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Microbiomes can enhance the health, fitness and even evolutionary potential 

of their hosts. Many organisms propagate favorable microbiomes fully or 

partially via vertical transmission. In the long term, such co-propagation 

can lead to the evolution of specialized microbiomes and functional 

interdependencies with the host. However, microbiomes are vulnerable to 

environmental stressors, particularly anthropogenic disturbance such as 

antibiotics, resulting in dysbiosis. In cases where microbiome transmission 

occurs, a disrupted microbiome may then become a contagious 

pathology causing harm to the host across generations. We  tested this 

hypothesis using the specialized socially transmitted gut microbiome of 

honey bees as a model system. By experimentally passaging tetracycline-

treated microbiomes across worker ‘generations’ we  found that an 

environmentally acquired dysbiotic phenotype is heritable. As expected, 

the antibiotic treatment disrupted the microbiome, eliminating several 

common and functionally important taxa and strains. When transmitted, 

the dysbiotic microbiome harmed the host in subsequent generations. 

Particularly, naïve bees receiving antibiotic-altered microbiomes died 

at higher rates when challenged with further antibiotic stress. Bees with 

inherited dysbiotic microbiomes showed alterations in gene expression 

linked to metabolism and immunity, among other pathways, suggesting 

effects on host physiology. These results indicate that there is a possibility 

that sublethal exposure to chemical stressors, such as antibiotics, may 

cause long-lasting changes to functional host-microbiome relationships, 

possibly weakening the host’s progeny in the face of future ecological 

challenges. Future studies under natural conditions would be important to 

examine the extent to which negative microbiome-mediated phenotypes 

could indeed be heritable and what role this may play in the ongoing loss 

of biodiversity.
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Introduction

The Anthropocene provides many novel selection pressures 
on organisms, such as climate change and the application of 
agrochemicals and antibiotics (Sánchez-Bayo and Tennekes, 2017; 
Cavicchioli et al., 2019). Organisms respond in various ways to 
these pressures, ranging from the evolution of resistance to 
extinction. When animals are exposed to nutritional disturbance 
(e.g., by chemicals), in addition to potential direct effects on the 
organism itself, their gut microbiome may be affected. Dwelling 
at the interface between host epithelia and the external 
environment, microbial symbionts (microbiomes) can affect host 
health by influencing traits such as nutrition, immunity and 
behavior (Round and Mazmanian, 2009; Flint et  al., 2012; 
Tremaroli and Bäckhed, 2012). Microbial communities can 
change rapidly in composition or in gene-expression patterns 
when responding to ecological forces. Therefore, a microbiome 
can extend host evolutionary potential and may facilitate rapid 
host acclimation to environmental change (Alberdi et al., 2016; 
Henry et  al., 2021). Specific gut microbial communities can 
provide hosts with novel functions, such as mediating insecticide 
resistance (Kikuchi et al., 2012; Wang et al., 2020) or promoting 
tolerance to thermal stress (Zare et al., 2018; Zhang et al., 2019; 
Raza et al., 2020). Such microbial rescue effects have the potential 
to stabilize host dynamics and may explain population persistence 
in changing environments (Mueller et al., 2020). Due to the wide 
range of functional benefits they provide, microbiomes are often 
tightly curated by the host, for example by management and 
vertical transmission between generations (Foster et  al., 2017; 
Rosenberg and Zilber-Rosenberg, 2021). In general, transmission 
of microbiomes across generations will transmit the community 
and its associated functions – which may be positive or negative 
for the host depending on the conditions.

Indeed, a microbiome is not always beneficial for the host. 
Some organisms even completely lack it (Hammer et al., 2019) and 
the functional benefit provided by a microbiome may also 
be  dependent on environmental conditions. For example 
experiments in mice show that adapted microbiomes efficiently 
harvest energy from food but causing obesity in recipient 
individuals when being transferred (Turnbaugh et  al., 2006). 
While such efficiency may be beneficial under food restriction, it 
could lead to health problems in times of plenty. Importantly, 
evolved cooperation between hosts and symbionts can result in 
wide reciprocal functional inter-dependencies. In such cases, 
disturbances to the microbiome can compromise host health and 
development by, e.g., loss of important microbiome-mediated 
functions, or microbial production of harmful substances as a 
response to environmental change (Littman and Pamer, 2011; 
Soen, 2014). As a result, vertical transfer of such sub-optimal 
microbiomes could compromise host health transgenerationally. 
Hypothetically, in extreme cases, a host population that is unable 
to escape a mal-adapted microbiome may face extinction.

Dysbiotic (defined by a loss of beneficial microbes, expansion 
of pathobionts or loss of diversity of the healthy, homeostatic gut 

condition (Petersen and Round, 2014)) parental microbiomes can 
affect the microbiome composition and phenotypes of offspring 
across systems. For example, female mice inoculated with 
antibiotic-disturbed microbiomes will transfer this dysbiosis to 
the offspring causing enhanced colitis (Schulfer et al., 2018). In 
fish, chemical exposure causes dysbiosis which persists in F1 
offspring with correlating intestinal problems (Chen et al., 2018) 
and even result in alterations in the F2 intestinal epigenome, 
transcriptome and morphology (Guzman, 2021). Diet induced 
microbiome changes modulate transgenerational cancer risk in 
mice (Poutahidis et al., 2015). In addition, another interesting 
study in flies showed antibiotic-mediated depletion of a 
commensal bacterial genus can cause non-Mendelian, 
transgenerational inheritance of a stress-induced phenotype 
(Fridmann-Sirkis et al., 2014).

By their design, antibiotics pose particular threats to 
microbiomes. Antibiotic pollution is omnipresent in ecosystems 
due to heavy usage in medicine and agriculture (Kraemer et al., 
2019) and they are known to decrease microbial diversity, to 
compromise host-microbiome interactions, to weaken immune 
system homeostasis (Modi et al., 2014) and impair colonization 
resistance (Bäumler and Sperandio, 2016). Still so far, the focus in 
most studies on stress factor effects on microbiomes usually lays 
on immediate effects during an individual’s life (Francino, 2016), 
and in such cases direct effects of stressors on the host cannot 
clearly be  disentangled from indirect effects via a disturbed 
gut microbiome.

Here, we set out to examine whether the deleterious effects of 
a disrupted microbiome can persist transgenerationally, using 
honey bees as a tractable model system. Honey bee microbiomes 
are socially transmitted between worker ‘generations’, whereby 
newly eclosed workers acquire microbiomes from their colony-
mates and the direct hive environment. While this is a different 
vertical transmission approach from the classical parent-to-
offspring one, it was successfully leading to strong co-evolution 
between corbiculate bees and their microbiomes (Koch et  al., 
2013; Kwong et  al., 2017). The adult honey bee microbiome 
consists of ~8 bacterial phylotypes that are involved in key 
biological functions such as nutrition, digestion, and immunity 
(Engel et  al., 2016; Emery et  al., 2017; Kešnerová et  al., 2017; 
Raymann and Moran, 2018). Because young adults emerge from 
pupation without a microbiome, they can reliably be inoculated 
with a microbiome of choice in the lab (Powell et al., 2014; Zheng 
et al., 2018; Kowallik and Mikheyev, 2021). Thus, it is possible to 
serially transfer microbiomes across worker ‘generations’ to study 
how microbial changes in response to environmental stressors 
affect host phenotypes and health. In addition, honey bees are 
important pollinators and are exposed to diverse chemicals in the 
agricultural landscape as well as by beekeepers. It could be shown 
that antibiotics have strong effects on the honey bee microbiome 
(Powell et al., 2021; Tian et al., 2012; Moullan et al., 2015; Li et al., 
2017; Raymann et al., 2017; Baffoni et al., 2021; Jia et al., 2022) and 
that such dysbiosis can even be  experimentally transferred 
between workers (Jia et al., 2022).
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In our study we  used controlled lab experiments passaging 
microbiomes affected by antibiotics from one worker cohort to the 
next and examined mediated effects on host physiology by exposing 
naïve bees receiving these microbiomes to high levels of antibiotic 
stress. This design allowed us to isolate changes in the microbiome 
from host responses and from environmental changes. We found 
that the microbiome was disturbed after antibiotic exposure leading 
to compositional and functional changes. These were both 
transmitted to subsequent host generations, leading to some changes 
in host gene expression and to high mortality under stress.

Materials and methods

To test how honey bee microbiomes respond under antibiotic 
pressure and how this affects host phenotypes across generations, 
we  conducted experiments in which microbiomes were 
transferred over two host cycles (worker “generations”) under 
sub-lethal chemical administration. In the third cycle, to examine 
whether past chemical exposure affects host survival, we applied 
lethal levels of the chemicals to which prior “generations” had 
been exposed. We  quantified changes in both host gene 
expression and microbial composition using RNA-seq and 16S 
amplicon sequencing, respectively.

Experimental setup

The first experiment (Figure 1) was conducted in February/
March 2019 at Australian National University in Canberra, 
Australia. See also the Supplementary information for more 
methodological details. The same, chemically untreated Apis 
mellifera ligustica colony was used throughout the whole 
experiment to avoid host genetic background changes. We started 
with a cohort of microbiome depleted individuals of the same age 
in each cycle. Late-stage pupae (dark eyes but lacking movement) 
were carefully removed from brood frames and allowed to develop 

under sterile conditions in the lab. Workers eclosing within 24 h 
were randomly distributed into six cages (three independent cages 
per treatment with ~25 bees/cage) and provided with filter-
sterilized 0.5 M sucrose solution (Supplementary Figure S1). 
When all bees were distributed, the sucrose feeders were replaced 
with sterile sucrose or antibiotic-infused sucrose. We  used a 
tetracycline hydrochloride concentration previously published in 
a honey bee microbiome study (450 μg tetracycline / mL sucrose 
(Raymann et al., 2017)). Concurrently, 10 nurse bees from the 
same hive were surface sterilized, and their dissected hindguts 
were macerated in 1:1 PBS/sucrose solution, mixed with gamma-
irradiated bee bread (previously collected from colonies from the 
same apiary and then sterilized with 35kGY) and equally 
distributed across all six cages. On the following day, the 
remaining food was discarded and the microbiome feeding 
method was repeated for a second time for 24 h using again 10 
nurse bee guts. On both days, small amounts of the microbiome 
pools were kept for later determination of the start microbiome. 
After the inoculation period the bees received sterile pollen and 
sucrose with or without antibiotics. Daily, the tetracycline solution 
was freshly prepared, dead bees were removed and fresh sucrose 
and sterile bee bread were offered ad libitum. Bees were 
maintained under these conditions for 6 days in cycle one and 10 
days in cycle two, differences due to the need to have enough 
pupae of the same age and hive background ready for the next 
cycle. However, the aim was to provide enough time that the 
microbiome can be fully established. We previously experienced 
that when newly emerged bees receive a microbiome pool for 48 h, 
they show the full adult bee microbiome in composition and 
abundance after 7 days (Kowallik and Mikheyev, 2021). It is also 
known that under natural conditions, adult bees get colonized 
within the first 2 days after emergence which is followed by rapid 
establishment within 4 to 6 days post-eclosion (Powell et al., 2014). 
We therefore gave a minimum of 6 days to allow inoculation, 
internal growth and establishment of the microbiome. For 
microbiome transfer in cycle two the newly emerged bees received 
the microbiome from the previous cycle to mimic 

FIGURE 1

Design of the main experiment. Pupae emerge in the lab and are first inoculated for 48 h with a natural microbiome from hive siblings. Three cages 
per treatment were used. Throughout cycle 1 and 2, bees are continuously fed with sterile pollen and sucrose containing tetracycline or not 
(control). These exposed and control microbiome communities get passed to the following cycle of lab-emerged bees (cage to cage transfer). In 
cycle 3, bees that received control or pre-exposed microbiomes are kept naïve toward the chemical until they are administered high doses of 
tetracycline at the end.
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generation-spanning microbiome transmission. For this, three 
bees in each cage were sacrificed, surface sterilized, and their 
dissected hindguts were mixed with sterile pollen and 
administered to one bee cage of the next cycle for 48 h (cage to 
cage transfer provided three independent cage replicates per 
treatment). We always kept small amounts of these transfer pools 
for later sequencing. All other surviving bees in each cage at the 
end of cycle 1 and 2, as well as small amounts of the gut transfer 
pools were snap-frozen in liquid nitrogen and stored in a − 80° C 
freezer until further processing. In the beginning of the third 
cycle, control and exposed microbiomes from the previous cycle 
were transferred again to newly emerged bees as stated above. 
However, in cycle three, all cages received sterile food without 
toxins for 6 days. On day six, three individuals per cage were 
collected and snap frozen to examine the established microbiome 
community (“cycle 3 before stress”) at this time point. 
Subsequently, all cages were then challenged with a high dose of 
the stressor (20 mg tetracycline per mL sucrose), a concentration 
identified to cause 50% mortality in 24 h (LD50) during a pilot 
study (see Supplementary Methods). Due to the high mortality in 
the “exposed microbiome” cages, we counted survival after 20 h, 
with the surviving bees (“cycle 3 after stress”) being snap-frozen 
and stored at −80° C until further extractions.

We calculated the survival proportion for each day of the 
experiment before high stress application and plotted the mean of 
the three cages for both treatments for each cycle with standard 
deviations. To compare the control and tetracycline treatment 
we performed two-sided Fisher’s exact tests on alive/dead count 
data of the three cages for each day. For statistical analysis of the 
final survival data after high stress application, we used a Bayesian 
logistic regression approach to examine effects of past chemical 
exposure on survival in the face of lethal stress levels. To account 
for between-cage heterogeneity within treatments, we  first 
estimated mortality levels for each cage regardless of treatment 
(survival ~ cage) using the brms package (Bürkner, 2017). 
We  chose standard minimally informative priors and verified 
adequate model performance using diagnostic plots and statistics 
provided by the package. We then tested the hypothesis that cage 
mortality coefficients were the same in control vs. experimental 
treatment, using the brms hypothesis function, which computes 
the posterior distribution of the difference between Bayes factor 
levels in the contrast. This approach parallels planned linear 
contrasts in regression analysis. In addition, we  conducted a 
non-parametric analysis using two-sided Fisher’s exact tests on 
alive/dead count data (altogether 53 control-gut and 47 
tetracycline-gut individuals).

Mechanisms underlying phenotypic 
effects of tetracycline-exposed 
microbiome transfer

To exclude leftover tetracycline or derived by-products inside 
the transferred guts as proximal drivers of stress-induced 

mortality we  ran an additional control experiment. In March 
2021 in Okinawa Japan, we started the experiment as described 
before by grafting pupae. Experimental procedures were generally 
identical to the previous experiment. After sterile emergence, bees 
were distributed equally to eight cages with ~28 bees each. 
Microbiome transfer from nurse bees of the same hive was done 
as before. Four cages received tetracycline and the other sterile 
food only. After 6 days, the volume of four macerated guts (one 
more to account for any loss in the filter) per cage was filtered 
using a 0.2 um syringe filter to remove microbial cells. After 
surface-sterilizing and dissecting 20 nurse bees from the same 
colony, we pooled the hindguts to receive a healthy microbiome 
pool as base for the next cycle’s bees. This pool was equally split 
into eight parts, and each got mixed with the filtered gut solution 
of one cage from cycle 1 (Figure 2). For the next cycle, this resulted 
in four cages of microbiome + filtered control (supernatant of 
cycle 1 bee guts receiving sterile food) and four cages of 
microbiome + filtered tetracycline-exposed (supernatant of cycle 
1 tetracycline-exposed guts) solution. All bees received sterile 
food for 6 days and high tetracycline dose on day six. After 15 h, 
mortality was recorded. The same statistical approach as described 
above was used by applying Bayesian logistic regression and 
Fisher’s exact tests (N = 4 cages; altogether 60 control-filter-gut and 
50 tetracycline-filter-gut individuals).

Extractions and sequencing

For extractions of bees from the first experiment we used the 
Qiagen AllPrep PowerFecal DNA/RNA Kit on abdomens of 
frozen bees. Every bee was first rinsed with ethanol and three 
subsequent rinsing steps in sterile water to clean the surfaces and 
then the whole abdomen or the microbiome transfers were 
processed following the recommended settings of the protocols, 
including bead beating using the Geno/Grinder®. DNA was 
eluted in 30 μl TE buffer. For 16S sequencing we examined the 
microbial community composition of 75 samples. These were 
one sample of start microbiome composed of the nurse 
microbiome pool (day 1 and day 2 pooled together), six nurse 
bees from the same hive as natural controls, two ZymoResearch 
Mock DNA controls, 12 microbiome transfer pools (one for each 
cage being composed of three pooled guts) for the cycle to cycle 
microbiome transfers in the beginning of cycle 2 and 3 (=24 
pools together). In addition, we sequenced 54 individual bee 
abdomen from four different time points during the experiment 
(end of cycle 1 (9 control, 3 tetracycline), end of cycle 2 (9 
control, 9 tetracycline), cycle 3 before high tetracycline 
application (9 control, 9 tetracycline) and after (8 control, 1 
tetracycline)). We aimed to sequence three individuals per cage 
and time point, however, as the number of sampled individuals 
relied on the numbers of bees surviving, minus the ones used for 
gut transfer and sometimes a dissection may have gone wrong 
or a bee escaped, we ended up with fewer numbers of sequenced 
samples in some cases.
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DNA of samples was submitted to DNA Sequencing Section 
at the Ramaciotti Centre for Genomics in Sydney Australia. 
Library preparation was performed based on Illumina protocol 
with 25-μl reactions. Illumina barcoded primers (Klindworth 
et al., 2013) were used to create a single amplicon of approximately 
460 bp encompassing the V3-V4 region of bacterial 16S 
rRNA. Samples were pooled to equimolar concentration and 
sequenced on Illumina MiSeq v3 2 × 300 bp platform. Reads were 
demultiplexed on the basis of barcode sequences, allowing for 
one mismatch.

16S amplicon sequence analysis

Demultiplexed reads were processed using QIIME2 version 
2019.1 (Bolyen et  al., 2019), denoising of the fastq files was 
performed using the denoise-paired command from the DADA2 
software package (Callahan et al., 2016), wrapped in QIIME2, 
including removal of chimeras using the “consensus” method. 
Decreased quality scores (below 20) of the sequences at the 

beginning to remove primers and end were truncated (trim-
left-f = 17, trim-left-r = 21, trunc-len-f = 275, trunc-len-r 225). This 
resulted in a remaining overlap of ~40 bases in merged sequences. 
The result is an amplicon sequence variant (ASV) table, a higher-
resolution analog of the traditional OTU table. For taxonomic 
assignment, the QIIME2 q2-feature-classifier plugin (Bokulich 
et al., 2018) and the Naïve Bayes classifier (Wang et al., 2007), 
which we trained with our primers previously, were used on the 
SILVA release 132 (Quast et al., 2013; Yilmaz et al., 2014).

All following graphical and statistical comparisons were 
performed in R using the phyloseq package (McMurdie and 
Holmes, 2013). In short, we  first removed all non-bacterial 
sequences, mitochondrial and chloroplast sequences, and ASVs 
not present in any sample (likely artifacts) from the datasets using 
the subset_taxa and prune_taxa functions. We plotted rarefaction 
curves of all samples using the ranacapa function ggrare 
(Kandlikar et al., 2018) on the minimum sample depths (12,351 
reads). Alpha diversity of the rarefied samples was explored by 
plotting Observed species numbers and Shannon’s diversity index. 
Pairwise, two-sided Wilcoxon rank sum tests were used to test for 

A

B

C

D

E

FIGURE 2

Control experiment with filtered gut solution. Emerged bees with transferred natural nurse microbiome are raised in four cages with control or 
tetracycline diet for 6 days (A). On day six a bee gut pool for each cage is prepared as done in the first experiment and filtered to exclude microbes 
but to keep all potential tetracycline and derivates potentially present in the guts (B). A microbiome pool of hive sibling guts is generated to allow a 
healthy background microbiome for newly emerged bees for the next cycle (C). This microbiome pool is equally split and each part gets mixed 
with the filtrate of one control or tetracycline cage (D). The bees receive sterile food for 6 days and are exposed to high tetracycline stress in the 
end and mortality is recorded (E).
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significant alpha diversity differences between treatments in each 
cycle. As rarefying sample counts is not recommended, unless 
necessary, (McMurdie and Holmes, 2014) we converted data to 
proportions for normalization purposes. On these proportions, 
non-metric Multidimensional Scaling (NMDS) was performed on 
Bray-Curtis distances for ordination plots.

To test for variation within groups, we used the betadisper 
function in the Vegan package, version 2.5–5 in R on the Bray-
Curtis distance matrix on proportion data to calculate distances 
to group centroids per treatment for each cycle. Subsequently, 
output was plotted as ordination for visualization and permutest 
was run for each cycle to check for homogeneous distribution of 
samples across the two treatments. Multifactor permutational 
multivariate analysis of variance (PERMANOVA) on Bray-Curtis 
distances with 999 permutations using the ADONIS function 
were performed to test for effects of experimental factors on the 
gut community. As we  sequenced single bees as well as 
microbiome transfers after each cycle, we first tested whether there 
is a difference according to method for each treatment. We also 
tested for cage effects in the data set in each cycle and treatment. 
In addition, we compared each treatment against the respective 
controls for all 3 cycles. Finally, we tested whether the microbiomes 
of each treatment changed across cycles. For taxonomic 
visualization we  plotted the relative abundances of all genera 
accounting for at least 1% of the abundance across treatments and 
cycles. We  then extracted the seven dominant taxa from the 
rarefied sample set and plotted their individual, total abundances 
across cycles with subsequent two-sided Wilcoxon rank sum tests 
between treatments and the respective controls. To further 
investigate response variation in species as well as ASV level (also 
see Supplemental results for more details), we pooled all cycles 
after checking that no cycle-specific differences could be observed 
and extracted the abundant species for each core genus (>1,000 
reads) and plotted their abundances across the two treatments. 
We  used online megablast against the full NCBI Nucleotide 
collection database on abundant ASVs (>1,000 reads) for each 
genus for better taxonomic resolution (sequences and alignment 
output in supplements). Similarly, we  also plotted the total 
abundances of ASVs across the two treatments.

RNA-sequencing and analysis

To understand the molecular basis of physiological effects that 
the microbiome’s antibiotic treatment history has on hosts, 
we conducted RNA-sequencing of six honey bees in cycle 3 before 
high stress application. We sequenced one individual per cage 
(three per treatment), comparing bees with tetracycline-stressed 
and control microbiomes.

For RNA library preparation, the QIAseq® Stranded mRNA 
Select Kit was used following the standard protocol. Sequencing 
was done on a Nextseq 2000 with V2 75 cycles (75-bp Single 
Read). Reads were quantified using kallisto (Bray et al., 2016) with 
the honey bee transcriptome (version Amel_HAv3.1) as a 

reference, using default parameters. The R package DESeq2 was 
used to normalize and determine which genes were differentially 
expressed among control and treatment samples, setting the 
control group as reference to be compared against. Genes were 
considered differentially expressed at an FDR adjusted value of p 
<0.05. To visualize the differences in expression profile between 
the samples, the plotPCA function in DESeq2 was used to generate 
principal component analyses. MA plots visualizing base-2 log 
fold-change (LFC) (y-axis) versus normalized mean expression 
(x-axis) in the tetracycline treatment against the control were 
plotted using the ggmaplot function on previously shrinked effect 
sizes using the lfcShrink function for better visualization and 
ranking of genes. To study the amount by which each of the 
significantly different determined genes deviates in a specific 
sample from the gene’s average across all samples we created a 
heatmap using the pheatmap function on regularized logarithm 
rlog() transformed data. Gene ontology (GO) enrichment analysis 
of the significantly differentially expressed genes were carried out 
using GOstats, GSEABase and Category R packages (Falcon and 
Gentleman, 2007). Biological processes associated with these GO 
terms were summarized and visualized using REVIGO (Supek 
et al., 2011).1 The semantic similarity was measured using the 
Resnik’s measure (SimRel) (Resnik, 1999) and the threshold used 
was C = 0.7 (medium). The results were then used to produce a 
scatter plot using the ggplot2 package in R.

Results

Microbiomes affect bee immunity and 
survival under high toxin stress

Bee guts were transferred three times to new hosts after 
exposure to sub-lethal doses of tetracycline. Bee survival 
during the 3 cycles showed higher mortality under tetracycline 
in all cycles in comparison to respective control 
(Supplementary Figure S2). At the end of these transfers, in cycle 
3, naïve recipient bees were given lethal doses of the tetracycline. 
Survival was compared between bees receiving chemical-exposed 
microbiomes and those receiving unexposed control microbiomes. 
The microbiomes with previous tetracycline exposure significantly 
decreased the survival of the host bees (Bayes Factor (BF) 
comparing survival in control vs. dysbiotic treatments 95% CI 
-26.84 – −4.38) (−34% survival, p < 0.001, Fisher’s exact test on 
alive/dead count data) (Figure 3).

We further experimentally investigated if the microbiome 
itself or rather tetracycline residues inside the transferred guts 
affected the bee survival. We  found no support for the latter 
hypothesis, as the filtered gut solutions did not decrease survival 
under high stress (BF 95% CI -4.14 – 3.88) (Fisher exact test, 
p = 0.64).

1 http://revigo.irb.hr
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Tetracycline affects the bacterial 
community composition

Challenging bees with tetracycline over two cycles 
(“worker generations”), affected microbial community 
composition. We  examined the gut microbial community 
composition of 54 individual bees from four different time 
points during the experiment as well as six hive nurse bees, the 
start microbiome, 12 microbiome transfer samples and two 
mock DNA controls. The V3-V4 region of the bacterial 
16SrRNA gene was amplified and sequenced on the Illumina 
MiSeq platform, generating an average of 30,462 reads per 
sample (range, 14,253 to 65,293). The total number of ASVs 
was reduced from 1717 to 460 after filtering out mitochondria, 
chloroplasts, artifacts and reads not assigning to the kingdom 
Bacteria. The two mock community control DNA samples 
(ZymoResearch cat D6306) sequenced in this study showed no 
qualitative differences compared to expected theoretical 
proportions provided by the mock community manufacturer 
(Supplementary Figure S3). ASVs matching non-mock taxa 
belonged to honey bee core symbionts but accounted for only 
0.23% of the abundance, representing neglectable cross-
contamination during library preparation or sequencing. 
Rarefaction plots on the minimum sample count 
(Supplementary Figure S4) show quickly reaching converged 
lines in all samples, indicating sufficient depth. We observed 

no significant differences between whole bee and microbiome 
transfer samples for control as well as tetracycline treatments 
(PERMANOVA; control: p = 0.52, R2 = 0.03, F = 0.75; 
tetracycline: p = 0.55, R2 = 0.03, F = 0.72). Based on these results 
we continued analyzing the transfer and bee samples together.

Microbial alpha diversity was much lower in the tetracycline 
treated individuals at all time points, as measured with the 
Shannon index (Figure  4) and numbers of observed species 
(Supplementary Figure S5). This effect could be  seen using 
Non-metric Multidimensional Scaling (NMDS) with tetracycline-
treated samples being distinct from control samples (Figure 4). 
PERMANOVA on Bray-Curtis distances identified tetracycline-
stressed microbiomes as being significantly different from controls 
(cycle 1: p = 0.003, F = 31.2, R2 = 0.71; cycle 2: p < 0.001, F = 62.5, 
R2 = 0.74; cycle 3; p < 0.001, F = 41, R2 = 0.72). Treatments did show 
significant effects on groups dispersion in cycle 1 (permutest; 
p < 0.001, F = 11.4), and 3 (p = 0.01, F = 8.5) but not in cycle 2 
(p = 0.64, F = 0.19) (Supplementary Figure S6) indicating that high 
dispersion may affect the PERMANOVA statistical output.

At the end of the first cycle, several bacterial core genera 
disappeared from guts of antibiotic-fed bees, namely Frischella, 
Bartonella, Snodgrassella and Commensalibacter (Figure 5). The 
abundances of almost all core symbionts were significantly 
affected by tetracycline (Supplementary Figure S9 and 
Supplementary Table S1 for stats). On a finer scale, we observed 
in several bacterial species some ASVs being susceptible to 
antibiotic treatment and getting eliminated, while others were 
unaffected or even increased in relative abundance 
(Supplementary Figure S10).

Tetracycline affected microbial 
communities affect host gene expression

We sequenced mRNA of one honey bee per cage (three per 
treatment and control respectively) in cycle three before high 
stress application, with an average of 99.5 million (min 4.8 million, 
max 567 million) raw reads. While most of these reads mapped to 
bees, the pathogen Nosema could be  detected as a higher 
percentage of the control reads (0.35, 0.95, 0.11 percent aligned) 
in comparison to the tetracycline treated bees (0, 0, 0.04 percent 
aligned) in the taxonomy analysis of NCBI on the submitted raw 
reads. The pseudoalignment rates of the samples were 64 土
5.1% (s.d.).

Differential gene expression analysis showed that receiving the 
antibiotic-disturbed microbiomes affects host gene expression. 
Altogether 30 genes were significantly differently expressed 
(p > 0.05) after FDR adjustment for multiple comparisons 
(Figure 6). Surprisingly, only three genes were down-regulated 
and are mainly involved in lipid metabolism such as phospholipase 
A2-like (LOC724436) and fatty acyl-CoA reductase 1 
(LOC724560). Some of the up-regulated genes have likely 
functions in immunity such as apidermin 1 (GeneID_551367) or 
lysozyme-like (LOC113218576), transport activities, e.g., NPC 

FIGURE 3

Past chemical exposure of a microbiome can affect future host 
survival. The Bayes factor difference between treatment and 
control groups measures whether survival in treatments was 
higher (positive axis) or lower (negative) under a high dose of 
tetracycline relative to the respective control group. 95% 
posterior distribution confidence intervals lying outside zero are 
highlighted by asterisks. Transferring tetracycline pre-exposed 
guts (N = 3 cages; altogether 53 control-gut and 47 tetracycline-
gut individuals) negatively affected bee health under high stress, 
while transferring filtered gut solution together with a healthy 
adult microbiome (N = 4 cages; altogether 60 control-filter-gut 
and 50 tetracycline-filter-gut individuals) did not affect the 
survival. 
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intracellular cholesterol transporter 2 (LOC724386) and 
metabolism such as lipase member H-A (LOC727193) or 
chitooligosaccharidolytic beta-N-acetylglucosaminidase 
(LOC725178) (Figure  6 and Supplementary Figure S11). As 
we sequenced only three individuals per treatment it is important 
to be  cautious about generalizations. However, while the 
tetracycline-pre-treated-gut bees showed more within-group 
variation in their expression profiles comparison to the control 
(Supplementary Figure S12), the significantly different genes 
showed relatively similar expression patterns within the two 
groups although both coming from three individual cage 
communities (Figure 6). See additional information such as the 
lists of up- and down regulated genes with information on gene 
description, GO term and beebase IDs in the Github folder.

Discussion

Considering the worldwide increase in variety and abundance 
of anthropogenic stresses together with the loss of biodiversity 
(Barnosky et al., 2011, 2012), there is urgent need to understand 
all potentially contributing effects. This includes consideration of 
interactions between organisms. How microbiomes affect host’s 
responses to such selection remains underexplored (Cavicchioli 
et al., 2019). Associated microbial symbionts and their functional 
relationships with their hosts are sensitive to disturbance. Given 
that microbiomes are vertically inherited, wholly or in part, in 
many organisms, any changes in composition and associated 
second-order effects on organismal health may be propagated 
across generations.

FIGURE 4

Gut microbial community composition responds to tetracycline treatment. Alpha- and beta-diversity as well as taxonomy show tetracycline 
leading to a strong dysbiosis, decreasing several taxa. Alpha diversity Shannon index accounts for abundance and evenness of ASV in samples. 
Pairwise Wilcoxon rank sum tests were used for statistical comparisons between treatments and controls (*** < p 0.001; ** < p 0.01) (cycle 1: W = 36, 
p = 0.004; cycle 2: W = 144, p < 0.001; cycle 3 before stress: W = 81, p < 0.001). NMDS on Bray–Curtis dissimilarity which considers presence/absence 
as well as abundances of ASVs, represents compositional differences between samples (beta diversity). Stress of NMDS was 0.069. Ellipses 
represent 95% confidence intervals around treatment centroids.
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Here, we  used controlled lab experiment to show that 
deleterious effects of antibiotics on the microbiome can be passed 
across generations and affect host health decoupled from any 
direct toxicity of the antibiotic.

Antibiotics reduce microbiome diversity 
on genus- species- and strain level

Consistent with the direct action of antibiotics on bacteria, 
we observed substantial changes in the honey bee gut community 
after tetracycline exposure. While in previous studies, antibiotics 
were shown to affect the honey bee microbiome (Powell et al., 
2021; Tian et  al., 2012; Moullan et  al., 2015; Li et  al., 2017; 
Raymann et al., 2017; Baffoni et al., 2021; Jia et al., 2022), it rarely 
led to the total collapse of bacterial species as we observed in our 

design. At the end of the first cycle, four bacterial genera 
disappeared from guts of antibiotic-fed bees (Figure  5 and 
Supplementary Figure S9). In general, it may be  difficult to 
compare different studies as they differ in methodology. Also, 
honey bees used in the studies may differ genetically, in their 
surrounding environment and likely in their colony’s chemical 
exposure histories which can affect the microbial strain 
composition (Tian et al., 2012; Ellegaard and Engel, 2019; Wu 
et al., 2021). Low antibiotic intake (10 ug/mL) after emergence did 
not show to affect the later establishment of the microbiome in 
honey bees (Jia et  al., 2022). However, we  used previously 
published higher concentrations (Raymann et al., 2017) which 
were administered immediately after emergence, which could 
affect the uncolonized gut environment and the overall response 
of a microbiome. Cox et  al. introduced early life as “critical 
developmental window” when antibiotics have greatest impact on 

FIGURE 5

Taxonomy of bacterial genera across the 3 cycles (cycle three before high stress application) with at least 1% relative abundance across samples 
(everything else is combined to “others”) shows several taxa disappearing under tetracycline.
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the gut microbiome of mice, leading to lasting metabolic 
consequences (Cox et al., 2014). Such time-dependent response 
difference has also been demonstrated in honey bees (Motta and 
Moran, 2020), which eclose largely without microbes and then 
acquire them from the surrounding environment and nestmates 
(Powell et al., 2014). After the high tetracycline exposure in cycle 
three, the microbiome composition did not change 
(Supplementary Figure S7). For the tetracycline-treated microbial 
communities this could be explained by the fact that we selected 
for antibiotic resistant strains in the previous cycles, however 
we also did not observe changes in the controls. While this seems 
surprising considering the extreme effects of lower antibiotic 
dosages in the cycles before, this may be caused by the fact that 
we firstly applied tetracycline to fully colonized adults in cycle 
three and secondly that we sampled 20 h after antibiotic exposure 
and DNA sequencing will also capture dead material. Other 
studies also detected a more prominent effect of antibiotics on the 
honey bee gut community several days after treatment was 
stopped which may be a result of a delayed effect of the antibiotic 
(Raymann et al., 2017). In addition, while 16S sequencing has 
limitations when it comes to fine-scale taxonomic identification 
(Ellegaard and Engel, 2016), we found extensive response variation 
at the generic, species, and ASV levels (Supplementary Figure S10). 
This is consistent with other studies that found effects of antibiotics 
(Raymann et al., 2018) and other pesticides (Cuesta-Maté et al., 
2021) vary across bee gut bacterial species and strains. These data 
together with the increase in resistance genes in antibiotic exposed 

bee microbiomes (Tian et  al., 2012; Sun et  al., 2022) indicate 
adaptation to chemical selection factors.

Negative effects of antibiotic-disturbed 
microbiomes can be transferred to 
following generations

In general, perturbations of a healthy gut environment can 
affect gene expression, protein activity, and the overall metabolism 
of a host associated gut microbiota (Franzosa et  al., 2015). 
Antibiotic exposure causes dysbiosis, with effects on host health 
(Francino, 2016; Neuman et  al., 2018), the resistome (genes 
involved in resistance responses), and gut bacterial diversity (Li 
et al., 2019; Xu et al., 2020). We found that short-term dysbiosis 
could be transferred to subsequent worker bee generations which 
is in line with previous experiments in honey bees and flies (Ourry 
et  al., 2020; Jia et  al., 2022). In our experiment, tetracycline 
disrupted the normally stable bee gut community, which did not 
recover over subsequent generations even after antibiotic 
administration was ceased. In cycle three only Bartonella could 
recover in some samples, while the other antibiotic-affected 
genera appeared permanently eliminated from the community 
(Figure 5). This transmitted dysbiosis was likely the reason of the 
higher mortality under subsequent tetracycline stress at the end 
of the experiment in naïve bees that inherited the disturbed 
microbiome (Figure 3).

A B

FIGURE 6

Differential gene expression of genes in naïve bees that received tetracycline-exposed in comparison to individuals that received control 
microbiomes. MA plots show the differential expression of the tetracycline-gut against the control-gut treatment (n = 3 (one bee per cage for both 
treatments respectively)) (A). The x axis shows the average expression over the mean of normalized counts, and the y axis shows the gene-wise 
dispersion estimate’s shrunken log2 fold change. Red and blue points indicate significant up- or downregulation (FDR ≤ 0.05 determined by 
DESeq2) of individual genes. Heatmap on rlog() transformed data shows the expression difference of each significantly different gene in a specific 
sample from the gene’s average across all samples. In addition the gene descriptions are shown (B).
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Feeding macerated honey bee guts to other bees is an 
established method of microbial transfer in laboratory studies 
(Powell et al., 2014; Zheng et al., 2018; Kowallik and Mikheyev, 
2021). However, since bees do not defecate in captivity, toxins such 
as tetracycline could conceivably accumulate in the hindgut. It is 
therefore imaginable that small amounts of left tetracycline or 
derivates may negatively affect the health of the following worker 
bee generation. We  excluded this possibility by an additional 
experiment transferring tetracycline-exposed guts filtered to 
remove bacteria and seeing no effects on mortality (Figures 2, 3). 
This supports the interpretation that the detrimental effect was 
indeed caused by the disturbed microbial community. In general, 
we  cannot exclude that we  also transmitted non-bacterial 
pathogens during microbiome transfer in our design which may 
affect host health. For the fungal pathogen Nosema a potential 
correlation has been reported between infection load and gut 
microbiome structure (Rubanov et al., 2019). However, we do not 
see a higher Nosema load in the antibiotic treated bees in our 
RNA data but rather the opposite. In addition, none of the 
significant genes in our design are common pathogen-response 
genes. The humoral immunity in honeys bees involves synthesis 
of antimicrobial peptides (AMPs) from which abaecin, apidaecin, 
defensin and hymenoptaecin usually respond to bacterial, viral and 
fungal infection (Evans et  al., 2006; Chaimanee et  al., 2012; 
Flenniken and Andino, 2013; Doublet et al., 2017).

Gut bacteria function as a protective barrier, enhancing 
nutritional provisioning and affecting the host immune system 
across animal systems (Hooper et  al., 2012; Tremaroli and 
Bäckhed, 2012; Kamada et  al., 2013) including honey bees 
(Kešnerová et  al., 2017; Raymann and Moran, 2018). 
Administration of antibiotics has been shown to reduce gene 
expression of antimicrobial peptides in bees (Li et al., 2017; Motta 
et al., 2022). We observed a significant up-regulation of genes 
having functions in immunity, biotic responses, carbohydrate 
metabolism and transport for all kind of molecules (e.g., metal 
ion, sodium ion, sterol transport) in bees receiving dysbiotic 
microbiomes (see Figure 6 and Supplementary Figure S11). Only 
three genes showed to be  down-regulated which were mainly 
involved in lipid metabolism. As our cycle three bees did not 
consume tetracycline themselves, we  can conclude that the 
differential gene expression was most likely caused by the 
microbial community changes. Changes in community structure 
such as those observed in our study can alter the provided 
microbiome function such as provision of nutrients or removal of 
toxic metabolites across systems (Willing et al., 2011). In general, 
interactions between symbionts can be  as important as the 
individual species in gut microbiomes, therefore the effects of a 
disturbed microbiome go far beyond the loss of functions 
attributable to single taxa (Gould et al., 2018). In our design, a 
disturbed cross-talk between host and microbiome could have 
affected host gene expression as the host may have had to 
compensate for missing functions. However, as we sequenced only 
one bee per cage and the expression of bees receiving tetracycline 
pre-exposed microbiomes shows higher within treatment 

variation than the control (Supplementary Figure S12) we should 
be cautious with generalizations.

The honey bee as model system

Previous work characterized the honey bee microbiome and 
developed methods such as artificial microbiome transmission 
(Engel et al., 2013; Powell et al., 2014; Kwong and Moran, 2015). 
We built on this foundation using honey bees as a model to study 
stress-induced, microbiome-mediated effects on subsequent 
generations. In our experiments we performed a purely vertical 
microbiome transfer between individuals, a rate at the extreme 
end of a continuum of strategies. While in most systems microbes 
are acquired both vertically and horizontally, high rates of vertical 
transfer are typical in honey bees (Engel and Moran, 2013). 
We did not provide the opportunity to recruit different strains 
through the environment or social contact inside the hive which 
could have led, for instance, to some recovery from the dysbiotic 
state induced by tetracycline or could have led to colonization of 
opportunistic pathogens. Although a previous study did not find 
that honey bees with antibiotic-induced dysbiosis recovered their 
microbiomes to a healthy state when being put back to the hive 
environment and that they also suffered from higher mortality in 
this natural environment compared to the control (Raymann 
et al., 2017). Beside chemically induced changes to the microbiota, 
even communities in our control treatment were also gradually 
changing in the lab. For instance, we  observed an increase of 
Bartonella abundance in all treatments in comparison to hive 
nurse siblings and the starting microbiome pool 
(Supplementary Figure S8). These changes likely reflect lab 
adaptations and emphasize the need to run proper lab controls in 
microbiome experiments (Arora et al., 2020), but also a need to 
run more natural experiments in the future. Additionally, the high 
tetracycline dosage over two worker generations may not reflect 
natural conditions, though mimicking nature was not our intent.

Controlled laboratory experiments such as microbiome 
transplants, provide the most convincing insights into functional 
host-microbiome relationships (Greyson-Gaito et al., 2020). They 
are invaluable because they can simplify the complexity and 
disentangle factors to achieve fundamental understanding which 
is still lacking in the field. However, these experiments trade 
control for natural complex conditions, which is important for 
drawing ecological and evolutionary conclusions (Carrier and 
Reitzel, 2017).

In addition to being a tractable model for microbiome research, 
honey bees are important pollinators in natural and agricultural 
ecosystems (Hung et  al., 2018). They are exposed to diverse 
agricultural chemicals including those applied to plants making up 
their diet but also the ones used by beekeepers to prevent infection or 
suppress parasites (Ortiz-Alvarado et al., 2020). Antibiotics have been 
experimentally demonstrated to disturb the core microbial bee 
microbiome, lowering diversity on species and strain level and leading 
to negative health effects (Raymann et al., 2017, 2018; Powell et al., 
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2021; Jia et  al., 2022). Facilitated by social transmission between 
workers, changes in the microbiome could theoretically quickly go to 
fixation in a population. Indeed, antibiotic resistance genes have 
accumulated in bacterial symbionts in managed honey bee colonies, 
demonstrating long-term impacts with unknown consequences (Tian 
et al., 2012; Ludvigsen et al., 2017; Daisley et al., 2020; Piva et al., 
2020). Considering the social-vertical transfer of the microbiome 
between worker generations in honey bee colonies with the fact that 
chemicals including antibiotics accumulate and persist in the hive 
environment over longer periods (Martel et al., 2006), the damage on 
the bee microbiome could theoretically go beyond one individual’s 
health affecting a whole population. In mice, diet-induced progressive 
loss of taxonomic diversity is cumulative over generations and 
indicate that taxa driven to low abundance are inefficiently transferred 
to the next generation, and are at increased risk of becoming extinct 
within an isolated population making this change eventually 
irreversible (Sonnenburg et  al., 2016). This suggests that 
multigenerational environmental exposure could indeed cause a 
stable transgenerational alteration of organism physiology via 
the microbiome.

Conclusion

Co-evolved microbiomes can offer a range of benefits to their 
hosts and vice versa. However, under disturbance this picture may 
change, and the dependent partner could suffer negative 
consequences. While it is often difficult to disentangle cause and 
consequences of chemical-induced microbiome disruption on host 
health, we provide evidence that a disturbed microbiome and its 
mediated effects on host phenotypes can get transmitted across 
generations in a lab environment. This “dark side” of a specialized, 
vertically transferred microbiome could, likewise as negative 
mutations, theoretically go into fixation affecting the health of a 
whole population if no refreshing is possible. This is particularly true 
if the whole population is affected by chemical stress, for example in 
an agricultural context. For instance, agrichemical degradation of 
microbiomes may be a plausible, silent factor underlying global 
insect declines. Future studies would be important to examine the 
extent to which negative microbiome-mediated phenotypes are 
really heritable in the field. Examining whether such heritable 
dysbiosis has the potential to threaten host populations or which 
potential rescue mechanisms may play a role to prevent such 
scenario under natural conditions would be  relevant to further 
understand organism health and conservation.
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