifuged at 8,000 × g at 4°C for 30 min and 
then resuspended in 120 μl protein extraction buffer (50 mM 
3-(N-morpholino)propanesulfonic acid [pH 7], 4% sodium 
dodecylsulfate, 50 mM NaCl, 100 μM EDTA, 100 μM MgCl2). 
Mixtures were transferred to 2 ml tubes containing 0.06 g glass 
beads (150–212 μm, Sigma, North Ryde, Australia) and a ¼” 
ceramic sphere (MP Bio, Seven Hills, Australia) and bead-beat at 
1,800 rpm for 5 min (PowerLyzer 24 Homogenizer, Qiagen, 
Chandstone Centre, Australia). Tubes were centrifuged at 
16,000 × g for 10 min and the supernatants (i.e., crude protein 
extracts) transferred to fresh, 1.5 ml tubes to repeat 
the centrifugation.

Protein yield was quantified using the Micro BCA Protein 
Assay Kit (Thermo Fisher Scientific, Scoresby, Australia) with 
crude protein extracts diluted 1:250 in MilliQ water. Bovine serum 
albumin was used to create a seven-point standard curve 
(0.5–40 μg ml-1).

Filter-aided sample preparation

Filter-aided sample preparation (FASP) was used to prepare 
the crude protein extracts for peptide identification (Wiśniewski, 
2017). Samples were diluted to a concentration of ~1 μg μl-1 in 
50 mM NH4HCO3. A total of 15.8 μg protein from each sample was 
transferred to a 1.5 ml microfuge tube with 5 mM dithiothreitol and 
incubated at 37°C for 30 min. Samples were loaded onto Amicon 
Ultra-0.5 30 kDa centrifugal filter units (Merck, Bayswater, 
Australia) with 200 μl UA solution (8 M urea in 100 mM Tris–HCl, 
pH 8.5). Filters were centrifuged at 14,000 × g for 15 min before 
another 200 μl UA was added to each and the centrifugation 
repeated. Proteins were alkylated by addition of 100 μl 
iodoacetamide solution (50 mM iodoacetamide in UA) and mixing 
at 600 rpm for 1 min prior to incubating statically in the dark for 
20 min. Filters were centrifuged at 14,000 × g for 10 min. UA 
(100 μl) was added to each filter before centrifuging at 14,000 × g 
for 15 min, twice. Then, 50 mM NH4HCO3 (100 μl) was added to 
each filter before centrifuging at 14,000 × g for 10 min; repeated 
twice more. Proteolytic cleavage into peptides was performed by 
addition of trypsin (1:100 enzyme:protein ratio) in 40 μl NH4HCO3 
and mixing at 600 rpm for 1 min. Filters were incubated in a 37°C 
wet chamber overnight, then transferred to fresh collection tubes 
and centrifuged at 14,000 × g for 10 min. A final 20 μl NH4HCO3 
was added to each filter before centrifuging at 14,000 × g for 10 min; 
this was repeated once more. Eluent was stored at -80°C.
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Peptide lysate analysis via LC–MS/MS

Peptide lysates were separated by nanoLC on an UltiMate™ 
3,000 RSLCnano ultra performance liquid chromatograph and 
autosampler system (Dionex, Scoresby, Australia). Samples (2.5 μl) 
were concentrated and desalted onto a micro C18 precolumn 
(300 μm × 5 mm, Dionex) with water:acetonitrile (98:2, 0.2% TFA) 
at 15 μl min-1. After a 4 min wash the pre-column was switched (10 
port UPLC valve, Valco, Houston, TX) into line with a fritless 
nano column (75 μm × 15 cm) containing C18AQ media (1.9 μ, 
120 Å, Dr. Maisch). Peptide lysates were eluted using a linear 
gradient of water:acetonitrile (98:2, 0.1% formic acid) to 
water:acetonitrile (64:36, 0.1% formic acid) at 200 nl min-1 over 
30 min. High voltage 2000 V was applied to low volume Titanium 
union (Valco) and the tip positioned ~0.5 cm from the heated 
capillary (T = 275°C) of an Orbitrap Fusion Lumos (Thermo 
Electron, Scoresby, Australia) mass spectrometer. Positive ions 
were generated by electrospray and the Fusion Lumos operated in 
data dependent acquisition mode. A survey scan m/z 350 – 1,750 
was acquired (resolution = 120,000 at m/z 200, with an 
accumulation target value of 400,000 ions) and lockmass enabled 
(m/z 445.12003). Data-dependent tandem MS analysis was 
performed using a top-speed approach (cycle time of 2 s). MS/MS 
spectra were acquired by HCD (normalized collision energy = 30) 
fragmentation and the ion-trap was selected as the mass analyser. 
The intensity threshold for fragmentation was set to 25,000. A 
dynamic exclusion of 20 s was applied with a mass tolerance 
of 10 ppm.

Metaproteomic data analysis

Mass spectra files were searched against a custom database of 
all predicted proteins in the DFE metagenome using MaxQuant 
v1.6.17.0 (Cox et al., 2014). Enzyme specificity was trypsin/P with 
a maximum of two missed cleavages. Fixed (carbamidomethylation 
of cysteine) and variable (oxidation of methionine and N terminal 
acetylation) modifications were selected. Minimum peptide length 
was seven amino acids and maximum peptide mass 4,600 Da. The 
mass tolerance was set to 4.5 ppm for the MS and 0.5 Da for the 
MS/MS. ‘LFQ’ and ‘Match between runs’ were selected. The PSM 
and protein False Discovery Rate (FDR) were both 0.01. The mass 
spectrometry and proteomics data have been deposited to the 
ProteomeXchange Consortium via the PRIDE partner repository 
(Perez-Riverol et al., 2019) with the dataset identifier PXD037334.

Statistical analysis of the MaxQuant output was performed 
in Perseus v1.6.13.0 (Tyanova et al., 2016). Proteins identified 
by site, reverse sequences, only one unique peptide, and 
potential contaminants were removed. Proteins were filtered 
to retain only those present in all three replicates of at least 
one substrate condition. Label free quantitative (LFQ) 
intensities were log2 transformed and missing values were 
imputed from a Gaussian distribution (down shift 1.8, width 
0.3, relative to the standard deviation of each column). 

Triplicate-averaged values were Z-score transformed within 
each column to determine protein abundance relative to 
overall expression with each substrate. Only proteins in the 
‘Majority Protein ID’ column were considered present, i.e., 
those where all proteins listed in a group had at least half the 
peptides that the leading protein had. Where >1 proteins were 
included in the ‘Majority Protein ID’ group, they were included 
for analysis and are listed separately, but marked as 
‘Ambiguous’ and treated with appropriate caution in 
interpreting any results. Triplicate LFQ values were directly 
compared via multiple t-tests to create a volcano plot (S0 = 0.1, 
250 randomizations, substrate grouping not preserved in 
randomizations). Proteins were considered differentially 
abundant if they had a FDR < 0.01.

Results and discussion

Genome-based metagenomics of culture 
DFE

To investigate the persistence of cohabiting bacteria in 
culture DFE and provide a taxa-specific platform for 
metaproteomic analysis, metagenomic assembly of a set of 
previously described (Holland et  al., 2019) non-redundant, 
non-strain DCMF PacBio sequencing reads (“NR Contaminants”) 
was carried out. Sequencing details were previously reported 
(Holland et al., 2019) but assembly of this subset of reads was not 
previously attempted. A total 195,364 long reads (732,500,489 bp) 
assembled into 330 contigs (total size 13,752,672 bp; 
Supplementary Table S1). Reads were deposited in the NCBI SRA 
(SRX9412577).

Manual binning with anvi’o resulted in 10 bins 
(Supplementary Figure S2). Based on their completeness, 
contamination, and the presence of 16S rRNA genes, these 
comprise five high quality and two low quality draft metagenome-
assembled genomes (MAGs; Supplementary Table S2), and three 
undetermined bins (“UNK-1/2/3”). Taxonomic assignment of the 
MAGs revealed unclassified lineages of Bacteroidales (henceforth 
referred to as “DFE-LEN”), Ignavibacteria (“DFE-IGN”), 
Cupidesulfovibrio (“DFE-NIT”; a recently proposed novel genus 
based on Desulfovibrio oxamicus and Desulfovibrio termitidis 
(Wan et al., 2021)), Synergistales (“DFE-SYN”), and Rectinema 
(“DFE-TRE1”; Table  1). Taxonomic assignment was not 
performed for bins below 50% completeness (“DFE-BAC” and 
“DFE-TRE2”). High-quality MAGs were deposited in NCBI 
(GenBank accessions in Supplementary Table S2).

Annotation of the bins resulted in 1,590 coding sequences 
(CDS) in the smallest and least complete MAG (DFE-BAC) and 
3,545 CDS in the largest (DFE-LEN; Table  1, full annotation 
available in Supplementary Table S3). DFE-IGN was omitted from 
further analysis as it was lost from the culture through 
subcultivation in the 3 years (~10 transfers) between PacBio 
sequencing and metaproteomic analysis.
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The metaproteome of culture DFE

Label-free quantitative metaproteomic analysis of DFE 
cultures grown with DCM or glycine betaine identified 1,713 
proteins across the two substrate conditions 
(Supplementary Table S4). The IMG annotation of the strain 
DCMF genome was used throughout (JGI genome ID 
2718217647). While only those proteins present in all three 
replicates of at least one substrate conditions (i.e., DCM or glycine 
betaine) were included, missing values were imputed for all 
reported analyses (see Methods). Most proteins (81%) were from 
strain DCMF (1,384), followed by DFE-SYN (134), DFE-LEN 
(60), DFE-NIT (43), DFE-TRE2 (42), DFE-TRE1 (41), DFE-BAC 
(3), and UNK-1/2/3 (5). There were 409 significantly differentially 

abundant strain DCMF proteins (FDR 0.01; Figure  1; 
Supplementary Table S5). While the relative abundance of 
bacterial community members may have some bearing on the 
direct comparison of protein abundance between DCM- and 
glycine betaine-amended cultures, it is unlikely to play a large role 
in the data presented here for two reasons. Firstly, there was no 
significant difference in strain DCMF abundance between DCM 
vs. glycine betaine-amended cultures (either before or after 
duplicate culture samples were combined), as quantified by qPCR 
of the DCMF 16S rRNA gene (p > 0.05, two-tailed unpaired 
homoscedastic t-test; Supplementary Table S6). Secondly, 
we  previously found no significant difference in the Shannon 
Diversity Index between culture DFE microcosms amended with 
different substrates (Kruskal–Wallis value of p 0.0976; Holland 
et  al., 2021). Strain DCMF represented at least 73% relative 

TABLE 1 Overview of the MAGs assembled from the DFE culture metagenome.

Bin Taxonomya Size (bp) GC Content 
(%)

CDS Coverage 
depthb

Completeness 
(%)c

Contamination 
(%)c

DFE-BAC Not included as genome 

completeness is <50%.

1,611,616 49.93 1,590 9 29.19 0.25

DFE-IGN d__Bacteria;p__

Bacteroidota;c__

Ignavibacteria; o__SJA-

28;f__B-AR;g__CAIKZJ01; 

s__CAIKZJ01 sp015657505

3,237,034 43.07 2,738 40 94.81 1.93

DFE-LEN d__Bacteria;p__

Bacteroidota;c__Bacteroidia; 

o__Bacteroidales;f__

UBA4417;g__UBA4417; s__

UBA4417 sp015657475

4,408,406 44.01 3,545 23 95.43 2.69

DFE-NIT d__Bacteria;p__

Desulfobacterota_I; c__

Desulfovibrionia;o__

Desulfovibrionales; f__

Desulfovibrionaceae;g__

Cupidesulfovibrio; s__

Cupidesulfovibrio 

sp000226255

3,820,024 67.18 3,142 16 86.41 3.13

DFE-SYN d__Bacteria;p__

Synergistota;c__Synergistia; 

o__Synergistales;f__79-

D21;g__79-D21; s__79-D21 

sp015657435

2,678,986 59.45 2,510 34 94.58 0.15

DFE-TRE1 d__Bacteria;p__

Spirochaetota;c__Spirochaetia; 

o__Treponematales;f__

UBA8932;g__Rectinema; 

s__Rectinema sp015657395

3,034,080 55.30 2,802 10 91.95 0

DFE-TRE2 Not included as genome 

completeness is <50%.

1,908,291 55.91 1,786 21 43 3.45

aDetermined by GTDB-Tk v2.0.0 release R07-RS207.
bBased on the PacBio reads only.
cDetermined by CheckM.
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abundance in the community when the metaproteomic samples 
were harvested (Supplementary Table S6).

The unique ability of strain DCMF to grow on substrates 
other than DCM allowed, for the first time, a statistical 
comparison of protein abundance in cells fermenting DCM vs. 
cells fermenting an alternative substrate (glycine betaine), 
where previous studies only examined fed vs. starvation 
conditions (Kleindienst et  al., 2019; Murdoch et  al., 2022). 
DCM- and glycine betaine-amended cultures were compared to 
determine the log2-fold change (LFC) of each protein. Proteins 
of interest were identified as those with particularly high/low 
LFC, as well as searches for homologs to proteins previously 
reported to be involved in DCM and glycine betaine metabolism 
in the literature (i.e., the mec cassette, glycine betaine 
methyltransferases, and glycine/betaine/sarcosine reductases).

Proteins that were highly abundant under both substrate 
conditions were also analyzed. Within strain DCMF, this 
included proteins for the Wood–Ljungdahl pathway, conversion 
of acetyl-CoA to acetate, and six of eight subunits for an FOF1-
type ATP synthase (Figure 2; Supplementary Table S4, labeled 

in the Pathway/Function column as “Wood–Ljungdahl 
Pathway” and “Energy conservation,” respectively). From the 
complete Rnf complex and NADH:ubiquinone reductase 
(complex I) encoded in the genome (Holland et al., 2019), three 
subunits from the former (RnfBCG, Ga0180325_113065, 
Ga0180325_113068, Ga0180325_113070) and 10 subunits from 
the latter (NuoBCDEFGHIJM, Ga0180325_115678-80, 
Ga0180325_11791-92, Ga0180325_11330, Ga0180325_115681-
83, Ga0180325_115686) were found in the proteome 
(Supplementary Table S4, “Energy conservation”). Two proteins 
for a putative K+ or Na+-stimulated pyrophosphate-energized 
sodium pump (Ga0180325_113285, Ga0180325_113311) were 
also highly abundant with all substrates 
(Supplementary Table S4, “Energy conservation”). 
Cumulatively, this suggests that strain DCMF generates energy 
through a chemiosmotic mechanism as well as substrate level 
phosphorylation (i.e., fermentation). Furthermore, proteins for 
a flagellum and chemotaxis indicated that strain DCMF is 
motile and responds to environmental cues 
(Supplementary Table S4, “Flagellum” and “Chemotaxis”).

FIGURE 1

Volcano plot of strain DCMF protein expression with DCM and glycine betaine. Log2-fold change (LFC) in abundance is shown as the difference 
between DCM and glycine betaine label-free quantitative intensity. A false discovery rate of 0.01 was the significance boundary, indicated by two 
lines on the graph. Proteins in the DCM-associated mec cassette are labeled as red triangles, those from the complete glycine betaine 
methyltransferase gene cluster by dark blue squares, those in the incomplete glycine betaine and/or dimethylglycine methyltransferase gene 
cluster by purple squares, and those from the sarcosine reductase gene cluster by light blue diamonds. IMG gene loci (prefaced by ‘Ga018035_’) 
are indicated for these proteins of interest. A full list of all significantly differentially abundant proteins is included in Supplementary Table S5.
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Putative methyltransferases involved in 
DCM metabolism

The strain DCMF genome encodes an abundance of 
corrinoid-dependent methyltransferase gene components, i.e., 
MTI, MTII and CoPs (Holland et al., 2019). Many of these were 
identified in the proteome and had significantly differential 
abundance between DCM- and glycine betaine-amended cultures. 
For example, in DCM-grown cells, a protein in the 
monomethylamine methyltransferase mtmB superfamily (i.e., a 
likely MTII) had the highest LFC (Ga0180325_111810, +11.87; 

Figure 1; Supplementary Table S5). The mec cassette, which was 
recently suggested to be  involved in anaerobic DCM 
dechlorination (Murdoch et  al., 2022), also stood out as 
significantly more abundant, with an average LFC of 5.34 
(Figure  2; Table  2). This eight-gene cassette includes several 
corrinoid-dependent methyltransferase components, a 
two-component regulatory system and a cation exchange protein 
(Table 2). Importantly for the function of these methyltransferases 
(and despite the presence of 50 μg L-1 cyanocobalamin in the 
culture medium) strain DCMF encodes a complete corrinoid 
biosynthesis pathway (Holland et al., 2019) and 14 of these 25 
proteins were detected in the proteome (Supplementary Table S4, 
“Corrinoid biosynthesis”).

The significant abundance of proteins in the mec cassette in 
DCM-amended strain DCMF cells provides experimental 
evidence supporting the hypothesis that these proteins are 
responsible for anaerobic dechlorination of DCM (Murdoch et al., 
2022). Functional annotation of the proteins also supported 
previously suggested roles, that were based on expression of the 
mec cassette in D. formicoaceticum and ‘Ca. 
Dichloromethanomonas elyunquensis’ (Murdoch et al., 2022). 
Transcription of the cluster may be regulated directly in response 
to DCM, as the sensor histidine kinase (Ga0180325_111237, 
MecA) in the two-component transcriptional regulatory system 
harbors a PocR domain (Supplementary Table S7), which can bind 
DCM or other small hydrocarbons (Anantharaman and Aravind, 
2005). Protein Ga0180325_111233 (MecE), classed as an MtaA/
CmuA family methyltransferase (Supplementary Table S7), is the 
most likely candidate for the initial dechlorination of DCM. The 
MtaA/CmuA family contains methanol and chloromethane MTI 
proteins (van der Meijden et  al., 1984; Vannelli et  al., 1999). 
Chloromethane dechlorination is a methyltransfer reaction 
catalyzed by two subunits in aerobic methylotrophs: a fused 
MTI-CoP (CmuA) and an MTII (CmuB; Vannelli et al., 1998, 
1999; Studer et al., 1999). A similar system is thought to operate 
in the anaerobe Acetobacterium dehalogenans (Meßmer et  al., 
1996; Wohlfarth and Diekert, 1997) and it is therefore feasible that 
MecE could act on DCM under anoxic conditions. The MtaA/
CmuA protein family sits within the uroporphyrinogen 
decarboxylase (URO-D) superfamily, and two other proteins in 
the same gene cluster were also classified within this superfamily 
(Ga0180325_111231, MecI, and Ga0180325_111235, MecC; 
Supplementary Table S7). However, their role here remains 
unclear and as such, participation in DCM dechlorination cannot 
be  excluded. We  further hypothesize that protein 
Ga0180325_111232 (MecF) acts as an MTII, given that it can 
likely bind THF via a pterin-binding site (Supplementary Table S7) 
and may therefore catalyze the formation of 5,10-methylene-THF 
from DCM or a dechlorinated intermediate. Finally, protein 
Ga0180325_111236 (MecB) encodes a B12-binding site 
(Supplementary Table S7) and could thus act as the CoP for the 
proposed methyltransferase.

Full mec cassette homologs are encoded in DCM-fermenting 
bacteria D. formicoaceticum (CEQ75_RS03275–30) and ‘Ca. 

FIGURE 2

Heatmap of relative protein abundance for genes/pathways of 
interest in DCM and glycine betaine-amended strain DCMF cells. 
Proteins for the Wood–Ljungdahl pathway and a FOF1-type 
ATPase were highly abundant under both growth conditions, 
while proteins in the DCM-associated mec cassette were 
significantly more abundant in DCM-grown cells, and proteins in 
a putative glycine betaine methyltransferase gene cluster and a 
sarcosine reductase gene cluster were significantly more 
abundant in glycine betaine-grown cells. Rows are labeled with 
gene symbols and the strain DCMF IMG gene loci (each prefaced 
with “Ga0180325_”).
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Dichloromethanomonas elyunquensis’ (AWM53_02086–85 and 
AWM53_01378-83), as well as the non-DCM-fermenting 
bacterium Dehalobacter restrictus strain UNSWDHB, which 
respires trichloromethane. Partial cassettes are also found in 
D. restrictus strains CF (which also respires trichloromethane) and 
DCA (which respires 1,2-dichloroethane; Murdoch et al., 2022). 
Within DCM-fermenting bacteria and D. restrictus UNSWDHB, 
the gene cassette is highly conserved in terms of genetic synteny 
and protein sequence (75–94% amino acid identity; Figure 3). 
Outside of the mec cassette homologs, the methyltransferase 

components share <45% amino acid identity to their closest 
characterized homologs (Supplementary Table S8).

Strain DCMF lacks two homologous proteins that are present 
in all other mec cassettes - MecGH (Murdoch et al., 2022). These 
two proteins are likely involved in reactivation of the 
methyltransferase corrinoid cofactor (Ferguson et  al., 2009; 
Schilhabel et al., 2009; Price et al., 2018; Murdoch et al., 2022). It 
is unusual that these genes are absent from the mec cassette in 
strain DCMF, as corrinoid reactivation is integral to the function 
of methyltransferase systems. However, homologs to mecG and 

TABLE 2 List of proteins putatively involved in DCM and glycine betaine metabolism in strain DCMF.

Protein IMG Locus Tag Putative function Length (AA) LFCa -log(p-
value)b

DCM metabolism MecA Ga0180325_111237 Two-component transcriptional 

regulator, histidine kinase

430 5.64 4.96

MecB Ga0180325_111236 Corrinoid protein 201 4.97 2.40

MecC Ga0180325_111235 MTI 343 5.21 4.24

MedD Ga0180325_111234 Two-component transcriptional 

regulator, receiver

272 4.36 4.25

MecE Ga0180325_111233 MTI, CmuA/MtaA family 337 5.2 2.81

MecF Ga0180325_111232 MTII 299 5.81 4.06

MecI Ga0180325_111231 MTI 288 7.35 3.10

MecJ Ga0180325_111230 Cation transporter 398 4.14 2.89

Glycine betaine 

demethylation

MtgC Ga0180325_114734 Corrinoid protein 210 −9.15 5.06

MtgB Ga0180325_114735 Glycine betaine:corrinoid 

methyltransferase (MTI)

485 −8.22 3.74

MtgC Ga0180325_114736 Corrinoid protein 210 −6.18 4.07

MtgB Ga0180325_114737 Glycine betaine: corrinoid 

methyltransferase (MTI)

488 −10.35 3.75

? Ga0180325_114738 Unknown 668 −7.20 3.21

MtgA Ga0180325_114739 Corrinoid:tetrahydrofolate 

methyltransferase (MTII)

265 −1.69 3.95

MtgB Ga0180325_114740 Glycine betaine:corrinoid 

methyltransferase (MTI)

471 −6.68 3.17

OpuD Ga0180325_114741 Betaine/choline/carnitine family 

transporter

540 −5.33 4.66

OpuD Ga0180325_114742 Betaine/choline/carnitine family 

transporter

538 −2.64 4.76

Sarcosine reduction TrxB Ga0180325_114795 Thioredoxin reductase 407 −7.93 3.83

TrxA Ga0180325_114796 Thioredoxin 104 −8.82 5.42

GrdA Ga0180325_114797s98 Glycine/betaine/sarcosine 

reductase complex protein A

147 −4.89 1.78

GrdC Ga0180325_114799 Glycine/betaine/sarcosine 

reductase complex protein C

513 −7.22 3.50

GrdD Ga0180325_114800 Glycine/betaine/sarcosine 

reductase complex protein C

388 −6.91 6.34

GrdG Ga0180325_114802 Sarcosine reductase complex 

protein B

428 −8.88 4.83

GrdF Ga0180325_114803s Sarcosine reductase complex 

protein B

436 −8.39 4.59

alog2-fold change in protein abundance in DCM-grown cells compared to glycine betaine-grown cells.
bAll proteins listed are significantly differentially abundant.
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mecH are present elsewhere in the strain DCMF genome 
(Ga0180325_115323 and Ga0180325_114747, respectively) and 
were expressed in the proteome. Although they were not 
significantly more abundant in DCM-amended cells, their 
expression was above average (i.e., the LFQ Z-score was >0; 
Supplementary Table S4).

Based on the functional annotation of the highly abundant 
proteins in the DCM-associated gene cluster, we  propose a 
putative mechanism for DCM dechlorination in strain 
DCMF. Reduced Co(I) in the CoP (Ga0180325_111236, MecB), 
acting in concert with the MTI protein (Ga0180325_111233, 
MecE), cleaves one chlorine via nucleophilic attack, echoing the 
role of corrinoid cofactors in reductive dehalogenases (Holliger 
et  al., 1999) and producing a CH2Cl-CoP intermediate 
(Figure 4A). Nitrogen heteroatoms (N5 and N10) in THF, bound 
by an MTII protein (Ga0180325_111232, MecF), can then attack 
the transient CH2Cl-CoP intermediate in a concerted fashion, 
eliminating the remaining chloride and cleaving the CoP to form 
5,10-methylene-THF (Figure 4). This echoes the model recently 
proposed by Murdoch et  al. (2022). Both schemas suggest an 
unusual departure from the typical biochemistry of 
methyltransferase reactions, which do not include chlorinated 
substituents (Kremp and Müller, 2021).

Proteomic experiments with ‘Ca. Dichloromethanomonas 
elyunquensis’ and D. formicoaceticum grown on DCM showed the 
presence of all genes in the cluster, with the methyltransferases 
among the most abundant (Kleindienst et  al., 2019; Murdoch 

et  al., 2022). However, it is notable that ‘Ca. 
Dichloromethanomonas elyunquensis’ also expressed reductive 
dehalogenases, which are expected to play a role in DCM 
dechlorination (Kleindienst et al., 2019). Although putative roles 
were initially discussed for the reductive dehalogenases 
(Kleindienst et al., 2019), it is not yet clear how they might act in 
concordance with the mec cassette proteins (Murdoch et al., 2022). 
If the mec cassette alone is responsible for DCM dechlorination, 
then it is unclear what role the reductive dehalogenases have in 
‘Ca. Dichloromethanomonas elyunquensis’. Conversely, if 
reductive dehalogenases are required for DCM dechlorination in 
‘Ca. Dichloromethanomonas elyunquensis’, then it is not clear 
what alternative enzymes or pathways for DCM dechlorination 
exist in strain DCMF and D. formicoaceticum, that might act in 
concert with the mec cassette. Previous dual C—Cl isotope 
analysis implied that dechlorination in D. formicoaceticum 
proceeds via a bimolecular nucleophilic substitution pathway 
(SN2), while ‘Ca. Dichloromethanomonas elyunquensis’ utilizes a 
unimolecular (SN1) pathway (Chen et  al., 2018). Here, the 
mechanism proposed above for strain DCMF utilizes a SN1 
reaction, as the nitrogen in folic acid cofactors is a weak 
nucleophile. However, dual C—Cl isotope analysis and further 
biochemical characterization of the proteins in the strain DCMF 
mec cassette are required to elucidate the exact 
dechlorination mechanism.

While data here supports the role of the mec cassette in DCM 
dechlorination, the role of other significantly differentially 

FIGURE 3

Genetic organization of the mec cassette in strain DCMF and other anaerobic chlorinated methane-degrading bacteria. Loci are shown below the 
first and last gene in each cluster. Percentage sequence identity to strain DCMF is shown for each homologous protein; percentage identity for the 
DUF proteins (italicized) is in relation to D. formicoaceticum. Vertical lines represent contig boundaries. Reg, regulator; CoP, corrinoid protein; MTI, 
methyltransferase I; MTII, methyltransferase II; Trans, transporter; RACE, reductive activator of corrinoid-dependent enzymes.
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abundant methyltransferases is less clear. For example, numerous 
methyltransferase components (20 MTI, 28 MTII and 24 CoP) 
from strain DCMF were identified in the metaproteome 
(Supplementary Table S4, “Methyltransferase”). This included 26 
of the 82 MttB superfamily methyltransferases (i.e., MTIIs) 
encoded in the genome (Holland et al., 2019). Seven of these MttB 
superfamily proteins contain the noncanonical amino acid 
pyrrolysine (Ga0180325_111271p72, Ga0180325_111278p79, 
Ga0180325_111485p86, Ga0180325_114321p22, Ga0180325_ 
114324p25, Ga0180325_115207p08, Ga0180325_115773p74). 
Non-pyrrolysine members of the MttB superfamily are 
widespread in Bacteria and Archaea and have been shown to 
encode an increasingly diverse substrate range including glycine 
betaine (Ticak et al., 2014), proline betaine (Picking et al., 2019), 
carnitine (Kountz et al., 2020), and γ-butyrobetaine (Ellenbogen 
et al., 2021). However, pyrrolysine-encoding methyltransferases 
have thus far only been associated with methanogenesis from 
methylated amines in Archaea (Ferguson and Krzycki, 1997; 
Burke et al., 1998; Paul et al., 2000). A limited number of other 
bacterial genera also encode MttB superfamily genes with the 
pyrrolysine residue, but to our knowledge, proteomic expression 
has not previously been observed (Ticak et al., 2014). Further 
experimental work to elucidate the function of these proteins in 
strain DCMF could provide insight into a potentially novel role 
for Pyl-MttB proteins, mirroring the expanding role of their 
non-pyrrolysine counterparts.

In addition to this, the protein with the greatest LFC in 
DCM-amended cells sits within the monomethylamine 
methyltransferase MtmB superfamily (Ga0180325_111810, LFC 

+11.87). However, monomethylamine was not added to 
DCM-amended microcosms and would only have been present 
in glycine betaine-amended microcosms as a metabolic end 
product, as it cannot be used for growth (Holland et al., 2021). 
Ga0180325_111810 shares ~30% amino acid sequence identity 
to other proteins in the monomethylamine methyltransferase 
superfamily (Supplementary Table S8) but is also lacking 
the  characteristic pyrrolysine residue as described in 
Methylosarcina barkeri MS (Hao et  al., 2002). There are two 
homologs to this protein in D. formicoaceticum, albeit with 
low percentage identities (30.32% to WP_089610783.1, 28.26% 
to WP_089610108.1), and no homologs in ‘Ca. 
Dichloromethanomonas elyunquensis’. This suggests that 
perhaps this non-Pyl MtmB superfamily protein has a role 
outside of monomethylamine demethylation, mirroring the 
recently reported expanded substrate range of non-Pyl MttB 
superfamily methyltransferases outlined above.

Proteins involved in glycine betaine 
metabolism

Non-Pyl-MttB superfamily methyltransferases were 
implicated in glycine betaine metabolism in strain DCMF. To our 
knowledge, this is only the second shotgun proteomic study of a 
glycine betaine-fermenting bacterium (Visser et  al., 2016). In 
glycine betaine grown strain DCMF cells, Ga0180325_114734 – 
Ga0180325_114742 were among the most abundant proteins 
(Figures  1, 2; Supplementary Table S4) and included putative 

MTI
MTI

MTII

A

B

FIGURE 4

Proposed DCM dechlorination schema in strain DCMF. (A) Reduced Co(I) corrinoid protein (CoP), acting in concert with a methyltransferase I 
protein (MTI), cleaves the first chlorine from DCM, producing a transient CH2Cl-CoP intermediate. Tetrahydrofolate (THF), bound to a 
methyltransferase II protein (MTII), then attacks the remaining carbon-chlorine bond, ultimately producing 5,10-methylene-tetrahydrofolate. The 
Co (III) in the corrinoid protein is reduced back to Co (I) by putative reductive activators of corrinoid-dependent enzymes (RACE) proteins, although 
this may not be required every reaction cycle. (B) The overall reaction showing DCM and THF producing 5,10-methylene-tetrahydrofolate. The 
carbon in DCM is highlighted in dark gray; the N5 and N10 nitrogen heteroatoms in tetrahydrofolate are highlighted in light gray.
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glycine betaine methyltransferases (Table  2). This nine-gene 
cluster included three MTIs (all within the MttB superfamily), a 
putative MTII, two CoPs, two glycine betaine transporters, and an 
N-methylhydantoinase A/oxoprolinase/acetone carboxylase 
(Table 2). These proteins were all significantly more abundant in 
cells grown with glycine betaine than DCM (FDR 0.01), with an 
average LFC of -6.38 (Figure 1; Table 2).

A second cluster of methyltransferase genes was identified 
amongst the most differentially abundant proteins 
(Ga0180325_111152 – Ga0180325_111158; 
Supplementary Table S4). This gene cluster included the two 
proteins with the largest LFC difference in glycine betaine-
amended cells: Ga0180325_111154 (LFC -11.66) and 
Ga0180325_111152 (LFC -11.01; Figure  1; 
Supplementary Table S5). These two proteins are both in the MttB 
superfamily, and their closest characterized homologs are in 
Desulfitobacterium hafniense DCB-2 (Supplementary Table S8). 
However, it remains unclear whether they act in concert with the 
other components in this gene cluster, or with those in the cluster 
mentioned above. Not all proteins in this gene cluster were 
significantly differentially abundant (the putative CoP 
Ga0180325_111153 was not), nor were all identified in the 
metaproteome (Ga0180325_111155, a MtaA/CmuA family 
protein, was absent). Furthermore, this gene cluster contains only 
putative MTI, MTII and CoP proteins, with no other genes related 
to glycine betaine metabolism (e.g., transcriptional regulators or 
transporters) in the genetic vicinity.

A putative sarcosine reductase gene cluster was also identified: 
Ga0180325_114795–Ga0180325_114803s encodes a thioredoxin 
reductase (trxB), thioredoxin I (trxA), glycine/betaine/sarcosine 
reductase complex selenoprotein A (grdA), protein C (grdCD), 
and a predicted sarcosine-specific protein B (grdGF; Figure 2). A 
hypothetical protein (Ga0180325_114801) in the middle of the 
cluster was not identified in the proteome. Excluding that, all 
proteins were significantly more abundant (FDR 0.01) in glycine 
betaine amended cells, with an average LFC of -7.58 compared to 
DCM-amended cells (Figure 1; Table 2; Supplementary Table S5).

Data here supports a previous model for quaternary amine 
metabolism in strain DCMF that was based on genomic and 
physiological information (Holland et al., 2021). Briefly, glycine 
betaine is demethylated to dimethylglycine and then sarcosine; the 
latter is then reductively cleaved to produce monomethylamine 
and acetate (Holland et al., 2021). It remains unclear whether any 
one glycine betaine MTI and CoP pair can catalyze methyl transfer 
from both glycine betaine and dimethylglycine, as was cautiously 
suggested for S. ovata An4 (Visser et al., 2016). It is possible that 
that the multiple MTI and CoP subunits in the more complete 
glycine betaine methyltransferase cluster (Ga0180325_114734–
Ga0180325_114742) may be specific to the two substrates, while 
the singular MTII can transfer the methyl group from either of the 
CoPs to THF. Alternatively, perhaps the less complete 
methyltransferase cluster discussed above (Ga0180325_111152–
Ga0180325_111158) is specific to dimethylglycine, which would 
explain why it does not contain a glycine betaine transporter gene.

Comparison of the complete glycine betaine methyltransferase 
gene cluster with homologs from other glycine betaine-fermenting 
bacteria revealed two broad gene cluster architectures, which has 
not been previously reported. Experimentally proven glycine 
betaine methyltransferase operons in A. woodii DSM 1030 
(Lechtenfeld et al., 2018) and Desulfitobacterium hafniense Y51 
(Ticak et al., 2014) demonstrate genomic synteny, along with a 
homologous gene cluster identified in A. dehalogenans DSM 
11527 (Figure 5A). This region is echoed in the second half of the 
glycine betaine gene cluster identified in strain DCMF (Figure 5). 
In contrast, the glycine betaine fermenting bacteria S. ovata DSM 
2662, S. ovata An4, and ‘Candidatus Frackibacter sp.’ T328-2 all 
encode syntenic regions to the first half of the strain DCMF cluster 
(Figure 5B). For the S. ovata strains, these genes differ from those 
suggested to be responsible for glycine betaine demethylation in 
previous works, offering new candidates for further study (Visser 
et al., 2016; Lechtenfeld et al., 2018). These genes suggested here 
were among the numerous abundant methyltransferases during 
glycine betaine metabolism by S. ovata An4 (Visser et al., 2016), 
while proteomic studies of A. woodii DSM 1030 and D. hafniense 
Y51 have not yet been reported. Strain DCMF similarly expressed 
a range of methyltransferases with both DCM and glycine betaine-
amended cultures, and investigation into the apparent redundancy 
of these proteins may yield interesting results.

It is worth noting that, while the role of DCM in the broader 
global carbon budget has only recently been reconsidered with 
increased significance (Hossaini et al., 2017; Murdoch et al., 2022), 
the links between glycine betaine and climate-active gasses have 
been reported for decades. In anoxic subsurface environments, it 
can be microbially transformed to methylamines (Naumann et al., 
1983; King, 1984; Möller et  al., 1986; Zindel et  al., 1988; 
Heijthuijsen and Hansen, 1989; Mouné et al., 1999; Daly et al., 
2016), which are then metabolized almost exclusively by 
methanogens, generating the potent greenhouse gas methane 
(Oremland et al., 1982; King, 1984, 1988; Oren, 1990; Ollivier 
et  al., 1994; Daly et  al., 2016). Additionally, some species of 
Methanococcoides can also utilize glycine betaine directly for 
methanogenesis (Watkins et  al., 2014). The environmental 
relevance of strain DCMF therefore extends beyond 
DCM-contaminated sites, as the pathways involved in both DCM 
and glycine betaine degradation affect the flux of climate-active 
gasses from anoxic, subsurface environments.

Metaproteogenomic insights into the 
non-dechlorinating community

None of the cohabitant MAGs contain a complete Wood–
Ljungdahl pathway, which is consistent with a previous 
observation that culture DFE cannot grow autotrophically 
(Holland et al., 2021). Instead, the MAGs encode genes indicative 
of oxidative glycolysis for central carbon metabolism. Additionally, 
the cohabitant MAGs do not encode any corrinoid-dependent 
methyltransferases or corrinoid proteins, nor homologs to any of 
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the genes in the mec cassette. However, DFE-SYN encoded 
multiple glycine/betaine/sarcosine reductase genes, including one 
cluster with all components of a reductase complex and 
thioredoxin (DFE_SYN_02509–DFE_SYN_02516). The reductase 
complex component B subunits gamma (DFE_SYN_02511) and 
alpha/beta (DFE_SYN_02514) were both identified in the 
metaproteome (Supplementary Table S4). While substrate 
specificity of this reductase could not be  predicted based on 
sequence similarity to known enzymes (Supplementary Figure S3), 
there are no published reports of any Synergistetes utilizing 
glycine betaine or sarcosine, and both components were more 
highly expressed in DCM-amended cultures than those with 
glycine betaine (Supplementary Table S4). This suggests that they 
may be specific to glycine, rather than sarcosine or glycine betaine. 

Overall, metagenomic data supported previous experimental data 
suggesting that the cohabitant bacterial lineages are not able to 
consume any of the primary substrates added to culture DFE, but 
rather feed on expired cellular material, i.e., necromass (Holland 
et al., 2021).

In addition to this, we hypothesize that at least some of the 
cohabiting lineages provide a benefit to strain DCMF, given their 
persistence despite repeated attempts to isolate the bacterium 
(Holland et  al., 2019, 2021). Cohabiting bacteria can provide 
various benefits to keystone species, including production of 
amino acids or essential cofactors for which the other is 
auxotrophic (e.g., Yan et  al., 2012; Embree et  al., 2015), or 
removing nitrogen-rich wastes that might otherwise accumulate 
to toxic levels (e.g., Christie-Oleza et  al., 2017). However, in 

A

B

FIGURE 5

Genetic organization of the glycine betaine methyltransferase gene cluster in strain DCMF and homologs in other glycine betaine-fermenting 
bacteria. Homologous clusters fell into two distinct groups, with similarity to the second (A) or first (B) half of the strain DCMF gene cluster. 
Homologous proteins are linked by dotted lines and percentage amino acid sequence identity to strain DCMF written within. Values in the 
unlinked BCCT and CoP proteins in Panel A are to the strain DCMF homolog with the highest percentage amino acid sequence identity: 
Ga0180325_114741 or Ga0180325_114736, respectively, in all cases). Loci shown are: Acetobacterium woodii DSM 1030 Awo_c07520 – 
Awo_07560, Acetobacterium dehalogenans DSM 11527 A3KSDRAFT_02713 – A3KSDRAFT_02709, D. hafniense Y51 DSY3157 – DSY3154, strain 
DCMF Ga0180325_114734 – Ga0180325_114742, ‘Ca. Frackibacter sp.’ T328-2 AWU54_1980 – AWU54_1975, Sporomusa ovata DSM 2662 
SOV_3c09370—SOV_3c09310, S. ovata An4 SpAn4DRAFT_2140 – SpAn4DRAFT_2133. CoP, corrinoid protein; MTI, methyltransferase I; HydA, 
hydantoinase; MTII, methyltransferase II; BCCT, betaine/carnitine/choline family transporter; RACE, reductive activator of corrinoid-dependent 
enzymes; ProX, extracellular glycine betaine ligand binding protein. Asterisks indicate proteins with <30% query coverage of the strain DCMF 
homolog.
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culture DFE, the exact nature of the syntrophic partnership 
between strain DCMF and the cohabiting bacteria 
remains unclear.

Nonetheless, lineages identified in culture 
DFE—Cupidesulfovibrio, Bacteroidales, Spirochaetes/
Treponematales, Synergistetes—have previously been associated 
with hydrocarbon and organohalide-degrading cultures (Duhamel 
and Edwards, 2006; Kleinsteuber et al., 2008; Strąpoć et al., 2011; 
Taubert et al., 2012; Dong et al., 2018), where some reports have 
suggested that they persist via necromass recycling (Kleinsteuber 
et al., 2012; Lee et al., 2012; Taubert et al., 2012; Dong et al., 2018). 
Microbial necromass utilization is increasingly being considered 
as an important contributor to subsurface nutrient cycling 
(Simpson et al., 2007; Liang et al., 2011). At contaminated sites in 
particular, it may enhance bioremediation, as the production of 
hydrogen, acetate, and ethanol can both stimulate microbial 
blooms or serve as secondary substrates for co-metabolism 
(Horvath, 1972; Wrighton et  al., 2014). Outside of necromass 
studies, similarly “self-feeding” mixed cultures have been 
described for dechlorination of trichloromethane and DCM 
(Wang et  al., 2022), chlorobenzene (Liang et  al., 2013), and 
3-chlorobenzoate (Dolfing, 1986; Dolfing and Tiedje, 1987). 
Consumption of dead biomass can also remineralize or liberate 
important nutrients including nitrogen, phosphorous, trace 
elements, and cobalamins (Head et al., 2006; Christie-Oleza et al., 
2017). Following in this theme are calls from other authors for the 
use of mixed consortia, rather than monocultures for 
biotechnological processes (Giri et al., 2020; Borchert et al., 2021). 
Diverse communities are more robust against environmental and 
ecological disturbances and have increased functionality due to 
synergistic interspecies interactions (Chiu et al., 2014; Pande and 
Kost, 2017; Giri et  al., 2020; Pascual-García et  al., 2020). 
Understanding microbial interactions in culture DFE, in which a 
chlorinated one-carbon compound has sustained a stable 
community for 10 years, can reveal new insights into syntrophic 
community dynamics and could aid the development of more 
robust mixed cultures for in situ bioremediation applications.

Conclusion

Proteomic study of the DCM-fermenting bacterium in 
culture DFE, ‘Ca. Formimonas warabiya’ strain DCMF, 
supports the role of a methyltransferase system encoded by the 
mec cassette in DCM dechlorination. The mec cassette encodes 
candidate genes for tracking anaerobic DCM metabolism in 
situ at contaminated sites, and this work lays the foundation for 
biochemical/structural characterization of DCM dechlorinating 
enzymes. Proteogenomic evidence for a putative glycine 
betaine methyltransferase in strain DCMF also added to our 
limited knowledge regarding the fate of this environmentally 
important compound in anoxic subsurface environments. 
Furthermore, analysis of metaproteogenomic data from the 
cohabiting linegaes in culture DFE supported the previous 

hypothesis that they are not involved in primary substrate 
metabolism, but rather persist via metabolism of necromass 
from spent cells.
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