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Intercropping achieved through agroforestry is increasingly being recognized 

as a sustainable form of land use. In agroforestry, the roots of trees and crops 

are intermingled, and their interactions and the production of exudates alter 

the soil environment and soil microbial community. Although tree–crop 

interactions vary depending on the stand age of the trees, how stand age 

affects beneficial microorganisms, including arbuscular mycorrhizal fungi 

(AMF), and whether changes in soil microorganisms feed back on crop growth 

in agroforestry systems are unknown. We therefore conducted a long-term 

field study to compare changes in the soil microbial and AMF communities in 

a jujube/wheat agroforestry system containing trees of different stand ages: 

3-year-old jujube, 8-year-old jujube, and 13-year-old jujube. Our results 

showed that by changing soil moisture and available phosphorus content, 

the stand age of the trees had a significant effect on the soil microbial and 

AMF communities. Soil moisture altered the composition of soil bacteria, in 

particular the proportions of Gram-positive and Gram-negative species, and 

available phosphorus had significant effects on the AMF community. A network 

analysis showed that older stands of trees reduced both AMF diversity and 

network complexity. An ordinary least squares regression analysis indicated 

that AMF diversity, network complexity, and stability contributed to wheat yield. 

Finally, structural equation modeling showed that changes in edaphic factors 

induced by tree age brought about significant variation in the soil microbial 

and AMF communities, in turn, affecting crop growth. Our study highlights 

the crucial roles of soil microorganisms, in particular AMF, in supporting plant 

growth in agroforestry systems as well as the need to consider stand age in 

the establishment of these systems.
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Introduction

Agroforestry, in which at least one woody perennial species is 
grown alongside a crop to increase crop diversity and productivity, 
is increasingly being recognized as a sustainable form of land use 
(Fentahun and Hager, 2010; Araujo et al., 2012). The ecological 
benefits of agroforestry include enhanced carbon sequestration 
(Baah-Acheamfour et al., 2014), improved soil quality (Dollinger 
and Jose, 2018), and increased microbial diversity (Bagyaraj et al., 
2015; Duchene et  al., 2017). Soil microbes regulate multiple 
ecosystem services, such as nutrient cycling (Rodrigues et  al., 
2013), organic matter decomposition (Kaiser et al., 2015), plant 
productivity (Tamburini et al., 2020), and plant disease control 
(Wei et al., 2019). Nevertheless, the impact of agroforestry on the 
structure of the soil microbial community is poorly understood, 
although information on the composition and diversity of 
microbial community and their determinants is critical to 
optimizing agroforestry systems (Liu et al., 2019).

The trees in an agroforestry system compete strongly with 
crops for soil nutrients, sunlight, moisture, and other available 
resources, which, in turn, could reduce both tree and crop 
production. The competition for resources increases with 
increasing tree growth because of the accompanying changes in 
spatiotemporal light patterns (Tscharntke et al., 2011; Liu et al., 
2019). Therefore, in the establishment of an agroforestry system, 
the stand age of the trees must be taken into account (Peerawat 
et al., 2018). However, belowground competition would be more 
important than aboveground competition in many intercropping 
systems (Remison and Snaydon, 1980). In agroforestry, the roots 
of trees and crops are intermingled, and their interactions 
together with the production of exudates could alter both bulk 
soil and rhizosphere environments, such as the soil organic 
matter content and pH (Duchene et  al., 2017), which would 
induce significant variation in the soil microbial community. In 
a study by Liu et  al. (2019), bacterial communities in an 
agroforestry system exhibited obvious horizon-specific seasonal 
variation in response to spatial and temporal heterogeneity in 
edaphic factors. Conversely, microbial dynamics feeds back on 
plant fitness (Philippot et al., 2013; Hutchins et al., 2019). Yet the 
response of soil microbial communities to tree age, and which 
microbes in agroforestry systems play a crucial role in affecting 
plant growth are unknown.

Soil microorganisms, especially of beneficial microbes, 
modulate a number of processes in agroecosystems. For example, 
arbuscular mycorrhizal fungi (AMF), which act as key 
components of the soil microbial community, contribute to the 
development of healthy soils and agricultural sustainability 
(Jeffries et  al., 2003; Guzman et  al., 2021). AMF establishes 
associations with the majority of terrestrial plants, including most 
crops (Barrios, 2007; Turrini et al., 2018). In return for receiving 
carbon and energy from the host plant (Zhu and Miller, 2003; 
Bryla and Eissenstat, 2005), they provide plants with mineral 
nutrients (Wipf et al., 2019). Several studies have demonstrated 
that sustainable management practices, such as intercropping, 
positively influence the diversity and composition of AMF 

communities compared to conventional management (Meng 
et al., 2015). In agroforestry, the high plant diversity achieved with 
tree-based intercropping promotes the mycorrhizal network 
(Menezes et al., 2016; van Tuinen et al., 2020). However, little is 
known about the influence of tree-based intercropping systems on 
the diversity of AMF communities in tree and crop roots. The 
consensus is that native trees alter the soil dynamics of their 
rhizospheres and, in turn, influence the AMF community 
(Caravaca et al., 2020). And as tree grow, they further change the 
vegetation cover and the physicochemical attributes, such as soil 
moisture, available phosphorous, and available potassium, of the 
soil ecosystem in which mycorrhizas can be active (Sheng et al., 
2017; Gao et al., 2019). This implies that the stand age of the trees 
indirectly shapes the composition of the AMF community and, by 
changing the properties of the soil, affects the successful 
establishment of AMF in the crops. In-depth knowledge of the 
roles of soil microbial and AMF communities in controlling plant 
productivity in agroforestry systems will help select a stand age 
that best contributes to the agroforestry system and that is able to 
maintain ecosystem stability.

Jujube agroforestry is extremely important in China. In the 
Xinjiang Uygur Autonomous Region (Northwest China), it covers 
> 1.2 million hectares (Zhang et  al., 2014). This area is 
characterized by with rich light and heat resources, large 
temperature difference between day and night, which is very 
suitable for fruit trees. With recent adjustments to planting 
systems in pursuit of high-yield and high-efficiency crops, jujube 
trees have been widely planted in farms within Xinjiang Province, 
China. These intercropping systems have considerable potential 
to provide food and nutritional security and to contribute to local 
economic development. However, as a consequence of tree aging, 
the change of planting structure will inevitably affect the cultivated 
soil quality and farmland ecological environment in this area, and 
will further affect the change of soil microbial community 
structure and function. Therefore, knowledge of the effects of tree 
age on soil microbial and AMF communities and of the role of 
these communities in promoting crop growth is critical to 
ensuring food security in the country. In this study, we conducted 
a field experiment designed to explore the soil microbial and AMF 
communities associated with jujube trees of different stand ages 
in an agroforestry system and resulting functional changes in crop 
growth. We  hypothesized that (1) both the soil microbial 
community and the AMF community would be  significantly 
affected by tree stand age because of the effects of tree age on soil 
properties, and (2) that variation in the composition and diversity 
of the soil microbial and AMF communities would predict 
changes in crop productivity.

Materials and methods

Study sites and sample collection

A field experiment was conducted in 2015 at the 4th Village 
of Zepu County with an altitude of about 1,300 m (38°05′N, 
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77°10′E), Kashi Prefecture, Xinjiang Uygur Autonomous Region, 
China. This area has a typical arid climate with an annual mean 
temperature of 11.6°C (1961–2008), an annual precipitation of 
54.8 mm, and a potential evaporation of 2,079 mm. The mean 
frost-free period is 212 days.

The three planting patterns consisted of wheat intercropped 
with 3-year-old (IN3), 8-year-old (IN8), and 13-year-old 
(IN13) jujube trees (Ziziphus jujuba Mill. Junzao) were selected 
in 2015. Supplementary Figure S1A presents the growth stages 
of wheat and jujube trees. Jujube trees were planted in a North–
South orientation. Basic information for the three jujube tree 
age groups is shown in Supplementary Table S1. Each 
intercropping plot included two rows (15 m length) of jujube 
trees and one wheat strip. There were three replicate plots per 
planting patterns. In all tree age plots, the row spacing was 
500 cm, and there was 150 cm between within a row. The wheat 
strips in jujube intercropping systems were 3.3 m wide. 
Minimum distances between trees and wheat rows were 0.85 m 
for jujube, and intercropped wheat occupied 66% of the total 
area in the jujube-based system (Supplementary Figure S1B). 
Date trees are pruned from late February to mid-March in 
spring, keeping only the main branches and cutting off all the 
thinner branches. The pruned branches are carried out of the 
field. Each plot were each 0.4 ha in area and had a density of 
425 wheat plants m2. Row spacing for the intercropped wheat 
was 0.13 m.

Wheat (cv. Xindong 20) was sown on 3 October 2014, and 
harvested on 10 June 2015. The jujube trees with different tree ages 
were pruned annually. All fields were fertilized with urea, triple 
superphosphate, potassium sulfate, and farmyard manure (0.37% 
N, 0.41% P2O5, 0.46% K2O) at concentrations of 15 × 103 kg ha−1 
(farmyard manure), 275 kg ha−1 (N), 150 kg ha−1 (P2O5), and 
275 kg ha−1 (K2O). All farmyard manure, the P and K fertilizers, 
and 40% of the N fertilizer were applied evenly across the soil 
surface and then incorporated into the soil at a depth of 0–20 cm 
before the wheat was sown; the remaining 60% of the N fertilizer 
was spread when the wheat plants reached the stem elongation 
stage. The plots were irrigated three times across the whole growth 
period, with irrigation coinciding with the reviving, jointing, and 
filling stages of wheat growth. Each irrigation application included 
90–100 mm (900–1,000 m3 ha−1).

The soils were sampled during the wheat filling stage, on May 
20, 2015. After the removal of any crop residue, five soil cores were 
collected with an auger in each plot to a soil depth of 20 cm (5 cm 
diameter). Triplicate samples were collected. The sampling sites 
were 1.5 m away from the jujube trees. Immediately after their 
collection, the soil samples were transported on ice to the 
laboratory, where they were passed through a 2.0 mm mesh and 
divided into two subsamples. One subsample was stored at 4°C 
and later used to determine soil physicochemical properties, and 
the other subsample was stored at −20°C until it was used for 
DNA analysis. Ten wheat plants, five per transect (two transects 
in which jujube tree and wheat interact with each other), were 
excavated with a fork spade at each plot. The shoots were cut off 

at a height of ~ 5 cm, and all roots of a specific site were pooled in 
a plastic bag for subsequent processing. At the same time, 1-year-
old young roots of jujube tree near the wheat plants were also cut 
off with a shovel and placed on ice in a cooler for transfer to 
the laboratory.

Soil parameter measurements

Soil parameters were measured according to standard 
methods as described in Page et al. (1982). Soil moisture (SM) was 
measured by drying fresh soil samples at 105°C to constant 
weight. Soil pH was measured in a soil:water (1:5) extract with a 
pH meter. Soil organic matter (SOM) and total nitrogen (TN) 
were measured using the Walkley–Black and Kjeldahl method. 
Soil total phosphorus (TP) was measured by colorimetric analysis 
after digestion with sulfuric acid and perchloric acid. Soil 
inorganic nitrogen was measured using a continuous flow analyzer 
(AutoAnalyzer-AA3, Seal Analytical, Norderstedt, Germany) after 
extraction with 2 mol L−1 KCl. Soil available phosphorous (AP) 
was determined by the Olsen method. Soil available potassium 
(AK) was extracted with neutral ammonium acetate and measured 
by atomic absorption spectrometry (ZL-5100, PerkinElmer, MA). 
Soil total potassium (TK) was measured by hydrofluoric 
acid digestion.

Phospholipid fatty acid

The total microbial biomass was the sum of all the biomarkers’ 
values. The PLFAs i13:0, i14:0, a15:0, i15:0, i16:0, a17:0, i17:0, 
i18:0, i19:0, and a19:0 were used as the biomarkers for Gram-
positive bacteria (G+), and 17:1 ω8c, 16:1 ω11c, 15:1 ω6c, 20:1 
ω9c, 3OH 12:0, 2OH 14:0, i17:0 3OH, 2OH 16:0, i17:0 3OH, 
cy17:0, and cy19:0 ω8c were identified as the biomarker of Gram-
negative bacteria (G-). Fungi were represented by 18:1 ω9c, 18:1 
ω5c, 18:3 ω6c (6, 9, 12), 20:1 ω9c, and 16:1 ω5c. 10Me 17:0 and 
10Me 18:0 were used to indicate Actinomycete (ACT)-derived 
fatty acids; 20:1 ω9c and 16:1 ω5c were indicative of Arbuscular 
mycorrhizal fungi (AMF); PLFA biomarker 20:4 ω6,9,12,15c was 
used to identify Protozoan-derived fatty acid. General bacteria 
were assessed by 12:0, 14:0, 15:0, 16:0, 17:0, i17:0 w5c, and 20:0 
(Frostegård et al., 2011; Zhang et al., 2019a). The bacterial biomass 
of PLFA was the sum of the G+, G–, and General bacteria values. 
The ratio of different microbial PLFA values can represent the 
dynamic changes between microbial groups (Fanin et al., 2019). 
Saturated fatty acids included PLFAs12:0, 14:0, 15:0, 16:0, 17:0, 
and 20:0; PLFAs biomarkers i13:0, i14:0, i15:0, a15:0, i16:0, i17:0, 
a17:0, i18:0, i19:0, and a19:0 were included in Methyl-branched 
fatty acids. In this study, the ratios of fungi to bacteria (F/B), 
Gram-negative bacteria to Gram-positive bacteria (G−/G+), and 
Saturated fatty acids to monounsaturated fatty acids (S/M) were 
calculated to explain relative changes of microbial biomass and 
community to environmental change (Frostegård et al., 2011).
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DNA extraction, PCR, and Illumina 
sequencing

The genomic DNA was extracted from 0.5 g of soil and 0.3 g 
wheat and jujube root using MoBio PowerSoil DNA Isolation Kit 
(MoBio Laboratories, Carlsbad, CA, United  States). Genomic 
DNA was amplified using a nested polymerase chain reaction 
(PCR) procedure. The first amplification was performed in a final 
volume of 20 μl with 1.0 μl template DNA, 0.5 μl of each forward 
and reverse primer (16 pmol μl − 1), 10 μl of PCR SuperMix 
(TransGen Biotech Co., China), and 8.0 μl of sterile water with 
primer pair GeoA2-AML2 (White et  al., 1990). Amplification 
procedure was conducted on a thermal cycler (Bio-Rad, 
United States) using the following conditions: 94°C for 3 min; 
30 cycles of 94°C for 30 s; 40°C for 60 s; and 72°C for 1 min of 
extension, followed by 72°C for 10 min. Next, successful products 
of the first amplification were diluted at 1:100, and then was used 
as template in a second PCR with primer pair NS31 (Simon et al., 
1992) and AMDGR (Sato et  al., 2005). PCR reactions were 
performed under the same aforementioned conditions. 
Preparation of the amplicon libraries and pyrosequencing with 
Roche 454 GS-FLX technology were conducted at Personalbio in 
Shanghai, China.

The sequences were first filtered for quality and trimmed 
using mothur package to remove multiple identifiers and primers 
(version 1.31.2). And then, cleaned sequences (10,523 reads) were 
clustered into operational taxonomic units (OTUs) based on 97% 
similarity. Representative sequences from each OTU clade were 
blasted against the NCBI GenBank to obtain the most similar 
sequences from other studies. Finally, representative sequences for 
each OTU, blasted published sequences in the NCBI GenBank 
which were highly affiliated to each OTU, and representative 
sequences of major families of Glomeromycotina were used to 
construct a maximum likelihood tree.

Assessment of AMF root colonization

Mycorrhizal colonization of wheat roots and jujube root was 
determined by the quadrant intersection method (Giovannetti 
and Mosse, 1980).

Statistical analyses

All statistical analyses were performed in R 4.1.0 (R Core 
Team, 2020) unless otherwise noted. Indices of AMF diversity, 
including OTU richness, Chao1, and ACE, and of phylogenetic 
diversity were computed in the R package vegan (Oksanen et al., 
2019). A principal coordinates analysis (PCoA) was performed to 
visualize the variation in the soil microbial and AMF communities 
across different tree stand ages, based on the Bray–Curtis 
dissimilarity. The relationships between the soil microbial and 
AMF communities and soil properties were determined in 

redundancy analyses (RDAs), also performed in the vegan package 
in R (Oksanen et al., 2019). Only environmental variables that 
correlated significantly (p < 0.05) with the RDA model were 
selected (calculated based on 999 permutations). Soil 
physicochemical parameters, AMF diversity, and the composition 
of the AMF community were analyzed in an ANOVA, and the 
least significant difference (LSD) was used to compare the means 
for each variable (p < 0.05). Co-occurrence networks of all OTUs 
of the AMF community were constructed based on Spearman 
rank correlations between OTUs to reveal significant positive 
correlations (R > 0.3 and p < 0.05). The results were visualized with 
Gephi (version 0.9.2; Li et al., 2015). A subgraph of each sample 
was obtained with the R package igraph (Csardi and Nepusz, 
2006). This package was also used to calculate the topological 
network properties of each sample, including the total number of 
network nodes (representing OTUs), the total number of edges 
(connections between nodes representing significant positive 
correlations between OTUs), and the degree of co-occurrence (the 
number of direct correlations to a node). An ordinary least squares 
(OLS) linear regression model was used to test the relationship 
between topological network properties and wheat yield. The 
complex effects of abiotic and biotic factors on wheat yield were 
quantified by structural equation modeling (SEM) using AMOS 
17.0 (SPSS, Chicago, IL, United States). Variables in the model 
included soil moisture, available phosphorus content, wheat yield, 
the proportion of Gram-positive (G+) to Gram-negative (G–) 
bacteria, and the degree of co-occurrence network (average 
degree). Maximum likelihood estimation was used to fit the 
covariance matrix to the model. The a priori theoretical model was 
adjusted according to the principle of the lowest chi-square, 
nonsignificant probability (p > 0.05), a high goodness-of-fit index 
(> 0.90), and root mean square error of approximation < 0.05 to 
ensure that the final model was adequately fitted (Grace and 
Keeley, 2006).

Results

Soil parameters, wheat yield, and 
aboveground biomass

Large differences were found in the physicochemical 
parameters of the soil across the three stands in the agroforestry 
system (Supplementary Table S2). Soil moisture, organic matter 
content, and available phosphorus content differed significantly 
with tree age and were highest in the soil of the IN3 treatment and 
lowest in the soil of the IN13 treatment. Total phosphorus and 
total potassium contents were highest in the IN3 treatment but did 
not differ significantly between the IN8 and IN13 treatments. 
Conversely, inorganic nitrogen content was highest in the IN13 
treatment but did not differ significantly between the IN3 and IN8 
treatments. There were no significant differences in soil pH, total 
nitrogen content, or available potassium content among the 
three treatments.
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Wheat yield and aboveground biomass differed significantly 
among treatments (Supplementary Table S3) and decreased 
significantly with increasing stand age. Consequently, wheat yield 
and aboveground biomass were highest in IN3 and lowest in IN13.

Soil microbial community

The Shannon diversity and Simpson diversity indices were 
significantly higher in IN8 and IN13 than in IN3 and were lowest 
in IN3 (Supplementary Table S4). The phospholipid fatty acid 
(PLFA) contents of the total and grouped soil microorganisms in 
the different treatments are shown in Table 1. PLFA diversity, 
which is used to characterize soil microbial communities, differed 
significantly among the three treatments. The total PLFA content 
was highest in IN8 and lowest in IN13. The trends in fungal 
biomass were similar to those of the total PLFA content, whereas 
AMF and protozoal biomass were lowest in IN13, and the 
differences between IN3 and IN8 were not significant. By contrast, 
the actinomycete content was lower in IN3 than in the other 
treatments. Bacteria accounted for a large proportion of the total 
PLFA content. The ratios of G+ to G– species and saturated to 
monounsaturated PLFA (S/M) showed a gradual upward trend 
from IN3 to IN13.

The PCoA provided further evidence that the soil microbial 
community was significantly distinct across the three stand ages 
(Figure 1). Three distinct clusters in the ordination graph were 
seen, with PCoA1 explaining 59.24% of the variance and PCoA2 
explaining 27.23%. The PERMANOVA also showed significant 
effects of tree age and cropping system on soil microbial 
communities. A CCA was performed to determine the relationship 
between soil parameters and the microbial community. Soil 
moisture (R2 = 0.87, p < 0.01), total phosphorus (R2 = 0.79, p = 0.01), 
and available phosphorus (R2 = 0.66, p = 0.05) had significant effects 
on the soil microbial community (Supplementary Figure S2A).

Composition of the AMF community

For the AMF, 68 OTUs representing seven genera were 
obtained. The two most abundant genera in soil and wheat root 
were Funneliformis (60.92 and 75.64%) and Rhizophagus (20.37 
and 14.30%), whereas the most two abundant genera in jujube 
root were Rhizophagus (38.36%) and Glomus (32.35%; 
Figure 2A). In the soil AMF community, the relative abundances 
of Diversispora, Funneliformis, Glomus, and Paraglomus were 
significantly higher in IN3 than in IN8 or IN13, whereas the 
relative abundances of Claroideoglomus and Rhizophagus were 
much higher in IN13 than in IN3 or IN8 
(Supplementary Figure S3). In the wheat root AMF community, 
the relative abundances of Funneliformis and Rhizophagus were 
much higher in IN8, and the abundances of Diversispora and 
Claroideoglomus were significantly higher in IN3 and IN13, 
respectively (Supplementary Figure S3). In jujube root, the T
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FIGURE 1

Principal coordinates analysis (PCoA) of soil microbial community based on the Bray–Curtis dissimilarities under different tree ages of 
intercropping systems.

A B

FIGURE 2

Relative abundance (A), and α diversity (B), of arbuscular mycorrhizal fungi in soil, wheat root and jujube root under different tree ages.
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relative abundance of Rhizophagus was significantly higher in 
IN3, that of Claroideoglomus was significantly higher in IN8, and 
that of Glomus was significantly higher in IN13 
(Supplementary Figure S3). The different treatments in the 
different niches also resulted in significantly distinct AMF 
diversity (Figure 2B). In soil and jujube root, richness, Chao1, 
ACE, and phylogenetic diversity were significantly higher in IN3 
than in IN8 and IN13, although the differences between the latter 
two stands were not significant. However, all diversity indices 
showed a downward trend in jujube trees/wheat intercropping 
systems of increasing stand age (Figure 2B).

According to the PCoA, the AMF community did not differ 
significantly between soil and wheat root, whereas that in jujube 
root formed distinct clusters. PCoA1 and PCoA2 explained 
65.89 and 21.14% of the variance, respectively (Figure 3A). The 
composition of the AMF communities in soil and wheat root 
varied significantly across the three stand ages, with PCoA1 
explaining 75.82 and 67.64% of the variance and PCoA2 
explaining 10.10 and 10.38%, respectively (Figures 3B, C). By 
contrast, the composition of the AMF community of jujube root 
did not differ significantly across the three stand ages 
(Figure 3D).

A B

C D

FIGURE 3

Principal coordinates analysis (PCoA) of arbuscular mycorrhizal fungi community based on the Bray–Curtis dissimilarities in different niches 
(A) and tree ages as well as cropping system of soil (B), jujube (C) and wheat (D).
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The relationship between soil parameters and the AMF 
community was assessed in a CCA (Supplementary Figure S2). 
Significant effects on the AMF communities of soil and wheat 
root were found for total phosphorus (R2 = 0.77, p = 0.02; R2 = 0.71, 
p = 0.03), soil moisture (R2 = 0.74, p = 0.02; R2 = 0.75, p = 0.02), 
inorganic nitrogen (R2 = 0.71, p = 0.03; R2 = 0.85, p = 0.01), and 
available phosphorus (R2 = 0.67, p = 0.04; R2 = 0.89, p < 0.01; 
Supplementary Figures S2B,C). In addition, soil organic matter 
had a significant effect on the AMF community of wheat root, 
and available potassium and total potassium had a significant 

effect on the AMF community of jujube root 
(Supplementary Figure S2D).

Co-occurrence networks of AMF

Co-occurrence networks were constructed to investigate the 
effects of stand age on AMF interactions. A total of 68 nodes and 
388 edges were detected (Figure 4). A subgraph of each sample 
was extracted, and the topological network parameters of node 

A

B

FIGURE 4

Co-occurrence network of arbuscular mycorrhizal fungi (A). Topological parameters of arbuscular mycorrhizal fungal co-occurrence network in 
soil, wheat root and jujube root under different tree ages (B).
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and edge numbers, average degree, graph diameter, betweenness 
centralization, degree centralization, robustness, and vulnerability 
were calculated to assess the complexity and stability of the AMF 
network across the different treatments. Larger node and edge 
numbers, average degree, and degree centralization and smaller 
betweenness centralization represent greater network complexity. 
Higher robustness and lower vulnerability indicate greater 
network stability. For soil and wheat root, node and edge numbers, 
average degree, degree centralization, and robustness were highest 
in the IN3 treatment, which indicates its greater network 
complexity and stability (Figure 4B). Network complexity and 
stability showed a downward trend from IN3 to IN13 in wheat 
root (Figure 4B). These results strongly suggest that older stand 
age negatively affects AMF associations and reduces the 
complexity and stability of AMF community networks.

Relationship of soil microbial community, 
AMF diversity, and complexity and 
stability of co-occurrence networks to 
wheat yield and aboveground biomass

Positive and negative relationships were found between 
grouped PLFA contents, AMF diversity, network parameters, and 
both wheat yield and aboveground biomass. For example, the 
AMF content of the soil microbial community was positively 
related to wheat yield (Table 2), and both G+/G– and S/M were 
negatively related to wheat yield and aboveground biomass 
(Table  2). Wheat yield and aboveground biomass responded 
positively to the relative abundance of Diversispora and negatively 
to the relative abundance of Rhizophagus in the soil AMF 

community (Table  3). Positive responses of wheat yield and 
aboveground biomass to the relative abundances of Funneliformis 
and Glomus, respectively, were also found (Table 3). For the AMF 
community of wheat root, the relative abundance of Rhizophagus 
was related to wheat yield and aboveground biomass, whereas the 
relative abundance of Claroideoglomus responded negatively to 
wheat yield (Table 3). Significant positive relationships were found 
between soil AMF diversity (richness, Chao1, ACE, phylogenetic 
diversity) and wheat yield (Figure  5), and between soil AMF 
network complexity and stability and both wheat yield and 
aboveground biomass, which indicated that interactions between 
AMF communities promoted wheat growth (Figure 6).

TABLE 2 Pearson correlations between grouped PLFA contents and 
wheat yield as well as aboveground biomass.

PLFA contents
Yield Aboveground biomass

R2 p R2 p

Total PLFA 0.04 0.63 0.03 0.64

G+ 0.07 0.48 0.07 0.49

G– 0.07 0.51 0.08 0.46

Bacterial 0.01 0.8 0.01 0.8

Fungi 0.04 0.59 0.03 0.69

Actinomycetes 0.09 0.43 0.22 0.21

AMF 0.48 0.04* 0.4 0.06

Protozoan 0.36 0.08 0.31 0.12

G+/G– 0.83 <0.01** 0.9 <0.01**

F/B 0.28 0.14 0.19 0.23

S/M 0.66 <0.01** 0.59 0.02*

Value in bold indicates a significant difference. **indicates an extremely significant 
difference at p < 0.01, *indicates a significant difference at p < 0.05.

FIGURE 5

The relationships of wheat yield, aboveground biomass and α diversity of arbuscular mycorrhizal fungi.
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Structural equation modeling was performed to examine the 
hypothesized direct and indirect relationships between soil 
physicochemical parameters (soil moisture, available phosphorus), 
soil microbial community resistance (G+/G–), AMF network 
complexity (average degree), and wheat yield. The model 
explained 94.0% of the variance in wheat yield (Figure 7A). It also 
showed that stand age and G+/G– had negative indirect and direct 
effects, respectively, on wheat yield. Positive effects on wheat yield 
were found for soil moisture, available phosphorus content, and 
soil AMF network complexity (Figure 7B).

Discussion

The effects of stand age on the soil 
microbial community

Soil communities are extremely diverse (Robeson et al., 2011), 
as are their interactions with plants in supporting their growth 
(Compant et al., 2010; van Dam and Bouwmeester, 2016). In this 
study, the microbial communities of jujube stand of different ages 
in an agroforestry system were remarkably distinct (Figure 1), 
which supports our first hypothesis that soil microbial community 
could be affected by tree ages. Subsets of the microbial community 
can be  defined based on specific microbial groups to identify 
variation in composition (Yao et al., 2016; Hugerth and Andersson, 
2017). The total PLFA content, as well as the bacterial, G+, fungal, 
and actinomycete contents, was significantly higher in IN8 than 
in IN3 or IN13 (Table 1). Consistent with this result, the diversity 
of the soil microbial community was also highest in the IN8 
treatment (Supplementary Table S4).

However, we  also found that different groups of soil 
microorganisms responded differently to the increase in stand 
age. Thus, G+ was highest in IN8 and lowest in IN13, whereas 
G– showed a downward trend, differences that might have been 
due to different microbial life strategies and changes in soil 
parameters (Jing et al., 2019). Soil moisture is a major driver of 
the soil microbial community in agroforestry systems 
(Radhakrishnan and Varadharajan, 2016; Beule et al., 2020). The 
deeper soil water consumption by the roots of older trees 
significantly reduces water recharge to the soil and surface water, 
thus undermining the water supply available for crop growth 
(Ward et  al., 2002). In addition, G+ communities are more 
resistant to drying/rewetting than G– communities due to their 
physiological characteristics such as the presence of a strong, 
thick, interlinked peptidoglycan cell wall (Schimel et al., 2007). 
Indeed, the G+/G– ratio has been recognized as a critical 
indicator to indicate resistance of microbial communities to 
perturbations (De Vries and Shade, 2013). A shift toward a 
greater presence of G+ (higher values of G+/G–) can be viewed 
as a mechanism allowing adaptation to a semi-arid climate as well 
as an indicator of a gradual change from copiotrophic to more 
oligotrophic conditions (Yao et al., 2006; Bastida et al., 2015). This 
may explain the upward trend in G+/G– with increasing stand 
age, and the significant negative relationship with soil moisture 
and soil phosphorus contents.

Significant variation in fungal biomass with tree growth was 
also found (Table 1). The contribution of fungi to the degradation 
of more recalcitrant material is larger than that of bacteria (Boer 
et al., 2005), such that the increase in fungal biomass in IN8 can 
be attributed to the competitive advantage to fungi conferred by 
the presence of stabilized substrates. The dramatic decline in 

FIGURE 6

The relationships of wheat yield, aboveground biomass and topological parameters of arbuscular mycorrhizal fungi.
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fungal biomass in IN13 may have been due to adverse soil 
conditions, as a decline in soil moisture, soil nutrient, and organic 
matter adversely affect microbial growth (Bell et al., 2008; Köster 

et  al., 2014). In fungi, the large amounts of energy needed to 
tolerate drought and low resource availability lead to a decline in 
fungal growth (Kempf and Bremer, 1998; Oren, 2008).

A

B

FIGURE 7

Effects of abiotic and biotic factors on wheat yield (A). *indicates p < 0.05; **indicates p < 0.01. Continuous and dashed lines indicate significant and 
non-significant relationships, respectively. R2 denotes the proportion of variance explained. (B) Standardized total effects (direct plus indirect 
effects) derived from the structural equation models depicted above.
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Variation in the AMF community across 
tree stands of different ages

The AMF community varied significantly among different 
niches (Figures  2, 3A). Although there is no host specificity 
between AM fungi and plants, different AM fungi have certain 
preferences for host plants (Campos et al., 2018). Plant species 
function as biotic filters, based on their preferences for specific 
AMF species (Kiers et al., 2011; Torrecillas et al., 2012). The AMF 
communities of soil and wheat were more similar than those of 
soil and jujube root (Figure 3). A possible explanation for this is 
that tillage before wheat planting destroyed jujube roots, and 
jujube, as a perennial plant, has slower root growth than wheat 
(Hailemariam et al., 2013). AMF obtain carbon from host plants 
and rely on plant photosynthetic capacity and the translocation of 
photosynthate to the root to meet their carbon needs (Shukla 
et al., 2009).

The significant changes in the community as a function of tree 
age further support our first hypothesis (Figures  2, 3). The 
downward trend in AMF diversity from IN3 to IN13 can 
be attributed to changes in the soil environment. In soil and in 
wheat root, community variation was induced by soil moisture as 
well as available phosphorus and inorganic nitrogen. Neither 
phosphorus nor nitrogen was lacking in the soil, which showed a 
negative relationship with AMF diversity, in contrast to soil 
moisture. Therefore, the absence of soil water would lead to the 
extinction of several species of AMF. Previous studies have shown 
that soil moisture acts as an abiotic filter that affects AMF 
community assembly by regulating AMF colonization and 
phylotype diversity (Deepika and Kothamasi, 2015). In jujube 
root, changes over time would include progressive lignification 
with increasing stand age, such that colonization by AMF would 
be increasingly challenging (Sheng et al., 2017), as evidenced by 
the observed changes in mycorrhizal colonization among the 
three jujube stands.

As the environment changed across the different 
treatments, so did the AMF communities colonizing the plant 
roots (Supplementary Figures S2, S3). AMF taxa can 
be classified according to their suitability to specific habitats, 

and their relative abundance in soil depends on the availability 
of suitable habitats and favorable host plants (Verbruggen et al., 
2012). Different AMF taxa respond differently to variation in 
the abiotic environment (Sheng et al., 2017; Liu et al., 2019; 
Marro et  al., 2022). For example, Acaulosporaceae and 
Gigasporaceae are more tolerant of acidic soil environments 
than most Glomeraceae (Veresoglou et  al., 2013). However, 
some studies have shown that Gigasporales are sensitive to 
increased land-use intensity or disturbance, while Glomerales 
remain mostly unaffected under these conditions (Marro et al., 
2022). Consistent with our results, Sheng et al. (2017) reported 
that a root-colonizing AMF community varied with stand age. 
In our study, we  identified several significant relationships 
between soil parameters and the relative abundance of AMF at 
the genus level (Supplementary Figure S4). The relative 
abundance of Glomus was negatively related to soil moisture, 
whereas that of Diversispora was positively related to it in 
wheat root. These differences may have been due to the life 
strategies of different root-colonizing species of AMF 
(Sýkorová et al., 2007). Glomus species are often recognized as 
competitive root colonizers because they are able to colonize 
roots from spores (Herrmann et al., 2016), which could explain 
the increase in their relative abundance with increasing tree 
age. Diversispora prefer well-watered conditions (Cheng et al., 
2021). Rhizophagus, a highly infective taxon and prolific 
producer of vesicles in roots, prefers roots (Souza, 2015; Knegt 
et al., 2016), which may explain its increased relative abundance 
in soil and wheat.

The contribution of AMF to wheat yield 
in agroforestry systems

Crop root systems have an inherent capability to adjust to 
complex soil environmental conditions (Malamy, 2005), 
including the secretion of a large array of primary or secondary 
plant metabolites into the soil to facilitate interactions with the 
biotic and abiotic environment (van Dam and Bouwmeester, 
2016). In turn, host-specific changes in microbial composition 

TABLE 3 Pearson correlations between relative abundance of AM fungi on genus level and wheat yield as well as aboveground biomass.

Soil Wheat root

Yield Aboveground biomass Yield Aboveground biomass

R2 p R2 p R2 p R2 p

Archaeospora −0.39 0.3 −0.44 0.24 – – – –

Claroideoglomus −0.63 0.07 −0.6 0.09 −0.66 0.05* −0.64 0.07

Diversispora 0.77 0.02* 0.81 0.01* – – – –

Funneliformis 0.74 0.02* 0.62 0.08 0.59 0.09 0.59 0.1

Glomus 0.64 0.06 0.68 0.05* −0.65 0.06 −0.53 0.14

Paraglomus 0.54 0.13 0.62 0.07 – – – –

Rhizophagus −0.88 0.00** −0.8 0.01* −0.88 0.00** −0.8 0.01*

Value in bold indicates a significant difference. **indicates an extremely significant difference at p < 0.01, *indicates a significant difference at p < 0.05.
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feedback on plant fitness (Bever, 2003). In this study, SEM 
suggested that the changes in soil parameters induced by tree 
age led to variation in the composition of soil microbial and 
AMF communities and therefore functional changes that 
ultimately affect crop growth (Figure 6). In our study, changes 
in soil moisture resulted in changes in the bacterial community, 
and available phosphorus had a positive effect on AMF network 
complexity. Changes in G+/G– and AMF network complexity 
had negative and positive effects, respectively, on wheat yield. 
The negative effects of bacteria on crop yield may reflect 
functional trade-offs between stress tolerance and the 
promotion of nutrient cycling. A previous study found an 
inverse relationship between the stability of the microbial 
community and the resistance of microbial biomass and activity 
(Piton et al., 2021). Therefore, a reorganization of the microbial 
community would promote ecosystem stability through 
functional compensation among species responding to 
environmental change (Allison and Martiny, 2008; Jurburg 
et al., 2017).

We also found that AMF content, diversity, and network 
complexity responded positively to wheat yield (Table 2), which 
supports our second hypothesis. AMF promote host plant growth 
by supplying nutrients, in particular N and P (Menezes et al., 
2016; Guzman et al., 2021), and enhance the tolerance of plants 
to various stresses, such as drought and high temperature (Duc 
et al., 2018; Begum et al., 2019). The extracellular hyphae of AMF 
can facilitate the absorption and utilization of water by plants, 
which is important to preventing drought damage in plants 
(Bahadur et al., 2019). Other studies have found that drought 
resistance and the better performance of crops can be attributed 
to the accumulation of antioxidant enzymes (superoxide 
dismutase, peroxidase, and catalase) and soluble sugar produced 
by the AMF symbiosis (Zhang et al., 2019b). Besides, the lower 
colonization of AMF in older jujube root due to the lignification 
limited their diversity as well as the faster establishment of root 
colonization when switching from one crop to another (Mason 
and Wilson, 1994). Our results support the indispensable roles of 
soil microorganisms, in particular AMF, in promoting plant 
growth in agroforestry systems.

Conclusion

Soil microbial and AMF communities are significantly 
affected by the stand ages of trees in an agroforestry system. Soil 
moisture and the available phosphorus content related to tree 
age are the major drivers of these communities, which, in turn, 
affect crop growth. Our results also showed that AMF contribute 
to crop growth in agroforestry and are predictors of plant 
growth in agroforestry systems. However, according to a 
network analysis, AMF diversity and network complexity 
decrease with increasing stand age. Thus, stand age as well as 
the trade-offs among soil function, productivity, biodiversity, 
and economic benefits must be  taken into account when 
establishing an agroforestry system.
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