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management improves soil 
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Integrated soil-crop management (ISCM) has been shown as an effective 

strategy to increase efficiency and yield while its soil microbial community 

structure and function remain unclear. We  evaluated changes in soil 

physicochemical factors, bacterial community structure responses, and the 

contributions of soil properties and bacterial communities to summer maize-

winter wheat yield and GHG emissions through an ISCM experiment [T1 (local 

smallholder farmers practice system), T2 (improved management system), T3 

(high–yield production system), and T4 (optimized management system)], 

which could provide scientific guidance for sustainable development of soil 

in summer maize-winter wheat rotation system. The results showed that the 

optimized ISCM could improve the soil quality, which significantly changed 

the soil bacterial community structure to reduce GHG emissions and increase 

yield. The co-occurrence network density of T3 was increased significantly. 

The Acidobacteria (class) and OM190 (class) were enriched in T2 and T4. The 

Frankiales (order) and Gaiellales (order) were enriched in T3. However, the 

changes in different crop growth stages were different. At the wheat jointing 

stage and maize mature stage, T4 could enhance carbon-related functional 

groups, such as aromatic hydrocarbon degradation and hydrocarbon 

degradation, to increase the soil organic carbon content. And at the maize 

tasseling stage, T4 could enhance nitrogen-related functional groups. And 

soil bacteria structure and function indirectly affected annual yield and GHG 

emission. T2 and T4 exhibited a similar soil microbial community. However, 

the yield and nitrogen use efficiency of T2 were reduced compared to those 

of T4. The yield of T3 was the highest, but the GHG emission increased and 

soil pH and nitrogen use efficiency decreased significantly. Therefore, T4 

was a suitable management system to improve soil quality and soil bacterial 

community structure and function to decrease GHG emissions and increase 

the yield of the summer maize-winter wheat rotation system.
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Introduction

The increase in yield is important for population growth and 
food security. However, it is not feasible to increase yield by 
increasing input (Cui et al., 2018; Meng et al., 2018). If the increase 
in yield is due to the increase of inputs without considering the 
environmental cost, these increased inputs will have a devastating 
impact on the environment, including greenhouse gas (GHG) 
emissions (Davidson, 2009; Burney et al., 2010), biodiversity loss 
(Tian et  al., 2016), land degradation and freshwater pollution 
(Diaz and Rosenberg, 2008). There are many problems in northern 
China’s summer maize–winter wheat rotation system (MWRS), 
such as high investment, low fertilizer use efficiency, and serious 
resource waste. Therefore, reasonable agronomic management 
modes are important to improve the annual yield and fertilizer use 
efficiency of MWRS, which can ensure food security and protect 
the environment. Integrated Soil-Crop Management (ISCM) is an 
integrated management system designed to maximize the use of 
solar radiation and favorable temperatures and an effective 
crop management strategy based on “gene × environment ×  
management” and the synchronization of inputs and supplies 
between soil, environment, and applications at a given site (Chen 
et al., 2011, 2014; Cui et al., 2018). In addition, the ISCM system 
is gradually expanded and some studies have confirmed the 
applicability of this system in the maize, rice, and wheat cropping 
system in China (Chen et al., 2014; Cui et al., 2018). The previous 
studies showed that the ISCM system can promote the growth and 
development of the aboveground parts of the crop, promote root 
development, improve crop dry matter accumulation, reduce soil 
N redundancy, and ultimately achieve a synergistic increase in 
yield and efficiency (Jin et al., 2012; Liu et al., 2017, 2018a,b; Yu 
et al., 2021, 2022). Our previous research has mostly focused on 
yield and N efficiency, but crop growth and yield formation cannot 
be  achieved without changes in soil properties. In this study, 
we studied how changes in soil characteristics and microorganisms 
affect crop yield formation through ISCM long-term 
positioning experiments.

Soil microorganisms are the most reactive part of the soil 
ecosystem, driving soil biochemical processes with their own 
metabolism (Bernhard et al., 2007) and play an important role in 
soil carbon and nitrogen cycling and maintaining ecosystem 
stability (Canfield et  al., 2010; Kuypers et  al., 2018). The soil 
microbial community affects many ecosystem processes, including 
decomposition, nutrient mineralization, and plant nutrient 
acquisition and growth (Carney and Matson, 2005; Reeve et al., 
2010; Talbot et al., 2014; You et al., 2014) and are sensitive to the 
soil environment changes (Brant et  al., 2006). Agronomic 
management practices regulate the soil microbial community 
structure and function mainly by influencing soil pH, aggregate 
size and stability, moisture, organic carbon, and nutrient content 
(Hansel et al., 2008; Chu et al., 2010; Eilers et al., 2012). Fertilizer 
inputs, planting diversity, and tillage practices affect soil 
community structure and function in different ways (Mbuthia 
et al., 2015; Álvarez-Martín et al., 2016). Soil tillage regulates soil 

microbial community structure and diversity mainly by affecting 
soil physicochemical characteristics and microbial habitat 
(Somova and Pechurkin, 2001; Helgason et al., 2009). Fertilizer 
regulates soil microbial diversity, activity, quantity, and community 
structure to alter soil nutrient transformation and ultimately soil 
nutrient effectiveness (Cui et al., 2018; Ikoyi et al., 2020). Straw, 
crop roots, and root secretions provide carbon and energy sources 
for soil microorganisms (Zheng et al., 2015; Zhu et al., 2015; Wang 
et al., 2019). The ISCM systematically integrated management 
practices such as tillage practices, straw utilization, planting 
density, sowing date, fertilizer application and application period, 
and harvest date. The effects of single agronomic management on 
soil microbiota have been widely studied. However, how ISCM 
affects microbial structure and function through soil 
physicochemical properties and the response of yields and GHG 
emissions to microbial changes has remained poorly understood. 
Therefore, it is important to study the mechanisms of ISCM 
affecting soil quality, yield, and nitrogen use efficiency by 
investigating soil microorganisms.

Long-term field experiments would provide valuable 
information for the sustainability of intensive agriculture. In this 
study, we evaluated the contribution of changes in soil bacterial 
communities and soil physicochemical characteristics to the 
annual yield, nitrogen use efficiency, and GHG emission of 
MWRS based on a long-term ISCM experiment. This study was 
conducted to investigate (1) the effects of ISCM on soil 
characteristics, soil bacterial community distribution, and soil 
microbial functions; (2) the effects of ISCM on the correlations 
between microbes and environmental factors; and (3) the 
contributions of soil physicochemical factors and microorganisms 
to the increase of yield and nitrogen use efficiency and the 
decrease of GHG emission.

Materials and methods

Plant materials and experimental design

A long-term experimental field was established in 2009 at Da 
Wenkou Town, Tai’an, China (Supplementary Figure S1). The soil 
samples were obtained in 2018. The soil is classified as 
Eutriccambisols (WRB, 2015). This region is a temperate 
continental monsoon climate. Crops were planted twice a year. 
Summer maize (“Zhengdan 958,” ZD958) and winter wheat 
(“Tainong 18,” TN18) were used for experimental material. The 
treatments were used in a randomized block test design with four 
replicates, where each plot covered an area of 240 m2, 40.0 m long, 
and 6.0 m wide.

The field experiments were conducted using the ISCM. In the 
ISCM, the T1, T2, T3, and T4 methods integrated the cultivation 
method, planting density, fertilizer application management, and 
harvest time. The T1 was conducted according to the plant density 
and fertilizer method of local farmers; winter wheat straw was 
covered on the ground, and summer maize was no-tillage before 
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sowing. The T2 increased planting density for the two annual 
crops with straw–returning and rotary tilling, decreased nitrogen 
fertilizer rate, changed one fertilization to divide fertilization in 
maize season at jointing stage and tassel stage, increased phosphate 
fertilizer and potassium fertilizer in wheat season, and, finally, 
delayed maize harvesting by 10 days to create a higher fertilizer 
use efficiency and higher yield compared with T1. Based on the 
T2, we defined the T3 by further increasing the planting density 
and fertilizer rate for both of the annual crops, increasing nitrogen 
application time in maize season at the jointing stage, tassel stage, 
and 1 week after the tassel stage to satisfy the needs of crop growth 
at high density, and late harvest time to realize super high yield 
and explore the yield potential in the region, which maximized 
yields without regard to costs and the fertilizer use efficiency was 
decreased. Finally, based on the T3, T4 decreased the maize 
planting density, increased the wheat planting density, decreased 
the fertilizer rate, and optimized fertilizer time to create synergistic 
improvements in nitrogen use efficiency and yield. Nitrogen 
fertilizer (urea, containing 46% N), phosphate fertilizer (calcium 
superphosphate, containing 17% P2O5), and potassium fertilizer 
(potassium chloride, containing 60% K2O) were applied to the 
test. The combination details of the tillage method, plant density, 
seeding, harvest dates, and fertilizer application are listed in 
Table 1.

Soil sample collection

The 0–30 cm soil was collected by soil auger and was used 
to determine the soil nutrient content at the jointing stage of 
wheat, maturity stage of wheat, tasseling stage of maize, and 
maturity stage of maize using the five-point sampling method 
in 2018. The five parallel samples were collected for each 
treatment and were placed in the ice box, and then 
immediately transported to the laboratory. One part of the 
soil samples were frozen at −80°C to be used later for DNA 
extraction and the other was stored at 4°C to determine the 
soil characteristics.

Soil characteristics

The soil pH (soil: water ratio of 1: 2.5) was determined using 
a pH electrode (Leici, Shanghai, China). The soil total organic 
carbon (TOC) was determined via hydration thermal potassium 
dichromate oxidation. The total nitrogen (TN), total phosphorus 
(TP), and total potassium (TK) content in the soil was determined 
after being treated by the H2SO4-H2O2 mixture. And TN and TP 
were measured by an AA3 continuous flow analyzer 
(AutoAnalyzer 3, SEAL Analytical GmbH, Norderstedt, 
Germany). The TK was analyzed by flame atomic 
spectrophotometry. Alkali-hydrolyzed nitrogen (AN) was 
measured by the diffusion method. Available phosphorus (AP) 
was extracted by the Olsen method and was measured by Mo-Sb 

colorimetric method. Available potassium (AK) was extracted by 
the ammonium acetate method and was analyzed by flame 
atomic spectrophotometry.

DNA extraction and Illumina MiSeq 
sequencing

The EZNATM Soil DNA Kit (Omega, United States) was 
used to extract the DNA of the soil at a UV-sterilized ultraclean 
bench. We used 1% (m/v) agarose gel electrophoresis to analyze 
the eluted DNA samples and used a NanoDrop® ND-1000 UV–
Vis spectrophotometer (Thermo Fisher Scientific, United States) 
to measure the DNA concentration. The V3-V4 hypervariable 
regions of the bacterial 16S rRNA gene were amplified using Liu 
et al. (2021) method with the primer (338F 5′- ACTCCTAC 
GGGAGGCAGCAG-3′ and 806R 5′-GGACTACHVGGGT 
WTCTAAT-3′). Amplification was performed with 
predenaturation for 3 min at 95°C, followed by 26 cycles of 30 s 
at 95°C, 30 s at 55°C, and 45 s at 72°C, and final extension for 
10 min at 72°C. PCR amplicons were detected by electrophoresis 
on 2% (w/v) gels, and the Axygen® AxyPrep DNA Gel 
Extraction Kit (Axygen Biosciences, United States) was used to 
recover the target fragments. The purified amplicons were 
sequenced on the Illumina MiSeq PE250 sequencer.

Analysis of the sequencing data

The high-throughput data were preliminarily processed using 
the method of Liu et al. (2021). And 8,718 OTUs were obtained 
after clustering after quality control and filtration. The sequence 
number of different samples was normalized to 25,454 (the 
sequence number of the fewest sequence) to accurately assess the 
diversity of the microbial communities. In this study, the 
subsequent analyzes were based on normalized data. The 
Shannon-Wiener and rarefaction curves (Supplementary Figure S3) 
eventually leveled off, which indicated that the sequencing depth 
was sufficient for subsequent data analysis.

Soil greenhouse gas (GHG) emissions

The detailed N2O, CH4, and CO2 flux measurement procedures 
are reported in Li et  al. (2013) using static chamber gas 
chromatography (40.0 cm wide, 40.0 cm long, and 20 cm high) 
with 3 replications. The GHG emissions were measured on the 
first day after sowing and fertilization subsequent sampling every 
other day, with measurement performed 1 week later. Adjustments 
to the sampling dates and frequency were made to include specific 
events, such as heavy rainfall and fertilization. Forty milliliters of 
gas were removed from the chamber to a sealed syringe after 
sealing the chamber at 0, 10, 20, and 30 min between 8:00–
11:00 AM. N2O, CH4, and CO2 concentrations were determined 
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by an Agilent GC7890 gas chromatographer (Agilent, California, 
United States).

Statistical analysis

The α-Diversity (including Shannon, Simpson, Chao 1, and 
Ace) was calculated by Mothur software1 and β-diversity was 
calculated by QIIME software.2 Redundancy analysis (RDA) was 
performed using CANOCO5 software (Microcomputer Power, 
Ithaca, United States). The LEfSe tool in the online Galaxy/Hutlab3 
was used to identify the biomarkers in the different treatments. 
The psych package in R software was used to perform the 
co-occurrence network analysis and the Gephi software (g ephi:) 
was used to perform the visualization of network relationships. 
The Hmisc package in R software was used to calculate Spearman 
correlations of soil characteristics, yield, nitrogen use efficiency, 

1 www.mothur

2 http://qiime

3 http://huttenhower.sph.harvard.edu/galaxy/

GHG emission, and microbial diversity. The TBtools was used to 
draw the correlation heatmap.4 The C and N cycle-related 
functions from the bacterial community were predicted using the 
FAPROTAX (derived from Functional Annotation of Prokaryotic 
Taxa) database (Louca et al., 2016), which is more suitable for 
functional annotation prediction of biogeochemical cycling 
processes (especially carbon, nitrogen, phosphorus, sulfur, and 
other elemental cycles). Louca et al. (2016) wrote a set of python 
scripts linking the OTU classification table with the FAPROTAX 
database, and the 16S-based OTU classification table can 
be  simply passed through the python scripts to output the 
microbial community function annotation prediction results. The 
structural equation model (SEM) was used to link the change in 
soil microorganisms to soil characteristics, GHG emission, and 
summer maize-winter wheat yield and nitrogen using AMOS 
software (IBM SPSS Amos 23, SPSS Inc., Chicago, IL, 
United States) by generalized least squares (GLS) estimation. A 
one-way ANOVA (SPSS 16.0, SPSS Inc., Chicago, IL, United States) 
was used to analyze the differences in yield, GHG emissions, and 

4 http://www.tbtools.com/

TABLE 1 Cultivation management and fertilizer strategies of different integrated soil-crop managements.

Crop Treatment Tillage 
method

Seeding 
rate (×104 

seeds 
ha−1)

SD 
(m/d)

HD 
(m/d)

The periods and rates (kg ha−1) of fertilizer application

F TF BS JS VT–M VT + 1 W–M

Summer 

maize

T1 Straw-unreturning, 

direct seeding

6 6/15 9/20 N 225 225

P 45 45

K 75 75

T2 Straw-returning, 

deep tillage before 

seeding

6.75 6/15 10/1 N 160.5 45 115.5

P 45 45

K 75 45 30

T3 Straw-returning, 

deep tillage before 

seeding

8.7 6/15 10/4 N 450 135 225 90

P 150 60 90

K 300 150 150

T4 Straw-returning, 

deep tillage before 

seeding

7.5 6/15 10/4 N 184.5 30 90 64.5

P 55.5 30 25.5

K 130.5 30 70.5 30

Winter 

wheat

T1 Straw-returning, 

rotary tillage before 

seeding

225 9/25 6/15 N 315 157.5 157.5

P 120 120

K 30 30

T2 Straw-returning, 

rotary tillage before 

seeding

300 10/5 6/12 N 240 96 144

P 150 150

K 75 75

T3 Straw-returning, 

rotary tillage before 

seeding

375 10/5 6/12 N 315 94.5 220.5

P 180 180

K 120 120

T4 Straw-returning, 

rotary tillage before 

seeding

450 10/5 6/12 N 240 72 168

P 150 150

K 120 72 48

Before sowing, T3 was treated with 30 kg ha−1 ZnSO4. SD, sowing date; HD, harvest date; F, fertilizer; TF, total fertilizer rate; BS, before seeding; JS, jointing stage; VT–M, tassel stage of 
summer maize; VT + 1 W–M, 1 week after tassel of summer maize.
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soil characteristics. Significance was determined by Duncan’s test 
at a 0.05 significance level. The bar and line graphs were plotted 
using Sigma Plot 12.5. The R software5 was used to draw 
the boxplots.

Results

Soil characteristics

The ISCM could affect soil characteristics (Figure 1). The 
TOC content of T2, T3, and T4 was increased compared to that 
of T1. Take the MS as an example, the TOC content of T2, T3, 
and T4 was increased by 6.57, 13.61, and 19.59% compared to 
that of T1, respectively. The pH of T2 and T4 was increased 
after decreasing nitrogen rate compared with that of T1. 
However, the large fertilizer of T3 resulted in soil acidification 
(Figure 1). At MS, the pH of T2 and T4 was increased 4.60 and 
3.88% compared to that of T1, respectively, and that of T3 was 
reduced by 6.69%. The content of TN, TP, and TK was increased 
with the increase of fertilizer input and those of T3 were the 
highest among the four treatments (Figure 1). The AP content 
and AK content of T2 and T4 were increased compared to that 
of T1. Take the tasseling stage of maize as an example, AP and 
AK of T2 and T4 were increased by13.31, 10.38 and 13.47%, 
55.04% compared to that of T1, respectively. There was no 
significant difference in AN content between T4 and T1 
(Figure 1).

Bacterial α- and β-diversity

The Shannon and 1/simpson indexes showed that the changes 
in bacterial α-diversity were significant at R6 and were not 
significant at other stages (Supplementary Figure S4). The 
principal coordinate analysis (PCoA) showed differences in 
bacterial β-diversity at OTU level (Supplementary Figure S5). The 
two main coordinates of PCoA together explained the variation 
by 85.31, 82.13, 77.74, and 73.37% in bacterial β-diversity at the 
jointing stage of wheat (JS), maturity stage of wheat (MS), tasseling 
stage of maize (VT), and maturity stage of maize (R6), respectively. 
The OTUs of MS, VT, and R6 were separated, indicating that the 
ISCM could affect the bacterial community significantly (Adnois, 
p < 0.05).

Bacterial community composition

At the phylum level, Acidobacteria (37.7%) was clearly 
dominant, followed by Proteobacteria (16.7%), Chloroflexi 
(15.8%), Actinobacteria (9.2%), Nitrospirae (4.7%), 

5 www.r-project.org

Gemmatimonadetes (4.6%), Firmicutes (2.6%), Bacteroidetes 
(1.6%), Planctomycetes (1.6%), Latescibacteria (1.5%), and 
Saccharibacteria (1.3%; Supplementary Figure S6). From phylum 
to genus, we identified ten biomarkers that showed significant 
differences in abundance among the four growth stages of the 
ISCM treatments (Supplementary Figure S7). At the four growth 
stages, five dominant species were enriched in T2 and T4 (p < 0.05) 
significantly, such as Acidobacteria (class), OM190 (class), 
Erysipelotrichaceae (family), Polycyclovorans (genus), and 
Anaerolineaceae (family). Five dominant species were enriched in 
T3 significantly, including Frankiales (order), Gaiellales (order), 
Caulobacteraceae (order), Elev-16S-1,332 (family), and 
Rhodanobacter (genus). And four dominant species were enriched 
in T1 significantly, including OM190 (class), Anaerolineaceae 
(family), Erysipelotrichaceae (family), and Polycyclovorans 
(genus).

The co-occurrence network

At the genus level, co-occurrence network analysis was 
different in different growth stages (Figure 2). At the JS stage, the 
network density, number of edges, and average degree of T1 were 
the lowest among the four treatments. Optimized ISCM could 
increase the network density of microorganisms in descending 
order as T3 (0.257) > T4 (0.253) > T2 (0.235; Figure  2A and 
Supplementary Table S1). At the MS stage, the network density of 
T3 was highest, 0.310, followed by T2 (0.263), T1 (0.241), and T4 
(0.224); the number of edges and average degree showed the same 
trend (Figure 2B and Supplementary Table S1). At the VT stage, 
the network density among the four treatments was more than 
0.240, which were 0.264 (T1), 0.247 (T2), 0.293 (T3), and 0.254 
(T4) respectively, but the proportion of positive edges and average 
clustering coefficient of optimized ISCM were increased, which 
showed that T3 > T4 > T2 > T1 (Figure  2C and 
Supplementary Table S1). At the R6 stage, the network density, 
number of edges, and average degree of T1 were the highest 
among the four treatments (Figure  2D and 
Supplementary Table S1).

Functional characteristics of 
microorganisms

A total of 13 carbon cycle-related functional groups were 
annotated, such as xylanolysis, fumarate respiration, cellulolysis, 
aromatic compound degradation, and chitinolysis (Figure 3). The 
relative abundance of methylotrophy, methanol oxidation, 
aromatic hydrocarbon degradation, fumarate respiration, and 
hydrocarbon degradation of T4 treatment were significantly 
increased at the JS stage, compared to T1 (p < 0.05; Figure 3). The 
relative abundance of aliphatic non-methane hydrocarbon 
degradation, aromatic hydrocarbon degradation, hydrocarbon 
degradation, and xylanolysis of T1 treatment were significantly 
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increased at MS and VT stages, compared to T4. At R6, the relative 
abundance of aromatic hydrocarbon degradation and 
hydrocarbon degradation of T4 treatment was significantly 
increased compared with that of T1.

A total of 15 nitrogen cycle-related functional groups were 
annotated, including aerobic nitrite oxidation, nitrification, 
aerobic ammonia oxidation, nitrate reduction, nitrogen 
respiration, and ureolysis (Figure 4). At JS and MS stages, the 
relative abundance of nitrogen cycle-related functional groups 
under T3 treatment was decreased compared to that of T4 and T1. 
However, T3 treatment increased the relative abundance of 
ureolysis and nitrogen fixation at VT and R6 (Figure 4). At VT, T4 

increased the relative abundance of aerobic nitrite oxidation and 
nitrification and T1 increased the relative abundance of nitrate 
reduction and ureolysis among the four treatments. At other 
growth stages, T4 treatment and T1 treatment showed similar 
patterns in most nitrogen-related functional groups (Figure 4).

The correlations between environmental 
factors and microorganisms

At JS, the RDA explained the variation by 42.2% of the soil 
bacterial community (Figure 5). The AK (explanation rate = 9.4%) 

FIGURE 1

Effects of integrated soil-crop management on soil characteristics of summer maize-winter wheat. JS, Jointing stage of wheat; MS, maturity stage 
of wheat; VT, tasseling stage of maize; R6, maturity stage of maize; TOC, soil total organic carbon; TN, total nitrogen; AN, alkali-hydrolyzed 
nitrogen; TP, total phosphorus, AP, available phosphorus, TK, total potassium, AK, available potassium.
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had the greatest effect on soil bacteria, followed by AP, pH, TK, 
and TOC. At MS, the RDA explained the variation by 48.6% of the 
soil bacterial community. The TN (explanation rate = 9.6%) had 
the greatest effect on the soil bacteria, followed by pH, TOC, and 
AP. The RDA explained the variation by 61.5% of the soil bacterial 
community at VT. The pH, TN, AP, and TOC significantly affected 
the soil bacterial community (p < 0.05). At R6, the explanation rate 
of RDA was 52.2%. AN, AK, and TK had great effects on the 
bacterial community structure, and the explanation rates were 
12.6%, 12.45, and 10.8%, respectively, followed by TN.

Spearman correlation analyzes showed that the pH and AP 
were significantly positively correlated with the Shannon, 
Chao1, and Ace indexes at MS; the AN was significantly 

positively correlated with the Shannon indexes; the Ace index 
was significantly negatively correlated with dry matter 
accumulation and GHG emission; most of the different 
biomarker showed significant correlation with pH, AK, AP, dry 
matter accumulation, and GHG emission; Gemmatimonadetes 
were significantly negatively correlated with pH and 
significantly positively correlated with AP and AK (Figure 6). 
At R6, bacterial diversity, Shannon, and 1/Simpson indexes 
were significantly positively correlated with GHG emission and 
significantly negatively correlated with nitrogen use efficiency; 
most of the different biomarkers showed significant correlation 
with soil characteristics, GHG emission, and PFPN; Firmicutes 
were significant correlation with soil characteristics; 

A

B

C

D

FIGURE 2

Co-occurrence network analysis in integrated soil-crop management. (A) Jointing stage of wheat; (B) maturity stage of wheat; (C) tasseling stage 
of maize; (D) maturity stage of wheat.
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Acidobacteria and Gemmatimonadetes were significantly 
positively correlated with TN; Planctomycetes were significantly 
positively correlated with nitrogen use efficiency and 
significantly negatively correlated with GHG emission 
(Figure 6).

The structural equation model (SEM)

SEM analyzed the effect of ISCM on soil characteristics, soil 
bacteria, GHG emission, nitrogen use efficiency, and annual 
yield, which explained 29% of the variation in nitrogen use 
efficiency and summer maize-winter wheat annual yield, 12% 
of the variation in soil bacteria, and 36% of the variation in 
GHG emission (Figure 7). The N2O and CH4 emission of T4 
significantly reduced compared to that of T1 (Figure  7 and 

Supplementary Figure S2). However, the N2O and CO2 emission 
of T3 was highest. The soil nutrient levels of ISCM treatments 
directly affected the annual yield and nitrogen use efficiency of 
summer maize-winter wheat (λ: 0.68, p < 0.001) and soil bacteria 
(λ: 0.35, p < 0.05) by changing the soil nutrient status. The 
influence of soil nutrients on GHG emissions (λ: −0.60, 
p < 0.001) was indirectly mediated by soil bacteria (λ: −0.35, 
p < 0.01).

Discussion

ISCM improves the soil nutrition

Soil physicochemical characteristics can evaluate soil quality. 
The tillage practices (Coulibaly et  al., 2022), straw return 

FIGURE 3

Carbon cycle-related functions of the bacterial communities as predicted by FAPROTAX. AHD, aromatic hydrocarbon degradation; ACD, aromatic 
compound degradation; ANMHD, aliphatic non-methane hydrocarbon degradation. Different letters represent significant differences (p < 0.05). JS, 
jointing stage of wheat; MS, maturity stage of wheat; VT, tasseling stage of maize; R6, maturity stage of wheat.
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(Huang et al., 2021), fertilization practices (Zhao et al., 2021), and 
cropping patterns (Gikonyo et al., 2022) can significantly affect soil 
physicochemical properties. Increasing the content of effective soil 
N, P and K can improve crop yield (Gondwe et  al., 2020). 
Optimized integrated soil-crop management matches nutrient 
supply and crop demand quantitatively and synchronizes them 
temporally through regulating planting density and fertilization 
management to ensure fertilizer availability. Increasing the amount 
of available soil nitrogen, phosphorus and potassium can increase 
crop quality and yield (Gondwe et al., 2020). However, long-term 
over-fertilization can lead to soil acidification (Bhattacharyya 
et al., 2015), which was also confirmed in our study. However, the 
excessive fertilization of T3 resulted in a decrease in pH and soil 
acidification and an increase in GHG emissions 
(Supplementary Figure S2), which resulted in the reduction of 
nitrogen use efficiency. Optimized ISCM could increase pH by 
reducing fertilizer rate, increase the soil nutrient effectiveness, and 

decrease soil bulk density (Liu et al., 2017). The T3 treatment had 
the largest amount of straw returned to the field, but soil TOC did 
not increase proportionally and was significantly lower compared 
to that of the T4 treatment. This may also be related to the decrease 
in pH of T3 treatment. Higher soil pH is strongly associated with 
higher carbon utilization (Zhang et al., 2020). The lower pH of the 
T3 treatment may reduce carbon utilization (Zhang et al., 2020). 
And soil acidification leads to soil organic carbon loss and 
increases CO2 emissions from the soil (Jin and Wang, 2018). This 
is also one of the important reasons for the decrease in soil TOC 
and the increase in CO2 emission in T3 treatment. Optimized 
ISCM could increase soil TOC storage by returning straw in both 
summer maize-winter wheat seasons (Figure 1). Soil acidification 
and improved soil nutrition were reduced by optimizing ISCM, 
which increased the yield of double cropping of summer maize 
and winter wheat. This provides an environmentally preferable 
direction for sustainable production of soil.

FIGURE 4

Nitrogen cycle-related functions of the bacterial communities as predicted by FAPROTAX. Different letters represent significant differences 
(p < 0.05). JS, jointing stage of wheat; MS, maturity stage of wheat; VT, tasseling stage of maize; R6, maturity stage of wheat.
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ISCM improves community composition 
and function of soil microorganisms

The ISCM could affect soil microorganism community 
composition and function, but the effect was different in the 
different crop growth stages. Optimized ISCM significantly 
enriched Acidobacteria (class), OM190 (class), Erysipelotrichaceae 
(family), and Polycyclovorans (genus). The Acidobacteria and the 
Aspergillus are abundant in soil (Hugenholtz et al., 1998; Barns 
et  al., 1999) and are important members of the soil 
microorganisms, which have many genes encoding cellulases and 
hemicellulases to degrade plant residues (Kanokratana et  al., 
2011). They play an important role in soil material cycling and 
ecosystem construction (Eichorst et al., 2011; Pankratov et al., 
2011). The enrichment of Acidobacteriad in T4 promoted the 
decomposition of straw (Supplementary Figure S6). Soil pH is an 

important factor in determining the structure of microbial 
communities and is the key driver to shaping microbial 
community structure, diversity, and composition (Jones et al., 
2019). The lower pH of the T3 treatment may increase Al toxicity 
in the soil (Pietri and Brookes, 2008), which in turn affected some 
soil carbon cycling microbial activity, such as methanol oxidation 
and methylotrophy, and reduced biomass carbon conversion, 
resulting in lower soil TOC with high carbon input compared to 
the T4 treatment. In addition, the straw of winter wheat in T4 was 
returned to the field and the number of microorganisms related to 
the carbon cycle was increased (Figure 3), which further promoted 
the decomposition of straw in the soil and contributed to the 
increase in soil organic carbon content. The Actinomycetes can 
degrade a large number of organic compounds, which 
be significantly affected by soil pH (Fierer et al., 2014). In contrast, 
the enrichment of Frankiales and some bacilli in the T3 treatment 

FIGURE 5

RDAs between the bacterial community of all OTUs with soil characteristics. JS, jointing stage of wheat; MS, maturity stage of wheat; VT, tasseling 
stage of maize; R6, maturity stage of wheat; TOC, soil total organic carbon; TN, total nitrogen; AN, alkali-hydrolyzed nitrogen; TP, total 
phosphorus, AP, available phosphorus, TK, total potassium, AK, available potassium.
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(Supplementary Figure S6) may be related to the reduction of soil 
pH due to long-term heavy fertilization and a large amount of 
straw returned to the field.

In addition, ISCM could significantly affect microbial network 
density and change with the crop growth stage (Figure 2), which 
was closely related to the agronomic management practices in 
each period. The microorganism network density of T3 was the 
highest among the four treatments (except for the R6), which may 
be related to the fact that heavy fertilization accelerated the growth 
of soil microorganisms (Siles et al., 2021), but too many microbes 
may lead to increased competition and increase more negative 
interactions between species (Ratzke et  al., 2020). However, 
Giovannoni et al. (2014) showed that microorganisms tend to 
coexist in large numbers in low nutrient environments. The lower 
soil nutrient content of the T1 treatment led to an increase in 
microorganism network density compared with the T4 treatment 
(except for the JS; Figure 2). The nitrogen fertilizer rate of T4 was 
lower compared with T1, but the nitrogen cycle-related functional 
groups of T4 showed similar patterns to T1, which may 
be  conducive to the effective use of nitrogen in the soil and 
improve nitrogen use efficiency.

Soil improvement reduces greenhouse 
gas emissions

The ISCM directly affected maize yield and bacterial 
distribution by altering soil nutrient status (Figure  7). The 

different biomarkers were significantly associated with soil GHG 
emissions and nitrogen use efficiency (Figure  7). Soil 
microorganisms play a central role in GHG emissions, and their 
abundance and activity are important biological factors 
influencing soil GHG emissions (Akiyama et al., 2014; Lafuente 
et al., 2019). Microbial respiration is an important source of CO2 
in soil; the CH4 and N2O production is mainly related to 
methanogenic bacteria and nitrifying and denitrifying bacteria, 
respectively (Chidthaisong and Watanabe, 1997; Mer and Roger, 
2001). In addition, the soil N content is the main N source of 
N2O emissions, and changes in aerobic and anaerobic soil 
conditions promote N2O emissions (Du et  al., 2021). 
Rhodococcus has an intact denitrification capacity, which 
promotes N2O production (Takeda et  al., 2012). This study 
showed that microbial community structure and function were 
significantly associated with soil GHG emissions (Figure 6). The 
nitrogen fertilizer rate of T4 was significantly lower compared 
with that of T1. However, the microorganisms related to nitrogen 
transformation of the T4 and T1 treatments were analogous 
(Figure 4) and the Rhodococcus of T4 decreased by 64.1 and 
82.6% compared to that of T1 at JS and VT, which could be the 
reason for the significant increase in nitrogen use efficiency and 
the significant decrease in N2O emissions in the T4 treatment. 
The Rhodococcus of T2 also decreased by 94.2 and 2.4% 
compared to that of T1. In contrast, the T3 treatment resulted in 
an increase in soil N content due to heavy fertilization and 
enrichment of Rhodococcus that was increased by 555.6 and 
195.2% compared with that of T1, possibly responsible for a 

FIGURE 6

Spearman correlation heat maps of environmental factors and bacterial diversity, different biomarkers, and abundant phylum. Red represents a 
positive correlation, and blue represents a negative correlation (*p < 0.05; **p < 0.01; ***p < 0.001). MS, maturity stage of wheat; R6, maturity stage of 
wheat; DM, dry matter of crop; PDM, population dry matter of crop; PFP, N partial factor productivity; NAE, N agronomic efficiency; TOC, soil total 
organic carbon; TN, total nitrogen; AN, alkali-hydrolyzed nitrogen; TP, total phosphorus, AP, available phosphorus, TK, total potassium, AK, 
available potassium.
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significant increase in soil N2O emissions and a decrease in 
nitrogen use efficiency. Stevens and Laughlin (1998) showed that 
increasing NO3

− content had a small effect on the denitrification 
rate, but significantly increased N2O emissions. Although 
denitrification of T3 treatment was reduced in the wheat season, 
the amount of applied N fertilizer was too high, and the NO3

− 
content in the soil increased significantly (Jin et al., 2012), which 
could be one of the reasons for the increase in N2O emissions.

Conclusion

The soil acidification was reduced and soil nutrition was 
improved by optimizing ISCM. Optimized ISCM improved the 
structure and the co-occurrence network density of soil 
microorganisms at the vigorous period of crop growth, reduced 
the abundance of bacteria associated with GHG emissions, and 
increased the abundance of bacteria associated with carbon and 
nitrogen cycling. These changes in soil microorganisms could 
promote carbon and nitrogen cycling in the soil and indirectly 
contribute to the decrease in GHG emissions and the increase 
in nitrogen use efficiency and yield. That may provide an 
efficient soil and crop management of summer maize-winter 
wheat cropping systems to promote soil healthy development in 
the future. Setting new and suitable ISCMs according to local 

environmental conditions can help achieve promote soil 
sustainable development.
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