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Staphylococcus aureus causes nosocomial and intramammary infections 

in humans and cattle, respectively. A large number of virulence factors are 

thought to play important roles in the pathogenesis of this bacterium. Currently, 

genome-wide and data-analysis studies are being used to better understand 

its epidemiology. In this study, we  conducted a genome wide comparison 

and phylogenomic analyses of S. aureus to find specific virulence patterns 

associated with clinical and subclinical mastitis strains in cattle and compare 

them with those of human origin. The presence/absence of key virulence 

factors such as adhesin, biofilm, antimicrobial resistance, and toxin genes, as 

well as the phylogeny and sequence type of the isolates were evaluated. A 

total of 248 genomes (27 clinical mastitis, 43 subclinical mastitis, 21 milk, 53 

skin-related abscesses, 49 skin infections, and 55 pus from cellulitis) isolated 

from 32 countries were evaluated. We found that the cflA, fnbA, ebpS, spa, 

sdrC, coa, emp, vWF, atl, sasH, sasA, and sasF adhesion genes, as well as the 

aur, hglA, hglB, and hglC toxin genes were highly associated in clinical mastitis 

strains. The strains had diverse genetic origins (72 protein A and 48 sequence 

types with ST97, ST8 and ST152 being frequent in isolates from clinical 

mastitis, abscess, and skin infection, respectively). Further, our phylogenomic 

analyses suggested that zoonotic and/or zooanthroponotic transmission 

may have occurred. These findings contribute to a better understanding of S. 

aureus epidemiology and the relationships between adhesion mechanisms, 
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biofilm formation, antimicrobial resistance, and toxins and could aid in the 

development of improved vaccines and strain genotyping methods.

KEYWORDS

biofilm formation, public health, virulence genes, adhesins, phylogeny, antimicrobial 
resistance

Introduction

Staphylococcus aureus is a commensal microorganism that can 
cause several important diseases in humans and animals. It is 
considered a facultative intracellular pathogen that is responsible 
for recurrent infections (Watkins and Unnikrishnan, 2020). In 
humans, its primary entry points are damaged skin and mucosa, 
which can lead to skin infections, septicemia, endocarditis, and 
abscesses (Lalaouna et  al., 2018). In cattle, intramammary 
S. aureus infections (clinical and subclinical mastitis) spread 
primarily via milking machines, milkers’ hands, and vectors such 
as flies (Zadoks et al., 2011).

Virulence factors are important in the development, duration, 
and severity of S. aureus related illnesses since they are often 
involved in host defense evasion (Wójcik-Bojek et  al., 2022). 
Adhesins play a role in cell attachment, invasion, and biofilm 
formation (Kerro Dego, 2020), thus allowing for increased 
persistence and protection against antimicrobial factors in the 
host (Gajewska and Chajęcka-Wierzchowska, 2020). The 
production of toxins such as hemolysins, leukotoxins, proteases, 
and other enzymes can cause direct host cell injury (Otto, 2014). 
S. aureus can also carry a large number of resistance genes which 
pose a serious economic threat to the dairy sector and to public 
health (Igbinosa et al., 2016).

The contamination of food products by S. aureus can be aided 
by virulence factors that mediate the interaction of pathogen with 
the host and the environment (Gajewska and Chajęcka-
Wierzchowska, 2020; Bencardino et al., 2021). When a dairy herd 
has clinical mastitis (animals with obvious disease) or subclinical 
mastitis (animals with no obvious signs) milk contamination and 
discard rates increase, productivity decreases, antimicrobial 
treatment costs increase, and animals may have to be  culled 
prematurely (Exel et al., 2022). Zoonotic transmission of S. aureus 
has been widely documented (Patel et  al., 2021) and 
characterization of sequence types (STs) helps to elucidate strain 
relationships and epidemiology, as well as gene transfer amongst 
strains from different hosts (Bruce et al., 2022).

Despite the importance of S. aureus in human and 
veterinary medicine there is a dearth of studies on gene 
profile, strain-to-strain relationships, disease-host 
relationships, and host-pathogen interactions (Pizauro et al., 
2021). In the current study we used genome wide analyses for 
genome comparison to better understand strain-to-strain 
relationships, disease-host relationships, and host-pathogen 

interactions. Comparative genomics and phylogenomic 
analyses were used to characterize the adhesion, biofilm, 
toxin, and antimicrobial resistance genes of S. aureus isolated 
from human and cattle samples.

Materials and methods

Bacterial sequencing and origin of 
isolates

The National Center for Biotechnology Information 
database (NCBI; Clark et al., 2016) was searched for S. aureus 
genomes of bovine (Bos taurus) and human (Homo sapiens) 
origin. For this search, we used “organism” from the “Available 
Facets” section of the NCBI’s web platform Sequence Set 
Browser, and then the microorganism “Staphylococcus aureus” 
from the “Top Organisms” section. The S. aureus genomes from 
Bos taurus were analyzed, in addition to raw milk/bulk milk, 
and the condition (clinical mastitis, subclinical mastitis) was 
described as a stage of the disease in the BioSample description 
or in scholarly publications. S. aureus genomes of isolates from 
Homo sapiens that had abscess, skin infection, or pus listed as 
the source of isolation in the BioSample description or academic 
publications were then obtained; in addition, other sources of 
isolation such as surgical site, skin, and wound secretion were 
accepted for the group “skin infections.” Genome sequences 
deposited from June 2020 until January 2021 were analyzed.

Genomic annotation: Identification of 
adhesin, biofilm formation, toxin, and 
antimicrobial resistance genes

S. aureus genomes were annotated using Rapid Annotation 
using Subsystem Technology (RAST; Aziz et  al., 2008). The 
identification of genes related to adhesion and biofilm formation 
were classified based on the results of the RAST platform and the 
Virulence Factor of Pathogenic Bacteria (VFDB) reference 
database (Chen et al., 2005). The antimicrobial resistance genes 
were annotated using ResFinder 4.1 and toxin genes with 
VirulenceFinder 2.0, both from the Center of Genomic 
Epidemiology (Bortolaia et al., 2020).
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Pan-genome determination

To normalize the analyses, all genomes were annotated using 
Prokka 1.14.6 (Seemann, 2014). The computational tool Roary 
3.13.0 was used to infer the pangenome (Page et al., 2015). The 
Roary tool was also used to calculate pangenome size and reveal 
orthologous genes.

Phylogenomics analysis

The phylogenomic concatenated matrix was created with 
PRANK (Löytynoja, 2014) using codon-aware alignment 
composed of 247 genes shared across all analyzed Staphylococcus 
spp. genomes. The phylogenetic tree was constructed using the 
maximum likelihood (ML). The ML tree was calculated using 
IQ-Tree 2 (Minh et  al., 2020) with the best-of-fit model 
GTR + F + R6 according to AIC criteria (Akaike, 1974), with the 
software tool ModelFinder (Kalyaanamoorthy et al., 2017). Clade 
support was estimated using the ultrafast bootstrap (UFBoot) and 
SH-aLRT algorithms (Hoang et al., 2018) with 1.000 replicates. 
Tree rooting was based on the Escherichia coli genomes (GenBank 
access numbers: CP058682, NZ CP037943, NZ CP027390, NZ 
AP018808, and NZ AP018808) and tree drawing was done using 
Interactive tree of life (iTOL) v6 (Letunic and Bork, 2016).

In silico determination of multilocus 
sequence typing and spa

Multilocus sequence types were determined in silico using the 
MLST 2.0 online platform (Larsen et al., 2012), and spa typing was 
done using spaTyper version 1.0 (Bartels et al., 2014), both from 
the Center of Genomic Epidemiology.

Statistical analyzes

Statistical analyzes were performed using the R program 
4.1.2 (R Core Team, 2017). The Fisher’s exact test was used to 
analyze possible associations between the presence of each of 
the virulence genes (gene by gene) in each type of disease 
evaluated, using a contingency table considering “1” as presence 
and “0” as absence and a significant value of p < 0.05. 
Multinomial logistic regression was done with all genes that 
showed a significant value in Fisher’s test to assess the 
significance of association between the types of condition, 
considering raw milk samples as the reference, and the origin 
of the isolates being the response variable, and the genes, the 
explanatory variable. Using a modification of the method of 
Åvall-Jääskeläinen et  al. (2021) the multinomial logistic 

regression model was then analyzed by Wald’s Z test and the 
value of p values were obtained by the pnorm() function of the 
nnet package. Genes with p < 0.05 were considered significant 
for the determination of the model in each disease 
(Dalgaard, 2008).

Multinational logistic regression model used was:

β0c represents the medium value for the category c of the response 
variableβ1c Screened virulence genes, represent the fixed effects of the 
Virulence genes category with c as r = 1,---,36;β2c MLST, represent the 
fixed effects of the variable MLST category with c as j = 1---,26.c = 1,--5, 
represent the 5 logit functions that will be used when the Raw milk is 
used as a baseline for comparison of each source.

Evaluation between the association of the presence of 
adhesion and biofilm genes and the origin of isolation was done 
using the Spearman correlation test (Dalgaard, 2008). The 
correlation coefficients and the gene frequency by origin were 
presented in heat maps.

Genome-wide association test 
accounting population structure

The treeWAS R package https://github.com/caitiecollins/
treeWAS (Collins and Didelot, 2018) was used to apply a 
phylogenetic tree-based approach to the genes and genome 
studied. For these analyses, a genetic dataset with a matrix 
containing binary genetic data (gene presence/absence), a 
phenotypic variable (isolates isolation source as a continuous 
numeric value) and the phylogenetic tree consisted of the 247 
genes that were shared among all isolates was used. These findings 
were further assessed with the multinomial logistic regression.

Results

Genome and pangenome assessment

The genomes of 248 independent strains of S. aureus from 
six different sources: diseased cattle (27 clinical mastitis and 
43 subclinical mastitis cases); diseased human (53 skin-related 
abscesses, 49 skin infections, and 55 pus from cellulitis cases) 
and healthy controls (21 raw milk/bulk milk) were evaluated. 
The isolates came from 32 countries, i.e., Argentina (1), 
Australia (5), Bahamas (1), Belgium (4), Brazil (8), Canada 
(1), Chile (7), China (9), Colombia (2), Cuba (4), Denmark 
(1), Ecuador (3), Finland (4), Ghana (13), India (5), Ireland 
(2), Italy (4), Japan (1), Lebanon (7), Malaysia (1), Netherlands 
(7), Norway (1), Russia (32), South Sudan (1), Spain (1), 
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Suriname (1), Switzerland (24), Taiwan (52), Thailand (1), 
Turkey (7), United  Kingdom (20) and United  States (18) 
(Figure 1).

Based on assessment of these 248  S. aureus genomes, the 
pangenome analysis revealed 15,011 accessory genes and 873 
genes belonging to the central genome. Five hundred and ninety-
four genes were classified as soft-core genes (i.e., shared between 
95 and 98% of the identified genomes); 1,842 as shell genes (shared 
between 15 and 95% of the genomes) and 11,702 as cloud genes 
(shared by less than 15% of the analyzed isolates). Central genome 
genes were associated with translation, ribosomal structure and 
biogenesis (9.86%), amino acid transport and metabolism (9.05%), 
transcription (8.25%), energy production and conversion (8.25%); 
many others were of unknown function (27.16%; Figure 2). The 
increase in the number of single genes was inversely related to the 
number of new genes revealed for this species (Figure 3).

Distribution of adhesin, biofilm, 
antimicrobial resistance, and toxin genes 
in S. aureus isolates

Of the 248 S. aureus genomes studied, 70 were bovine disease 
isolates, 157 were from humans with skin associated disease, and 
21 were from raw milk. Annotation using RAST identified 26 
adhesin genes (clfA, clfB, cna, fnbA, fnbB, ebpS, spa, sdrC, sdrD, 
sdrE, coa, eap, emp, efb, vWbp, atl, aap, pls, sasG, sasH, sasA, sasC, 
sasD, sasF, sasI, sasK) and nine biofilm formation genes (icaA, 
icaB, icaC, icaD, icaR, rbf, tcaR, sarA and sigB). Thirty 
antimicrobial resistance genes (adD, aac(6′)-aph(2″), aadE, 
ant(9)-Ia, aph(3′)-III, blaTEM-116, blaZ, cat (pC233), dfrG, 
erm(A), erm(B), erm(C), fosB4, fosB6, fusB, fusC, lnu (A), lnu (B), 
Isa (E), mecA, mecA1, mph(C), msr(A), mup(A), sal (A), str, tet(K), 
tet(M), vga(A)V and qacD) were identified using ResFinder and 43 
toxin genes (i.e., aur, splA, splB, splE, ACME, sak, scn, edinB, hlgA, 
hlgB, hlgC, lukD, lukE, lukF-PV, lukS-PV, sea, seb, sec, sec3, sed, seg, 
seh, sei, sej, sel, sek, sem, sen, seo, sep, seq, seu, ser and tst) were 
identified using VirulenceFinder (Supplementary Material 1).

Adhesin genes clfA, clfB, fnbA, ebpS, spa, coa, eap, emp, vWbp, 
atl, sasH, sasA, sasC, and sasF genes were observed at high 
frequencies (> 90%) in isolates from all sources while the cna, aap 
and pls genes were observed in fewer strains (~20%). Differences 
in the frequencies of some genes were seen (e.g., clinical mastitis 
genomes had a lower frequency, approximately 83%) of the icaA, 
icaB, icaC and icaD biofilm genes and biofilm regulator genes rbf, 
tcaR, sarA and sigB while in the other groups, these genes were 
present in >90% of the strains evaluated. There was a high 
prevalence (>90%) of the fnbB gene in skin and pus infection 
isolates and of the sdrD and sasG genes in abscesses and pus strains; 
both of which also presented similar frequencies in the bovine 
isolates. The sdrE and efb genes were less prevalent (< 90%) in 
isolates from clinical mastitis and skin infection cases; the sdrC 
gene in skin infection isolates, and sasD in clinical mastitis, raw 
milk, and pus isolates (Figure 4; Supplementary Material 2).

The antimicrobial resistance genes aadD, aac(6′)/aph(2″), 
aadE, ant(9)-Ia, aph(3′)-III, cat(pC233), dfrG, erm(A), erm(B), 
mecA, mph(C), msr(A), tet(K) and tet(M) were most prevalent in 
human isolates and only seen sporadically in bovine isolates. The 
blaTEM-116 erm(C), fosB4, fosB6, fusB, fusC, lnu(A), lnu(B), 
lsa(E), mecA1, mup(A), sal(A), str, vga(A)V and qacD genes were 
observed sporadically in all groups. The blaZ gene was present 
(albeit unevenly) in all groups while the mecA gene was detected 
only in bovine isolates; however, both were prevalent (> 90%) in 
pus isolates (Figure 4). The aur, hlgA, hlgB and hlgC toxin genes 
were detected in >90% of the isolates of the all groups; the 
prevalence of the splA gene in the clinical mastitis isolates and raw 
milk, splB in raw milk, and scn in pus isolates was also >90%. The 
lukD and lukE genes were also prevalent in isolates from raw milk 
and abscesses, and as well as lukF-PV and lukS-PV, they were 
equivalent to each other in almost all groups evaluated (Figure 4).

Phylogenomics analysis

Phylogenetic analysis of the S. aureus isolates in this study 
revealed that the clinical and subclinical cattle isolates formed 

FIGURE 1

Spatial distribution of the isolates according to the information presented in the NCBI GenBank.
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distinct clades consistent with zoonotic and/or zooanthroponotic 
transmission (Figure  5). Some STs were more relevant when 
considered their respective origins? In this regard, ST239 and ST5 
isolates were only recovered from humans and ST151 only in 
bovine isolates. ST8 was more frequent in abscess isolates, with the 
ST97 in subclinical mastitis, ST59 in pus isolates and ST152 in 
skin infection. These findings reinforces the epidemiological 
importance of these STs (Figure 5; Supplementary Material 3).

Multilocus sequence and spa typing

Forty-eight sequence types (ST) were assigned by MLST 
analysis. ST8 (15.7%), ST97 (12.1%), ST59 (11.7%), ST239 
(6.85%), and ST152 (5.24%) were most prevalent. Eleven isolates 
could not be  typed. The most common protein A (t) types as 
characterized by spa typing [i.e., t008 (n = 32), t437 (n = 26), t355 
(n = 11), and t267 (n = 8)] were categorized according to source of 
isolation, host, and ST (Supplementary Material 3).

Association between the presence of 
virulence genes and the origin of the 
isolate

Using the Fisher’s test as a screening step to test the 
significance of all genes based on their origin it was possible to 

observe that nine adhesins, nine biofilm, 18 resistance, and 25 
toxin genes were significant (p < 0.05; Table 1).

Multinomial logistic regression analysis showed that most 
genes had a significant relationship with the origin of the isolate, 
except for some antimicrobial resistance and toxin genes. The blaZ 
gene was the only antimicrobial resistance gene did not have a 
significant association with clinical mastitis isolates and, in 
conjunction the str, splB and sek genes, with subclinical mastitis 
isolates. The fusB, fusC, tet(M) and tst genes were not significantly 
associated with abscess isolates, nor were the aadE and tet(M) 
genes associated with skin infection isolates, or the aac(6′)-aph(2′), 
drfG and tet(M) genes to pus isolates. Multinomial logistic 
regression analysis also showed that there was significant 
relationships between origin and MLST with clinical mastitis 
(ST97), abscess (ST8) and skin infection isolates (ST152)., 
(Table 1; Supplementary Material 3).

Correlation amongst adhesion genes

With S. aureus isolates from clinical mastitis cases, there was 
a correlation, close to or equal to 1, between the clfA, fnbA, ebpS, 
spa, sdrC, coa, emp, vWbP, atl, sasH, sasA, sasF adhesin genes, and 
the aur, hlgA, hlgB and hlgC toxin genes (Figure 6). As well, there 
was a close association between the fnbB, sasK and sasG adhesin 
genes from this source. In the raw milk isolates, a high correlation 
was observed with the sdrD, sasK, fnbA and splE genes. In human 

FIGURE 2

Category of Clusters of Orthologous Groups (COG) of genes central to the genomes of 248 Staphylococcus aureus isolated from humans 
(abscesses, skin infections and pus) and from cattle (clinical mastitis, subclinical mastitis and raw milk).
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isolates, there was a high correlation of the adhesion genes efb, 
sdrC and sasG and in skin infections and sasG and sdrE and in 
abscess isolates. All biofilm formation genes showed a high 
correlation with S. aureus from clinical and subclinical mastitis 
cases. In addition, the icaADBC operon and the icaR regulator 

were highly correlated in raw milk isolates and skin infections 
(Figure 6; Supplementary Material 4).

Antimicrobial resistance genes ant(9)-Ia, erm(B), mecA, 
lsa(E), inu(B), tet(M) and tet(K) as well as toxin genes sak, scn, sea, 
sed, sej and ser were highly correlated in the clinical mastitis 

A B

FIGURE 3

Staphylococcus aureus pangenome profile isolated from humans (abscesses, skin infections, and pus) and from cattle (clinical mastitis, subclinical 
mastitis, and raw milk). (A) The number of genes as a function of the number of genomes. The solid line indicates the number of conserved genes 
in the core genome and the dashed line the total number of genes. (B) The number of new pangenome genes as a function of the number of 
analyzed genomes. The solid line indicates the number of new genes and the dashed line, the total number of unique genes.

FIGURE 4

Binary frequency graph of adhesion, biofilm, antimicrobial resistance, and toxin gene frequencies in S. aureus from clinical and subclinical bovine 
mastitis cases and raw milk, and from human abscesses, skin infections, and pus.
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group. As well, there was a correlation between the seu, seg, sei, 
sen, sem and seo genes in all groups. There was a correlation 
between the sel, sec, and tst gene in all bovine isolates. Further, the 
sej, sed and ser genes were associated with subclinical mastitis and 
abscess cases; the seq and sek genes with skin infections; lukF-PV 
and lukS-PV with subclinical mastitis, skin, and pus infections; 
lukD and lukE with abscesses and skin infections; splA and splB 
with abscesses; and the lukD, lukE splA and splB genes with pus 
isolates (Supplementary Material 4).

Genome-wide association test 
accounting for population structure

TreeWAS analysis indicated that the scn gene was significant 
considering the Score 1 – “Terminal Score” which measures the 
measures sample-wide association across the leaves of the 
phylogenetic tree. The ant(6)-la, lukS-PV, lukF-PV, sak and scn 

were significant at the Score 2 – “Simultaneous Score” which 
measures the degree of parallel change in the phenotype and 
genotype across branches of the tree. None of the genes tested 
were significant at the Score 3 – “Subsequent Score” which 
measures the proportion of the tree in which the genotype and 
phenotype co-exist. These genes were further found to 
be significant with the multinomial logistic regression, alongside 
other ones mentioned above (Supplementary Material 5).

Discussion

Adhesion is a crucial step in S. aureus colonization of the host 
and occurs before cell penetration, internalization, and chronic 
infection (Josse et al., 2017). The development of biofilms aids in 
evasion of host antimicrobial components and facilitates the 
exchange of genetic material (Idrees et al., 2021). Adhesin and 
biofilm genes clfA, clfB, fnbA, ebpS, spa, coa, eap, emp, vWbp, atl, 

FIGURE 5

Phylogenomic tree based on 248 genes shared across all analyzed Staphylococcus aureus isolated from bovine clinical mastitis and subclinical 
mastitis cases and raw milk and from human abscesses, skin, and pus infections.
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sasH, sasA, sasC, sasF, icaR, rbf, tcaR, sarA, sigB and icaADBC 
were observed in >90% of the isolates. On the other hand, toxin 
and antimicrobial resistance genes were uncommon consistent 
with the notion that adhesion and biofilm formation play major 
roles in the pathogenesis of S. aureus (Petrie et al., 2020). In this 
regard, the clfA and the clfB genes, reported to promote microbial 
internalization in bovine mastitis, were present in almost all 
strains (Ying et al., 2021). Also, the ebpS gene, related to binding 
to elastin peptides in the host (Downer et al., 2002) was also very 
common (>95%). Similarly, the fnbA and fnbB genes responsible 
for adherence to immobilized elastin (Roche et al., 2004) were 
present in all groups, but fnbB gene with higher frequencies 
(>90%) in skin and pus infections. The high levels of expression of 
this gene are associated with the ability of S. aureus to internalize 
bovine mammary epithelial cells (Pereyra et al., 2016). Further, it 
was observed that fnbB was associated with sdrD, sasG and sasK 
in raw milk strains, and with sasC and sasK in clinical mastitis 
isolates (Supplementary Material 4). This is potentially an 
important association as the sasG and sdrD genes are reported to 
be  involved in adhesion to epithelial cells (Roche et  al., 2003; 
Abdelbary et al., 2020) and they play a role in cell aggregation and 
biofilm formation (Schroeder et  al., 2009). In addition, our 
findings reinforce the recent observation that the fnbB gene is one 
of the main biofilm markers in S. aureus (Kadkhoda et al., 2020) 
and suggest that the sasK gene may also play an important role as 
well. The frequency of sdrC, sdrD and sdrE was lower in skin 
isolates in comparison with the other sources and sdrD was 
present less frequently in samples obtained from cattle. Thus, the 
sdr genes may not be important for epithelial tissue colonization 
and the sdrD gene may not play a key role in the adhesion to 

mammary gland and the establishment of bovine mastitis; 
however, further experiments are needed to test this hypothesis 
in vivo.

The adhesin genes sasC, sasA, sasF and sasH were present in 
>90% of the isolates from all sources. The sasA gene has been 
described in gangrenous mastitis and sasF in bovine mastitis 
isolates (Pizauro et al., 2021) but to date, little is known about sasH 
(Ythier et al., 2012). The observed lower frequencies (less than 
50%) of the cna, pls and aap genes may be associated with the fact 
that the cna gene expresses a collagen-binding protein that is more 
often associated with skeletal muscle (Smeltzer and Gillaspy, 
2000).The absence of emp and the presence of pls has been 
reported to be correlated with reduced virulence (Kurlenda et al., 
2008), which was inversely observed (low frequency of pls and 
high of emp; Supplementary Material 2). The Emp and Eap 
proteins are also reported to be  involved in in vivo biofilm 
formation and their expression is dependent on the icaADBC 
operon (Johnson et al., 2008). These genes, emp and eap, were 
observed in >90% of the strains in all sources and therefore, 
thought to be relevant in abscess formation and staphylococcal 
persistence. Also, in clinical mastitis isolates, the vWbp and coa 
genes showed a strongly correlation with each other (Figure 6), 
which is in agreement with the fact that these genes promote 
infection through prothrombin activation (Pickering et al., 2021).

The aap gene was present in less than 10% of isolates, whereas 
the ica locus and the rbf, tcaR, saA and sigB genes were present in 
>90% of the strains studied, except for clinical mastitis isolates 
(Supplementary Material 2). These differences may be related to 
the fact that PIA is the main exopolysaccharide synthesized by 
the icaADBC operon and that biofilm formation is less important 

TABLE 1 Significant gene profile by Fisher’s exact test and by multinomial logistic regression according to the origin of the isolate and the main 
sequence type.

Origin Gene profiles MLST

Clinical mastitis adhesins: clfB,cna, fnbB, sdrC, sdrD, efb, sasG, sasD, sasK,biofilm: icaADBC, icaR, rbf, tcaR, sarA, sigB,resistance: aadD, 

aac(6′)-aph(2″), aadE, ant(9)-Ia, aph(3′)-III, cat (pC233), dfrG, erm(A), erm(B), fusB, fusC, mecA, mph(C), msr(A), str, tet(K), 

tet(M),toxin: splA, splB, splE, ACME, sak, scn, edinB, hlgC, lukD, lukE, lukF-PV, lukS-PV, sea, seb, sec, seg, sei, sel, sek, sem, sen, 

seo, seq, seu, tst

ST97

Subclinical mastitis adhesins: clfB,cna, fnbB, sdrC, sdrD, efb, sasG, sasD, sasK,biofilm: icaADBC, icaR, rbf, tcaR,sarA, sigB,resistance: aadD, 

aac(6′)-aph(2″), aadE, ant(9)-Ia, aph(3′)-III, cat (pC233), dfrG, erm(A), erm(B), fusB, fusC, mecA, mph(C), msr(A), tet(K), 

tet(M),toxin: splA, splE, acme, sak, scn, edinB, hlgC, lukD, lukE, lukF-PV, lukS-PV, sea, seb, sec, seg, sei, sel, sem, sen, seo, seq, 

seu, tst

–

Abscess adhesins: clfB, cna, fnbB, sdrC, sdrD, efb, sasG, sasD, sasK,biofilm: icaADBC, icaR, rbf, tcaR,sarA, sigB,resistance: aadD, 

aac(6′)-aph(2″), aadE, ant(9)-Ia, aph(3′)-III, blaZ, cat (pC233), dfrG, erm(A), erm(B), mecA, mph(C), msr(A), str, 

tet(K),toxin: splA, splB, splE, acme, sak, scn, edinB, hlgC, lukD, lukE, lukF-PV, lukS-PV, sea, seb, sec, seg, sei, sel, sek, sem, 

sen, seo, seq, seu

ST8

Skin infection adhesins: clfB, cna, fnbB, sdrC, sdrD, efb, sasG, sasD, sasK,biofilm: icaADBC, icaR, rbf, tcaR, sarA e sigB,resistance: aadD, 

aac(6′)-aph(2″), ant(9)-Ia, aph(3′)-III, blaZ, cat (pC233), dfrG, erm(A), erm(B), fusB, fusC, mecA, mph(C), msr(A), str, 

tet(K),toxin: splA, splB, splE, acme, sak, scn, edinB, hlgC, lukD, lukE, lukF-PV, lukS-PV, sea, seb, sec, seg, sei, sel, sek, sem, sen, 

seo, seq, seu, tst

ST152

Pus adhesins: clfB, cna, fnbB, sdrC, sdrD, efb, sasG, sasD, sasK,biofilm: icaADBC, icaR, rbf, tcaR,sarA, sigB,resistance: aadD, aadE, 

ant(9)-Ia, aph(3′)-III, blaZ, cat (pC233), erm(A), erm(B), fusB, fusC, mecA, mph(C), msr(A), str, tet(K),toxin: splA, splB, splE, 

acme, sak, scn, edinB, hlgC, lukD, lukE, lukF-PV, lukS-PV, sea, seb, sec, seg, sei, sel, sek, sem, sen, seo, seq, seu, tst

–
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in acute disease than in the maintenance of the strains in the host 
(Arciola et al., 2015). The association between icaA, icaB, icaC, 
icaD, and icaR was seen in strains isolated from raw milk and skin 
infections (Supplementary Material 4). Here, we identified that 
sasG and fnbB were very common in all groups evaluated 
(Figure 4) with the former having a frequency > 90% in abscess 
and pus isolates. Both sasG and fnbB were associated with 
invasive disease (Rasmussen et al., 2013) and the results showed 
a low correlation between these genes and clinical mastitis and 
raw milk isolates, with no association with rbf, tcaR, sarA and sigB 
genes and icaR (Supplementary Material 4) suggesting the 
importance of surface proteins in biofilm formation 

(Vergara-Irigaray et al., 2009; Geoghegan et al., 2010). Previous 
findings reported a high frequency of association of adhesion 
(ebpS, atl, pls, sasH and sasF) and biofilm-related genes 
(icaABCD) in Staphylococcus spp. from clinical mastitis (Pizauro 
et al., 2021). These results were also observed in the present study 
in clinical isolates in comparison with other sources, supporting 
the hypothesis that a more complex adherence and persistence 
mechanism may be required for S. aureus to be able to infect and 
persist in the bovine udder. That said, the staphylococci 
pangenome of clinical and subclinical mastitis isolates is still 
open so more sampling is required for more 
comprehensive analyses.

FIGURE 6

Heat map of the correlation, by the Spearman test, of the presence of S. aureus adhesion, biofilm, toxin, and antimicrobial resistance genes in 
clinical mastitis isolates.
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The toxin genes aur, hglA, hglB and hglC toxin genes were the 
only ones present in >90% in all groups evaluated. These genes 
were associated with the cflA, fnbA, ebpS, spa, sdrC, coa, emp, 
vWF, atl, sasH, sasA and sasF adhesin genes in clinical mastitis 
isolates (Figure  5). Aureolysin (expressed by the aur gene) 
modifies the adhesion factor CflB and activates other proteases 
that potentiate the virulence of S. aureus (McAleese et al., 2001). 
The proteins expressed by the hglA, hglB and hglC genes are 
bi-component leukotoxins that can form pores in the cell 
membrane and, consequently, lyse cells (Staali and Colin, 2021). 
Accordingly, the association of these genes products in clinical 
mastitis may be important targets for the development of vaccines 
and therapeutic agents (Ahmad-Mansour et al., 2021). Another 
association observed was the enterotoxins sec, sei, sen, sem, seo and 
seu in all evaluated groups, their frequencies were also similar; 
which have been observed by other studies (Indrawattana et al., 
2013; Schwan, 2019; Ren et al., 2020). Also, previous studies have 
shown that see and sec, sel and tst are frequently present in MRSA 
strains (Hu et al., 2011), but this relationship was not observed in 
the current study. An association between the sec, sel and tst genes 
was seen only in bovine isolates, where the frequency of the mecA 
gene was low. The importance of these toxin genes in bovine 
mastitis has been highlighted previously (e.g., Fang et al., 2019). 
The lukD and lukE genes showed high association with themselves 
in isolates from abscesses, skin infections and pus; they were also 
considered significant for all groups in logistic regression but had 
higher frequencies in bovine isolates (Figure 3; Table 1). The genes 
lukF-PV and lukS-PV were correlated in all groups that were 
present, which is consistent with the literature since their products 
are secreted before joining to form the PVL toxin (Panton-
Valentine leukocidin; Kaneko and Kamio, 2004).

More antimicrobial resistance genes were observed in human 
than in bovine isolates. Notably, the aminoglycoside resistance 
genes (aadD, aac(6′)/aph(2″), aadE, ant(9)-Ia, aph(3′)-III), 
chloramphenicol [cat(pC233)], tetracyclines [tet(K), tet(M)], 
macrolides and lincosamines [erm(A), erm(B), mph(C)), msr(A)], 
trimethoprim (dfrG) and β-Lactams (blaZ, mecA) were detected 
mostly in human isolates. Nevertheless, bovine strains presented 
β-lactam (blaZ), macrolide (mphC), macrolide, lincosamide, and 
streptogramin B (msrA), aminoglycoside (aadD), and tetracycline 
(tetK), all that have been described before (Pizauro et al., 2019). 
Previous studies detected high prevalence of aadD genes, aac(6′)/
aph(2″), tet(M), msr(A), aph(3′)-III, erm(A) and erm(B) in 
S. aureus from patients admitted to ICUs (Abiri et al., 2017); as 
well as the presence of tet(K), tet(M), mph(C), msr(A) and other 
genes in nosocomial strains have been reported (Lozano et al., 
2012). These relationships were also observed in the present study, 
and the tet(M) gene showed a high correlation with the erm(A), 
dfrG and ant(9)-Ia genes in pus, skin and abscess isolates with the 
addition of the cat(pC233) gene. In summary, the results of this 
study reinforce the growing presence of resistance genes in human 
strains, while pointing to a relatively low level of resistance genes 
in strains of bovine origin (Sweileh, 2021). There was an 
association of ant(9)-Ia, mecA, tet(M) and tet(K), erm(B), lsa(E) 

and lnu(B) genes, (which confer resistance to aminoglycosides, 
β-lactams, tetracyclines and macrolides and lincosamides) in the 
clinical mastitis group (Figure 5). Similarly, the ACME, msr(A) 
and mph(C) genes in pus isolates showed a low frequency.

The phylogenomic analysis was consistent with zoonotic 
transmission that the S. aureus is known for (Silva et al., 2022). 
This could be attributed to the evidence that suggests that some 
S. aureus strains are adapted to colonize and infect certain host 
species, whilst other lineages are non-specific (Schmidt et  al., 
2017). This behavior was highlighted in this study (Figure 5) with 
a high frequency observed for ST152 in skin lesions, ST 59 in pus 
suggesting their host specificity. Nevertheless, it was possible to 
observe that ST97 is predominantly associated with clinical 
mastitis, subclinical mastitis, and raw milk isolates and ST8 is 
predominantly associated with abscess and pus which indicates 
that they may be non-specific. In addition, some strains, from 
different origins share the same ST (e.g., ST8, ST15, and ST97; 
Figure 5). Bovine isolates were frequently ST97 and ST151, while 
most ST8, ST59, ST152, ST239 were from human sources. That 
said, these sequence types have been associated with both hosts 
consistent with zoonotic transmission in previous studies 
(Ndahetuye et al., 2021). The ST59, ST239, ST5, ST228, ST630, 
ST30, ST80, ST45 and ST88 were often from human cases in the 
current study. ST59 has been frequently observed in the 
community and more frequently in food samples (Pang et al., 
2020). ST239 is globally disseminated and resistant to many 
antimicrobials commonly used in hospitals (Wang et al., 2014). As 
well, ST228, has high transmissibility (Abdelbary et al., 2020), 
while ST630 has high pathogenicity (Zong et al., 2020) and ST45 
responsible for serious invasive diseases (Effelsberg et al., 2020). 
ST80 and ST88 seem to be mainly associated with the community 
(Stam-Bolink et al., 2007) and with animals, food and livestock 
ranchers (Otalu et al., 2018). ST151, ST126, ST479, ST20, ST71, 
ST133, ST504, ST115, ST425, ST737 and ST3183 were identified 
only in bovine isolates. ST151 has been frequently reported as 
bovine lineage common in cases of mastitis, susceptible to the 
acquisition of vancomycin resistance genes (Guinane et al., 2008); 
similar to the reported distribution of ST126 in bovine milk (Silva 
et al., 2016). Mainly described as clinical and subclinical mastitis 
strains, ST71 belongs to the same lineage as ST97, with more and 
more isolates demonstrated to be MRSA (Cormican and Keane, 
2018), and in the present work they were present in bovine 
isolates. ST479 was only seen in milk samples (Chenouf et al., 
2021); ST115 was consistent with bovine isolates (Smith et al., 
2005) and ST3183 was recently identified in raw milk samples 
(McMillan et al., 2016). ST20 was cited in strains bovines and 
humans (Aung et al., 2019), and ST133 was cited in several hosts 
and environmental samples (Roberts et  al., 2013). ST425 is 
currently characterized as a lineage associated with humans and 
animals (Paterson et al., 2014). Finally, ST737 was reported to 
be associated with the community, hospital environment (Karbuz 
et al., 2017) and cattle (Türkyilmaz and Erdem, 2013).

Our findings suggest that the cflA, fnbA, ebpS, spa, sdrC, coa, 
emp, vWF, atl, sasH, sasA and sasF adhesion genes, as well the aur, 
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hglA, hglB, and hglC toxin genes are associated with clinical 
mastitis, and thus could be  useful for screening tests and as 
candidates for more effectives vaccines. Further, the surface 
protein genes sasG and fnbB appear to be  necessary for the 
interaction of S. aureus with cattle. It is also notewothy that the 
blaZ and mecA genes are frequently present in pus isolates. Finally, 
some STs have an epidemiological relationship with the type of 
disease, also showing zoonotic behavior.
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